hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
1fdeb0491fcc982157101202d91f186c2a320c5d
17
py
Python
practice.py
wwwxxxx/firstPythonGit
a1b5e41153e74a700ac6de38df2676c585739358
[ "Apache-2.0" ]
null
null
null
practice.py
wwwxxxx/firstPythonGit
a1b5e41153e74a700ac6de38df2676c585739358
[ "Apache-2.0" ]
null
null
null
practice.py
wwwxxxx/firstPythonGit
a1b5e41153e74a700ac6de38df2676c585739358
[ "Apache-2.0" ]
null
null
null
print("第一个git项目")
17
17
0.764706
b94c5d4c4bcd6bd8876a04de040f38c222d0cd49
1,662
py
Python
mindspore/ops/_op_impl/aicpu/strided_slice_grad.py
i4oolish/mindspore
dac3be31d0f2c0a3516200f47af30980e566601b
[ "Apache-2.0" ]
2
2020-08-12T16:14:40.000Z
2020-12-04T03:05:57.000Z
mindspore/ops/_op_impl/aicpu/strided_slice_grad.py
dilingsong/mindspore
4276050f2494cfbf8682560a1647576f859991e8
[ "Apache-2.0" ]
null
null
null
mindspore/ops/_op_impl/aicpu/strided_slice_grad.py
dilingsong/mindspore
4276050f2494cfbf8682560a1647576f859991e8
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """StridedSliceGrad op""" from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType strided_slice_grad_op_info = AiCPURegOp("StridedSliceGradAICPU") \ .fusion_type("OPAQUE") \ .input(0, "dy", "required") \ .input(1, "shape", "required") \ .input(2, "begin", "required") \ .input(3, "end", "required") \ .input(4, "stride", "required") \ .output(0, "output", "required") \ .attr("begin_mask", "int") \ .attr("end_mask", "int") \ .attr("ellipsis_mask", "int") \ .attr("new_axis_mask", "int") \ .attr("shrink_axis_mask", "int") \ .dtype_format(DataType.F32_Default, DataType.I32_Default, DataType.I32_Default, DataType.I32_Default, DataType.I32_Default, DataType.F32_Default) \ .get_op_info() @op_info_register(strided_slice_grad_op_info) def _strided_slice_grad_aicpu(): """StridedSliceGrad AiCPU register""" return
37.772727
81
0.640794
2b17d5e2a9d621b3686fe7206a5877c3e0822a31
4,302
py
Python
rasa/engine/runner/dask.py
tienhoang1994/rasa
a977a8f1fb2308bebe7becd2c024765528296bd6
[ "Apache-2.0" ]
3,603
2017-05-21T18:34:55.000Z
2019-04-16T11:58:09.000Z
rasa/engine/runner/dask.py
tienhoang1994/rasa
a977a8f1fb2308bebe7becd2c024765528296bd6
[ "Apache-2.0" ]
2,782
2017-05-21T20:36:15.000Z
2019-04-16T14:35:20.000Z
rasa/engine/runner/dask.py
tienhoang1994/rasa
a977a8f1fb2308bebe7becd2c024765528296bd6
[ "Apache-2.0" ]
1,337
2017-05-21T18:10:33.000Z
2019-04-16T09:14:42.000Z
from __future__ import annotations import logging from typing import Any, Dict, List, Optional, Text import dask from rasa.engine.exceptions import GraphRunError from rasa.engine.graph import ExecutionContext, GraphNode, GraphNodeHook, GraphSchema from rasa.engine.runner.interface import GraphRunner from rasa.engine.storage.storage import ModelStorage logger = logging.getLogger(__name__) class DaskGraphRunner(GraphRunner): """Dask implementation of a `GraphRunner`.""" def __init__( self, graph_schema: GraphSchema, model_storage: ModelStorage, execution_context: ExecutionContext, hooks: Optional[List[GraphNodeHook]] = None, ) -> None: """Initializes a `DaskGraphRunner`. Args: graph_schema: The graph schema that will be run. model_storage: Storage which graph components can use to persist and load themselves. execution_context: Information about the current graph run to be passed to each node. hooks: These are called before and after the execution of each node. """ self._graph_schema = graph_schema self._instantiated_nodes: Dict[Text, GraphNode] = self._instantiate_nodes( graph_schema, model_storage, execution_context, hooks ) self._execution_context: ExecutionContext = execution_context @classmethod def create( cls, graph_schema: GraphSchema, model_storage: ModelStorage, execution_context: ExecutionContext, hooks: Optional[List[GraphNodeHook]] = None, ) -> DaskGraphRunner: """Creates the runner (see parent class for full docstring).""" return cls(graph_schema, model_storage, execution_context, hooks) @staticmethod def _instantiate_nodes( graph_schema: GraphSchema, model_storage: ModelStorage, execution_context: ExecutionContext, hooks: Optional[List[GraphNodeHook]] = None, ) -> Dict[Text, GraphNode]: return { node_name: GraphNode.from_schema_node( node_name, schema_node, model_storage, execution_context, hooks ) for node_name, schema_node in graph_schema.nodes.items() } def _build_dask_graph(self, schema: GraphSchema) -> Dict[Text, Any]: """Builds a dask graph from the instantiated graph. For more information about dask graphs see: https://docs.dask.org/en/latest/spec.html """ run_graph = { node_name: ( self._instantiated_nodes[node_name], *schema_node.needs.values(), ) for node_name, schema_node in schema.nodes.items() } return run_graph def run( self, inputs: Optional[Dict[Text, Any]] = None, targets: Optional[List[Text]] = None, ) -> Dict[Text, Any]: """Runs the graph (see parent class for full docstring).""" run_targets = targets if targets else self._graph_schema.target_names minimal_schema = self._graph_schema.minimal_graph_schema(run_targets) run_graph = self._build_dask_graph(minimal_schema) if inputs: self._add_inputs_to_graph(inputs, run_graph) logger.debug( f"Running graph with inputs: {inputs}, targets: {targets} " f"and {self._execution_context}." ) try: dask_result = dask.get(run_graph, run_targets) return dict(dask_result) except RuntimeError as e: raise GraphRunError("Error running runner.") from e @staticmethod def _add_inputs_to_graph(inputs: Optional[Dict[Text, Any]], graph: Any) -> None: if inputs is None: return for input_name, input_value in inputs.items(): if isinstance(input_value, str) and input_value in graph.keys(): raise GraphRunError( f"Input value '{input_value}' clashes with a node name. Make sure " f"that none of the input names passed to the `run` method are the " f"same as node names in the graph schema." ) graph[input_name] = (input_name, input_value)
36.151261
87
0.637378
3636494fbd93c178104e38d7581eb3ec92bec8ba
2,227
py
Python
spacy/cli/info.py
cmgreivel/spaCy
a31506e06060c559abfeda043503935691af2e98
[ "MIT" ]
2
2019-07-08T17:09:22.000Z
2021-01-09T17:36:04.000Z
spacy/cli/info.py
cmgreivel/spaCy
a31506e06060c559abfeda043503935691af2e98
[ "MIT" ]
null
null
null
spacy/cli/info.py
cmgreivel/spaCy
a31506e06060c559abfeda043503935691af2e98
[ "MIT" ]
null
null
null
# coding: utf8 from __future__ import unicode_literals import plac import platform from pathlib import Path from ..compat import path2str from .. import about from .. import util @plac.annotations( model=("optional: shortcut link of model", "positional", None, str), markdown=("generate Markdown for GitHub issues", "flag", "md", str)) def info(cmd, model=None, markdown=False): """Print info about spaCy installation. If a model shortcut link is speficied as an argument, print model information. Flag --markdown prints details in Markdown for easy copy-pasting to GitHub issues. """ if model: if util.is_package(model): model_path = util.get_package_path(model) else: model_path = util.get_data_path() / model meta_path = model_path / 'meta.json' if not meta_path.is_file(): util.prints(meta_path, title="Can't find model meta.json", exits=1) meta = util.read_json(meta_path) if model_path.resolve() != model_path: meta['link'] = path2str(model_path) meta['source'] = path2str(model_path.resolve()) else: meta['source'] = path2str(model_path) print_info(meta, 'model %s' % model, markdown) else: data = {'spaCy version': about.__version__, 'Location': path2str(Path(__file__).parent.parent), 'Platform': platform.platform(), 'Python version': platform.python_version(), 'Models': list_models()} print_info(data, 'spaCy', markdown) def print_info(data, title, markdown): title = 'Info about %s' % title if markdown: util.print_markdown(data, title=title) else: util.print_table(data, title=title) def list_models(): def exclude_dir(dir_name): # exclude common cache directories and hidden directories exclude = ['cache', 'pycache', '__pycache__'] return dir_name in exclude or dir_name.startswith('.') data_path = util.get_data_path() if data_path: models = [f.parts[-1] for f in data_path.iterdir() if f.is_dir()] return ', '.join([m for m in models if not exclude_dir(m)]) return '-'
35.349206
79
0.636731
7fcf1ad0bfd0105026c3f216d01ac5101a11f7ef
2,237
py
Python
threads/motion_sensors_thread.py
sensidev/pir-tof-camera-websoket-example
911da83d2ba44857d3fa0843ba57fd0576c23a5e
[ "MIT" ]
null
null
null
threads/motion_sensors_thread.py
sensidev/pir-tof-camera-websoket-example
911da83d2ba44857d3fa0843ba57fd0576c23a5e
[ "MIT" ]
1
2020-05-17T13:27:13.000Z
2020-05-17T13:27:13.000Z
threads/motion_sensors_thread.py
sensidev/pir-tof-camera-websoket-example
911da83d2ba44857d3fa0843ba57fd0576c23a5e
[ "MIT" ]
1
2019-10-27T10:52:29.000Z
2019-10-27T10:52:29.000Z
import json from threading import Thread from time import time from gpiozero import MotionSensor class MotionSensorsThread(Thread): """ Thread sampling PIR sensors and broadcast whenever one of the sensors detect motion. """ WHEN_MOTION_VALUE = 1000 def __init__(self, websocket_server, sensors=None): """ Initiate PIR sensors. :param websocket_server: Websocket server :param sensors: list of objects like {'pin': 4} """ super(MotionSensorsThread, self).__init__() print('Initializing motion sensors thread') self.websocket_server = websocket_server self.should_run = True self.sensors = sensors self._init_sensors_state_dict() for s in self.sensors: s['instance'] = MotionSensor(s.get('pin')) s['instance'].when_motion = lambda instance: self._detect_event_for(instance) def run(self): try: while self.should_run: pass finally: pass def stop(self): print('Finishing motion sensors thread ...') self.should_run = False def _get_payload(self): payload = { "type": "motion", "samples": [] } for i, s in enumerate(self.sensors, start=1): pin = s.get('pin') payload['samples'].append({ 'id': 'motion-sensor-{}'.format(i), 'pin': pin, 'sample': self.sensor_state_dict[pin], }) return payload def _detect_event_for(self, sensor_instance): print('Detect Event For PIR sensor: {}'.format(sensor_instance.pin.number)) print('Motion detected: {}'.format(sensor_instance.motion_detected)) self.sensor_state_dict[sensor_instance.pin.number] = { 'value': self.WHEN_MOTION_VALUE if sensor_instance.motion_detected else 0, 'timestamp': time() } self.websocket_server.manager.broadcast(json.dumps(self._get_payload()), binary=False) def _init_sensors_state_dict(self): self.sensor_state_dict = { s.get('pin'): {'value': 0, 'timestamp': time()} for s in self.sensors }
28.316456
94
0.599017
ee4cdd2ba19d79a568ecc159d5152427ee637105
2,353
py
Python
neuro_flow/cli/completion.py
neuromation/neuro-flow
c29d61247a4afa3b341474d226e08e976f59345c
[ "Apache-2.0" ]
3
2020-08-27T09:02:15.000Z
2020-09-29T09:19:57.000Z
neuro_flow/cli/completion.py
neuromation/neuro-flow
c29d61247a4afa3b341474d226e08e976f59345c
[ "Apache-2.0" ]
31
2020-08-05T12:55:24.000Z
2020-09-28T18:07:33.000Z
neuro_flow/cli/completion.py
neuromation/neuro-flow
c29d61247a4afa3b341474d226e08e976f59345c
[ "Apache-2.0" ]
null
null
null
import click import os import sys from neuro_flow.cli.utils import wrap_async from neuro_flow.types import LocalPath from .root import Root CFG_FILE = {"bash": LocalPath("~/.bashrc"), "zsh": LocalPath("~/.zshrc")} SOURCE_CMD = {"bash": "bash_source", "zsh": "zsh_source"} ACTIVATION_TEMPLATE = 'eval "$(_NEURO_FLOW_COMPLETE={cmd} {exe})"' @click.group() def completion() -> None: """ Output shell completion code. """ @click.command() @click.argument("shell", type=click.Choice(["bash", "zsh"])) @wrap_async() async def generate(root: Root, shell: str) -> None: """ Provide instruction for shell completion generation. """ root.console.print(f"Push the following line into your {CFG_FILE[shell]}") root.console.print( ACTIVATION_TEMPLATE.format(cmd=SOURCE_CMD[shell], exe=sys.argv[0]) ) @click.command() @click.argument("shell", type=click.Choice(["bash", "zsh"])) @wrap_async() async def patch(root: Root, shell: str) -> None: """ Automatically patch shell configuration profile to enable completion """ GENERATED_START = ( b"# Start of generated by neuro-flow. Please do not edit this comment.\n" ) GENERATED_END = ( b"\n# End of generated by neuro-flow. Please do not edit this comment.\n" ) profile_file = CFG_FILE[shell].expanduser() code = ( GENERATED_START + os.fsencode( ACTIVATION_TEMPLATE.format(cmd=SOURCE_CMD[shell], exe=sys.argv[0]) ) + GENERATED_END ) try: with profile_file.open("rb+") as profile: content = profile.read() except FileNotFoundError: content = b"" start = content.find(GENERATED_START) if start != -1: end = content.find(GENERATED_END) if end == -1: raise click.ClickException( f"Malformed guarding comments. Please edit {profile_file} manually" ) content = content[:start] + code + content[end + len(GENERATED_END) :] else: if content != b"": content += b"\n" + code else: content = code with profile_file.open("wb+") as profile: profile.write(content) root.console.print(f"Added completion configuration into '{profile_file}'") completion.add_command(generate) completion.add_command(patch)
26.738636
83
0.632809
c5e1a4d0b8f06a60d0529befdabc11ec2e62c841
2,846
py
Python
frete/api/modules/frete.py
Leothi/teste-kabum
37bc5566e13ab68c6fd0adf3b700632395481e17
[ "MIT" ]
1
2021-03-18T16:26:35.000Z
2021-03-18T16:26:35.000Z
frete/api/modules/frete.py
Leothi/teste-kabum
37bc5566e13ab68c6fd0adf3b700632395481e17
[ "MIT" ]
null
null
null
frete/api/modules/frete.py
Leothi/teste-kabum
37bc5566e13ab68c6fd0adf3b700632395481e17
[ "MIT" ]
null
null
null
from loguru import logger class CalculadorFrete(): cfg_frete = { 'ninja': { 'nome': 'Entrega Ninja', 'cte_frete': 0.3, 'altura_min': 10, 'altura_max': 200, 'largura_min': 6, 'largura_max': 140, 'prazo_dias': 6, }, 'kabum': { 'nome': 'Entrega KaBuM', 'cte_frete': 0.2, 'altura_min': 5, 'altura_max': 140, 'largura_min': 13, 'largura_max': 125, 'prazo_dias': 4, }, } @classmethod def validar(cls, dimensao: dict, peso: int) -> list: """Valida o produto através de suas características. :param dimensao: Dimensões do produto. :type dimensao: dict :param peso: Peso do produto. :type peso: int :return: Lista de fretes válidos para o produto. :rtype: list """ logger.info("Validando dimensões do produto.") tipos_validos = [] cfg_dict = cls.cfg_frete # Validação de peso if not peso <= 0: for key, value in cfg_dict.items(): # Validação de altura e largura altura_valida = cfg_dict[key]['altura_min'] <= dimensao['altura'] <= cfg_dict[key]['altura_max'] largura_valida = cfg_dict[key]['largura_min'] <= dimensao['largura'] <= cfg_dict[key]['largura_max'] if altura_valida and largura_valida: tipos_validos.append(key) logger.debug('Validação concluída.') return tipos_validos @classmethod def criar_lista_fretes(cls, body: dict) -> list: """Cria a lista de fretes disponíveis para o produto. :param body: Dicionário da requisição contendo informações do produto. :type body: dict :return: Lista de dicionários contendo os resultados dos cálculos de frete. :rtype: list """ tipos_validos = cls.validar(**body) lista_fretes = [] if tipos_validos: logger.info("Criando lista de fretes.") for tipo in tipos_validos: cfg_dict = cls.cfg_frete # Calculando frete cte_frete = cfg_dict[tipo]['cte_frete'] frete = cte_frete * body['peso'] / 10 # Dicionário final dict_frete = { 'nome': cfg_dict[tipo]['nome'], 'valor_frete': frete, 'prazo_dias': cfg_dict[tipo]['prazo_dias'] } # Lista com os dicionários finais lista_fretes.append(dict_frete) logger.success("Lista criada.") else: logger.success("Dimensões inválidas para os fretes atuais.") return lista_fretes
30.602151
116
0.531623
abd9cecd9ac6d71a5192a06c3bd86641ff64abe5
20,076
py
Python
tests/test_setup.py
squirrel289/core
6c5bcbfc3ee40927458e9188d6b79bf63933d3f9
[ "Apache-2.0" ]
3
2019-11-13T18:19:33.000Z
2021-07-18T11:40:37.000Z
tests/test_setup.py
squirrel289/core
6c5bcbfc3ee40927458e9188d6b79bf63933d3f9
[ "Apache-2.0" ]
45
2020-07-21T12:58:24.000Z
2022-03-31T06:01:46.000Z
tests/test_setup.py
CrossEyeORG/homeassistant
6c5bcbfc3ee40927458e9188d6b79bf63933d3f9
[ "Apache-2.0" ]
2
2017-09-03T16:06:02.000Z
2021-01-12T15:07:52.000Z
"""Test component/platform setup.""" # pylint: disable=protected-access import asyncio import logging import os import threading import pytest import voluptuous as vol from homeassistant import config_entries, setup import homeassistant.config as config_util from homeassistant.const import EVENT_COMPONENT_LOADED, EVENT_HOMEASSISTANT_START from homeassistant.core import callback from homeassistant.helpers import discovery from homeassistant.helpers.config_validation import ( PLATFORM_SCHEMA, PLATFORM_SCHEMA_BASE, ) import homeassistant.util.dt as dt_util from tests.async_mock import Mock, patch from tests.common import ( MockConfigEntry, MockModule, MockPlatform, assert_setup_component, get_test_config_dir, get_test_home_assistant, mock_entity_platform, mock_integration, ) ORIG_TIMEZONE = dt_util.DEFAULT_TIME_ZONE VERSION_PATH = os.path.join(get_test_config_dir(), config_util.VERSION_FILE) _LOGGER = logging.getLogger(__name__) @pytest.fixture(autouse=True) def mock_handlers(): """Mock config flows.""" class MockFlowHandler(config_entries.ConfigFlow): """Define a mock flow handler.""" VERSION = 1 with patch.dict(config_entries.HANDLERS, {"comp": MockFlowHandler}): yield class TestSetup: """Test the bootstrap utils.""" hass = None backup_cache = None # pylint: disable=invalid-name, no-self-use def setup_method(self, method): """Set up the test.""" self.hass = get_test_home_assistant() def teardown_method(self, method): """Clean up.""" self.hass.stop() def test_validate_component_config(self): """Test validating component configuration.""" config_schema = vol.Schema({"comp_conf": {"hello": str}}, required=True) mock_integration( self.hass, MockModule("comp_conf", config_schema=config_schema) ) with assert_setup_component(0): assert not setup.setup_component(self.hass, "comp_conf", {}) self.hass.data.pop(setup.DATA_SETUP) with assert_setup_component(0): assert not setup.setup_component( self.hass, "comp_conf", {"comp_conf": None} ) self.hass.data.pop(setup.DATA_SETUP) with assert_setup_component(0): assert not setup.setup_component(self.hass, "comp_conf", {"comp_conf": {}}) self.hass.data.pop(setup.DATA_SETUP) with assert_setup_component(0): assert not setup.setup_component( self.hass, "comp_conf", {"comp_conf": {"hello": "world", "invalid": "extra"}}, ) self.hass.data.pop(setup.DATA_SETUP) with assert_setup_component(1): assert setup.setup_component( self.hass, "comp_conf", {"comp_conf": {"hello": "world"}} ) def test_validate_platform_config(self, caplog): """Test validating platform configuration.""" platform_schema = PLATFORM_SCHEMA.extend({"hello": str}) platform_schema_base = PLATFORM_SCHEMA_BASE.extend({}) mock_integration( self.hass, MockModule("platform_conf", platform_schema_base=platform_schema_base), ) mock_entity_platform( self.hass, "platform_conf.whatever", MockPlatform(platform_schema=platform_schema), ) with assert_setup_component(0): assert setup.setup_component( self.hass, "platform_conf", {"platform_conf": {"platform": "not_existing", "hello": "world"}}, ) self.hass.data.pop(setup.DATA_SETUP) self.hass.config.components.remove("platform_conf") with assert_setup_component(1): assert setup.setup_component( self.hass, "platform_conf", {"platform_conf": {"platform": "whatever", "hello": "world"}}, ) self.hass.data.pop(setup.DATA_SETUP) self.hass.config.components.remove("platform_conf") with assert_setup_component(1): assert setup.setup_component( self.hass, "platform_conf", {"platform_conf": [{"platform": "whatever", "hello": "world"}]}, ) self.hass.data.pop(setup.DATA_SETUP) self.hass.config.components.remove("platform_conf") # Any falsey platform config will be ignored (None, {}, etc) with assert_setup_component(0) as config: assert setup.setup_component( self.hass, "platform_conf", {"platform_conf": None} ) assert "platform_conf" in self.hass.config.components assert not config["platform_conf"] # empty assert setup.setup_component( self.hass, "platform_conf", {"platform_conf": {}} ) assert "platform_conf" in self.hass.config.components assert not config["platform_conf"] # empty def test_validate_platform_config_2(self, caplog): """Test component PLATFORM_SCHEMA_BASE prio over PLATFORM_SCHEMA.""" platform_schema = PLATFORM_SCHEMA.extend({"hello": str}) platform_schema_base = PLATFORM_SCHEMA_BASE.extend({"hello": "world"}) mock_integration( self.hass, MockModule( "platform_conf", platform_schema=platform_schema, platform_schema_base=platform_schema_base, ), ) mock_entity_platform( self.hass, "platform_conf.whatever", MockPlatform("whatever", platform_schema=platform_schema), ) with assert_setup_component(1): assert setup.setup_component( self.hass, "platform_conf", { # pass "platform_conf": {"platform": "whatever", "hello": "world"}, # fail: key hello violates component platform_schema_base "platform_conf 2": {"platform": "whatever", "hello": "there"}, }, ) def test_validate_platform_config_3(self, caplog): """Test fallback to component PLATFORM_SCHEMA.""" component_schema = PLATFORM_SCHEMA_BASE.extend({"hello": str}) platform_schema = PLATFORM_SCHEMA.extend({"cheers": str, "hello": "world"}) mock_integration( self.hass, MockModule("platform_conf", platform_schema=component_schema) ) mock_entity_platform( self.hass, "platform_conf.whatever", MockPlatform("whatever", platform_schema=platform_schema), ) with assert_setup_component(1): assert setup.setup_component( self.hass, "platform_conf", { # pass "platform_conf": {"platform": "whatever", "hello": "world"}, # fail: key hello violates component platform_schema "platform_conf 2": {"platform": "whatever", "hello": "there"}, }, ) def test_validate_platform_config_4(self): """Test entity_namespace in PLATFORM_SCHEMA.""" component_schema = PLATFORM_SCHEMA_BASE platform_schema = PLATFORM_SCHEMA mock_integration( self.hass, MockModule("platform_conf", platform_schema_base=component_schema), ) mock_entity_platform( self.hass, "platform_conf.whatever", MockPlatform(platform_schema=platform_schema), ) with assert_setup_component(1): assert setup.setup_component( self.hass, "platform_conf", { "platform_conf": { # pass: entity_namespace accepted by PLATFORM_SCHEMA "platform": "whatever", "entity_namespace": "yummy", } }, ) self.hass.data.pop(setup.DATA_SETUP) self.hass.config.components.remove("platform_conf") def test_component_not_found(self): """setup_component should not crash if component doesn't exist.""" assert setup.setup_component(self.hass, "non_existing", {}) is False def test_component_not_double_initialized(self): """Test we do not set up a component twice.""" mock_setup = Mock(return_value=True) mock_integration(self.hass, MockModule("comp", setup=mock_setup)) assert setup.setup_component(self.hass, "comp", {}) assert mock_setup.called mock_setup.reset_mock() assert setup.setup_component(self.hass, "comp", {}) assert not mock_setup.called @patch("homeassistant.util.package.install_package", return_value=False) def test_component_not_installed_if_requirement_fails(self, mock_install): """Component setup should fail if requirement can't install.""" self.hass.config.skip_pip = False mock_integration(self.hass, MockModule("comp", requirements=["package==0.0.1"])) assert not setup.setup_component(self.hass, "comp", {}) assert "comp" not in self.hass.config.components def test_component_not_setup_twice_if_loaded_during_other_setup(self): """Test component setup while waiting for lock is not set up twice.""" result = [] async def async_setup(hass, config): """Tracking Setup.""" result.append(1) mock_integration(self.hass, MockModule("comp", async_setup=async_setup)) def setup_component(): """Set up the component.""" setup.setup_component(self.hass, "comp", {}) thread = threading.Thread(target=setup_component) thread.start() setup.setup_component(self.hass, "comp", {}) thread.join() assert len(result) == 1 def test_component_not_setup_missing_dependencies(self): """Test we do not set up a component if not all dependencies loaded.""" deps = ["maybe_existing"] mock_integration(self.hass, MockModule("comp", dependencies=deps)) assert not setup.setup_component(self.hass, "comp", {}) assert "comp" not in self.hass.config.components self.hass.data.pop(setup.DATA_SETUP) mock_integration(self.hass, MockModule("comp2", dependencies=deps)) mock_integration(self.hass, MockModule("maybe_existing")) assert setup.setup_component(self.hass, "comp2", {}) def test_component_failing_setup(self): """Test component that fails setup.""" mock_integration( self.hass, MockModule("comp", setup=lambda hass, config: False) ) assert not setup.setup_component(self.hass, "comp", {}) assert "comp" not in self.hass.config.components def test_component_exception_setup(self): """Test component that raises exception during setup.""" def exception_setup(hass, config): """Raise exception.""" raise Exception("fail!") mock_integration(self.hass, MockModule("comp", setup=exception_setup)) assert not setup.setup_component(self.hass, "comp", {}) assert "comp" not in self.hass.config.components def test_component_setup_with_validation_and_dependency(self): """Test all config is passed to dependencies.""" def config_check_setup(hass, config): """Test that config is passed in.""" if config.get("comp_a", {}).get("valid", False): return True raise Exception(f"Config not passed in: {config}") platform = MockPlatform() mock_integration(self.hass, MockModule("comp_a", setup=config_check_setup)) mock_integration( self.hass, MockModule("platform_a", setup=config_check_setup, dependencies=["comp_a"]), ) mock_entity_platform(self.hass, "switch.platform_a", platform) setup.setup_component( self.hass, "switch", {"comp_a": {"valid": True}, "switch": {"platform": "platform_a"}}, ) self.hass.block_till_done() assert "comp_a" in self.hass.config.components def test_platform_specific_config_validation(self): """Test platform that specifies config.""" platform_schema = PLATFORM_SCHEMA.extend( {"valid": True}, extra=vol.PREVENT_EXTRA ) mock_setup = Mock(spec_set=True) mock_entity_platform( self.hass, "switch.platform_a", MockPlatform(platform_schema=platform_schema, setup_platform=mock_setup), ) with assert_setup_component(0, "switch"): assert setup.setup_component( self.hass, "switch", {"switch": {"platform": "platform_a", "invalid": True}}, ) self.hass.block_till_done() assert mock_setup.call_count == 0 self.hass.data.pop(setup.DATA_SETUP) self.hass.config.components.remove("switch") with assert_setup_component(0): assert setup.setup_component( self.hass, "switch", { "switch": { "platform": "platform_a", "valid": True, "invalid_extra": True, } }, ) self.hass.block_till_done() assert mock_setup.call_count == 0 self.hass.data.pop(setup.DATA_SETUP) self.hass.config.components.remove("switch") with assert_setup_component(1, "switch"): assert setup.setup_component( self.hass, "switch", {"switch": {"platform": "platform_a", "valid": True}}, ) self.hass.block_till_done() assert mock_setup.call_count == 1 def test_disable_component_if_invalid_return(self): """Test disabling component if invalid return.""" mock_integration( self.hass, MockModule("disabled_component", setup=lambda hass, config: None) ) assert not setup.setup_component(self.hass, "disabled_component", {}) assert "disabled_component" not in self.hass.config.components self.hass.data.pop(setup.DATA_SETUP) mock_integration( self.hass, MockModule("disabled_component", setup=lambda hass, config: False), ) assert not setup.setup_component(self.hass, "disabled_component", {}) assert "disabled_component" not in self.hass.config.components self.hass.data.pop(setup.DATA_SETUP) mock_integration( self.hass, MockModule("disabled_component", setup=lambda hass, config: True) ) assert setup.setup_component(self.hass, "disabled_component", {}) assert "disabled_component" in self.hass.config.components def test_all_work_done_before_start(self): """Test all init work done till start.""" call_order = [] def component1_setup(hass, config): """Set up mock component.""" discovery.discover(hass, "test_component2", {}, "test_component2", {}) discovery.discover(hass, "test_component3", {}, "test_component3", {}) return True def component_track_setup(hass, config): """Set up mock component.""" call_order.append(1) return True mock_integration( self.hass, MockModule("test_component1", setup=component1_setup) ) mock_integration( self.hass, MockModule("test_component2", setup=component_track_setup) ) mock_integration( self.hass, MockModule("test_component3", setup=component_track_setup) ) @callback def track_start(event): """Track start event.""" call_order.append(2) self.hass.bus.listen_once(EVENT_HOMEASSISTANT_START, track_start) self.hass.add_job(setup.async_setup_component(self.hass, "test_component1", {})) self.hass.block_till_done() self.hass.start() assert call_order == [1, 1, 2] async def test_component_warn_slow_setup(hass): """Warn we log when a component setup takes a long time.""" mock_integration(hass, MockModule("test_component1")) with patch.object(hass.loop, "call_later") as mock_call: result = await setup.async_setup_component(hass, "test_component1", {}) assert result assert mock_call.called assert len(mock_call.mock_calls) == 3 timeout, logger_method = mock_call.mock_calls[0][1][:2] assert timeout == setup.SLOW_SETUP_WARNING assert logger_method == setup._LOGGER.warning assert mock_call().cancel.called async def test_platform_no_warn_slow(hass): """Do not warn for long entity setup time.""" mock_integration( hass, MockModule("test_component1", platform_schema=PLATFORM_SCHEMA) ) with patch.object(hass.loop, "call_later") as mock_call: result = await setup.async_setup_component(hass, "test_component1", {}) assert result assert len(mock_call.mock_calls) == 0 async def test_platform_error_slow_setup(hass, caplog): """Don't block startup more than SLOW_SETUP_MAX_WAIT.""" with patch.object(setup, "SLOW_SETUP_MAX_WAIT", 1): called = [] async def async_setup(*args): """Tracking Setup.""" called.append(1) await asyncio.sleep(2) mock_integration(hass, MockModule("test_component1", async_setup=async_setup)) result = await setup.async_setup_component(hass, "test_component1", {}) assert len(called) == 1 assert not result assert "test_component1 is taking longer than 1 seconds" in caplog.text async def test_when_setup_already_loaded(hass): """Test when setup.""" calls = [] async def mock_callback(hass, component): """Mock callback.""" calls.append(component) setup.async_when_setup(hass, "test", mock_callback) await hass.async_block_till_done() assert calls == [] hass.config.components.add("test") hass.bus.async_fire(EVENT_COMPONENT_LOADED, {"component": "test"}) await hass.async_block_till_done() assert calls == ["test"] # Event listener should be gone hass.bus.async_fire(EVENT_COMPONENT_LOADED, {"component": "test"}) await hass.async_block_till_done() assert calls == ["test"] # Should be called right away setup.async_when_setup(hass, "test", mock_callback) await hass.async_block_till_done() assert calls == ["test", "test"] async def test_setup_import_blows_up(hass): """Test that we handle it correctly when importing integration blows up.""" with patch( "homeassistant.loader.Integration.get_component", side_effect=ValueError ): assert not await setup.async_setup_component(hass, "sun", {}) async def test_parallel_entry_setup(hass): """Test config entries are set up in parallel.""" MockConfigEntry(domain="comp", data={"value": 1}).add_to_hass(hass) MockConfigEntry(domain="comp", data={"value": 2}).add_to_hass(hass) calls = [] async def mock_async_setup_entry(hass, entry): """Mock setting up an entry.""" calls.append(entry.data["value"]) await asyncio.sleep(0) calls.append(entry.data["value"]) return True mock_integration( hass, MockModule("comp", async_setup_entry=mock_async_setup_entry,), ) mock_entity_platform(hass, "config_flow.comp", None) await setup.async_setup_component(hass, "comp", {}) assert calls == [1, 2, 1, 2]
34.259386
88
0.618002
0170bd083e4a0324855ae0cd94c452035a3bc9e3
25,599
py
Python
core/domain/question_domain_test.py
arora-ria/oppia
698d5593689f15ee36384a57036cf2e0150bb785
[ "Apache-2.0" ]
2
2020-10-13T12:59:08.000Z
2020-10-13T17:10:26.000Z
core/domain/question_domain_test.py
gitter-badger/oppia
7d8e659264582d7ce74bc6c139e597b82bca0e04
[ "Apache-2.0" ]
1
2020-05-27T06:08:17.000Z
2020-05-27T06:08:17.000Z
core/domain/question_domain_test.py
gitter-badger/oppia
7d8e659264582d7ce74bc6c139e597b82bca0e04
[ "Apache-2.0" ]
1
2020-11-05T12:26:10.000Z
2020-11-05T12:26:10.000Z
# Copyright 2018 The Oppia Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, softwar # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for question domain objects.""" from __future__ import absolute_import # pylint: disable=import-only-modules from __future__ import unicode_literals # pylint: disable=import-only-modules import datetime from core.domain import question_domain from core.domain import state_domain from core.tests import test_utils import feconf import utils class QuestionChangeTest(test_utils.GenericTestBase): """Test for Question Change object.""" def test_to_dict(self): """Test to verify to_dict method of the Question Change object.""" expected_object_dict = { 'cmd': 'update_question_property', 'property_name': 'question_state_data', 'new_value': 'new_value', 'old_value': 'old_value', } change_dict = { 'cmd': 'update_question_property', 'property_name': 'question_state_data', 'new_value': 'new_value', 'old_value': 'old_value', } observed_object = question_domain.QuestionChange( change_dict=change_dict, ) self.assertEqual(expected_object_dict, observed_object.to_dict()) def test_change_dict_without_cmd(self): """Test to verify __init__ method of the Question Change object when change_dict is without cmd key. """ self.assertRaisesRegexp( utils.ValidationError, 'Missing cmd key in change dict', callableObj=question_domain.QuestionChange, change_dict={} ) def test_change_dict_with_wrong_cmd(self): """Test to verify __init__ method of the Question Change object when change_dict is with wrong cmd value. """ self.assertRaisesRegexp( utils.ValidationError, 'Command wrong is not allowed', callableObj=question_domain.QuestionChange, change_dict={'cmd': 'wrong', } ) def test_change_dict_with_missing_attributes_in_cmd(self): """Test to verify __init__ method of the Question Change object when change_dict is with missing attributes in cmd. """ self.assertRaisesRegexp( utils.ValidationError, 'The following required attributes are present: new_value', callableObj=question_domain.QuestionChange, change_dict={ 'cmd': 'update_question_property', 'property_name': 'question_state_data', 'old_value': 'old_value' } ) def test_change_dict_with_extra_attributes_in_cmd(self): """Test to verify __init__ method of the Question Change object when change_dict is with extra attributes in cmd. """ self.assertRaisesRegexp( utils.ValidationError, 'The following extra attributes are present: invalid', callableObj=question_domain.QuestionChange, change_dict={'cmd': 'create_new', 'invalid': 'invalid'} ) def test_update_question_property_with_wrong_property_name(self): """Test to verify __init__ method of the Question Change object when cmd is update_question_property and wrong property_name is given. """ self.assertRaisesRegexp( utils.ValidationError, ( 'Value for property_name in cmd update_question_property: ' 'wrong is not allowed'), callableObj=question_domain.QuestionChange, change_dict={ 'cmd': 'update_question_property', 'property_name': 'wrong', 'new_value': 'new_value', 'old_value': 'old_value' } ) def test_create_new(self): """Test to verify __init__ method of the Question Change object when cmd is create_new. """ change_dict = { 'cmd': 'create_new' } observed_object = question_domain.QuestionChange( change_dict=change_dict, ) self.assertEqual('create_new', observed_object.cmd) def test_update_question_property(self): """Test to verify __init__ method of the Question Change object when cmd is update_question_property. """ change_dict = { 'cmd': 'update_question_property', 'property_name': 'question_state_data', 'new_value': 'new_value', 'old_value': 'old_value' } observed_object = question_domain.QuestionChange( change_dict=change_dict ) self.assertEqual('update_question_property', observed_object.cmd) self.assertEqual('question_state_data', observed_object.property_name) self.assertEqual('new_value', observed_object.new_value) self.assertEqual('old_value', observed_object.old_value) def test_create_new_fully_specified_question(self): """Test to verify __init__ method of the Question Change object when cmd is create_new_fully_specified_question. """ change_dict = { 'cmd': 'create_new_fully_specified_question', 'question_dict': {}, 'skill_id': '10', } observed_object = question_domain.QuestionChange( change_dict=change_dict, ) self.assertEqual( 'create_new_fully_specified_question', observed_object.cmd) self.assertEqual('10', observed_object.skill_id) self.assertEqual({}, observed_object.question_dict) def test_migrate_state_schema_to_latest_version(self): """Test to verify __init__ method of the Question Change object when cmd is migrate_state_schema_to_latest_version. """ change_dict = { 'cmd': 'migrate_state_schema_to_latest_version', 'from_version': 0, 'to_version': 10, } observed_object = question_domain.QuestionChange( change_dict=change_dict, ) self.assertEqual( 'migrate_state_schema_to_latest_version', observed_object.cmd) self.assertEqual(0, observed_object.from_version) self.assertEqual(10, observed_object.to_version) class QuestionSuggestionChangeTest(test_utils.GenericTestBase): """Test for QuestionSuggestionChange object.""" def test_to_dict(self): """Test to verify to_dict method of the Question Change object.""" expected_object_dict = { 'cmd': 'create_new_fully_specified_question', 'question_dict': 'question_dict', 'skill_id': 'skill_1', 'skill_difficulty': '0.3' } change_dict = { 'cmd': 'create_new_fully_specified_question', 'question_dict': 'question_dict', 'skill_id': 'skill_1', 'skill_difficulty': '0.3' } observed_object = question_domain.QuestionSuggestionChange( change_dict=change_dict, ) self.assertEqual(expected_object_dict, observed_object.to_dict()) def test_change_dict_without_cmd(self): """Test to verify __init__ method of the QuestionSuggestionChange object when change_dict is without cmd key. """ self.assertRaisesRegexp( utils.ValidationError, 'Missing cmd key in change dict', callableObj=question_domain.QuestionSuggestionChange, change_dict={} ) def test_change_dict_with_wrong_cmd(self): """Test to verify __init__ method of the QuestionSuggestionChange object when change_dict is with wrong cmd value. """ self.assertRaisesRegexp( utils.ValidationError, 'Command wrong is not allowed', callableObj=question_domain.QuestionSuggestionChange, change_dict={'cmd': 'wrong', } ) def test_change_dict_with_missing_attributes_in_cmd(self): """Test to verify __init__ method of the QuestionSuggestionChange object when change_dict is with missing attributes in cmd. """ self.assertRaisesRegexp( utils.ValidationError, 'The following required attributes are present: new_value', callableObj=question_domain.QuestionSuggestionChange, change_dict={ 'cmd': 'create_new_fully_specified_question', 'question_dict': 'question_dict', } ) def test_change_dict_with_extra_attributes_in_cmd(self): """Test to verify __init__ method of the QuestionSuggestionChange object when change_dict is with extra attributes in cmd. """ self.assertRaisesRegexp( utils.ValidationError, 'The following extra attributes are present: invalid', callableObj=question_domain.QuestionSuggestionChange, change_dict={ 'cmd': 'create_new_fully_specified_question', 'question_dict': 'question_dict', 'skill_id': 'skill_1', 'skill_difficulty': '0.3', 'invalid': 'invalid' } ) def test_create_new_fully_specified_question(self): """Test to verify __init__ method of the QuestionSuggestionChange object when cmd is create_new_fully_specified_question. """ change_dict = { 'cmd': 'create_new_fully_specified_question', 'question_dict': {}, 'skill_id': '10', 'skill_difficulty': '0.3', } observed_object = question_domain.QuestionSuggestionChange( change_dict=change_dict, ) self.assertEqual( 'create_new_fully_specified_question', observed_object.cmd) self.assertEqual('10', observed_object.skill_id) self.assertEqual({}, observed_object.question_dict) class QuestionDomainTest(test_utils.GenericTestBase): """Tests for Question domain object.""" def setUp(self): """Before each individual test, create a question.""" super(QuestionDomainTest, self).setUp() question_state_data = self._create_valid_question_data('ABC') self.question = question_domain.Question( 'question_id', question_state_data, feconf.CURRENT_STATE_SCHEMA_VERSION, 'en', 1, ['skill1'], ['skillId12345-123']) def test_to_and_from_dict(self): """Test to verify to_dict and from_dict methods of Question domain object. """ default_question_state_data = ( question_domain.Question.create_default_question_state()) question_dict = { 'id': 'col1.random', 'question_state_data': default_question_state_data.to_dict(), 'question_state_data_schema_version': ( feconf.CURRENT_STATE_SCHEMA_VERSION), 'language_code': 'en', 'version': 1, 'linked_skill_ids': ['skill1'], 'inapplicable_skill_misconception_ids': ['skill1-123'] } observed_object = question_domain.Question.from_dict(question_dict) self.assertEqual(question_dict, observed_object.to_dict()) def _assert_validation_error(self, expected_error_substring): """Checks that the skill passes strict validation.""" with self.assertRaisesRegexp( utils.ValidationError, expected_error_substring): self.question.validate() def test_strict_validation(self): """Test to verify validate method of Question domain object with strict as True. """ state = self.question.question_state_data state.interaction.solution = None self._assert_validation_error( 'Expected the question to have a solution') state.interaction.hints = [] self._assert_validation_error( 'Expected the question to have at least one hint') state.interaction.default_outcome.dest = 'abc' self._assert_validation_error( 'Expected all answer groups to have destination as None.') state.interaction.default_outcome.labelled_as_correct = False self._assert_validation_error( 'Expected at least one answer group to have a correct answer') def test_strict_validation_for_answer_groups(self): """Test to verify validate method of Question domain object with strict as True for interaction with answer group. """ state = self.question.question_state_data state.interaction.default_outcome.labelled_as_correct = False state.interaction.answer_groups = [ state_domain.AnswerGroup.from_dict({ 'outcome': { 'dest': 'abc', 'feedback': { 'content_id': 'feedback_1', 'html': '<p>Feedback</p>' }, 'labelled_as_correct': True, 'param_changes': [], 'refresher_exploration_id': None, 'missing_prerequisite_skill_id': None }, 'rule_specs': [{ 'inputs': { 'x': 'Test' }, 'rule_type': 'Contains' }], 'training_data': [], 'tagged_skill_misconception_id': None }) ] self._assert_validation_error( 'Expected all answer groups to have destination as None.') def test_validate_invalid_list_of_inapplicable_skill_misconception_ids( self): """Test to verify that the validation fails when inapplicable_skill_misconception_ids value is an invalid list. """ self.question.inapplicable_skill_misconception_ids = ['Test', 1] self._assert_validation_error( r'Expected inapplicable_skill_misconception_ids to be a list of ' r'strings, received \[u\'Test\', 1\]') def test_validate_invalid_type_of_inapplicable_skill_misconception_ids( self): """Test to verify that the validation fails when inapplicable_skill_misconception_ids value is an invalid type. """ self.question.inapplicable_skill_misconception_ids = 123 self._assert_validation_error( 'Expected inapplicable_skill_misconception_ids to be a list of ' 'strings, received 123') def test_validate_invalid_format_of_inapplicable_skill_misconception_ids( self): """Test to verify that the validation fails when inapplicable_skill_misconception_ids value is an invalid format i.e. it is not of the form <skill-id>-<misconception-id>. """ self.question.inapplicable_skill_misconception_ids = ['abc', 'def'] self._assert_validation_error( r'Expected inapplicable_skill_misconception_ids to be a list ' r'of strings of the format <skill_id>-<misconception_id>, ' r'received \[u\'abc\', u\'def\'\]') def test_validate_duplicate_inapplicable_skill_misconception_ids_list( self): """Test to verify that the validation fails when inapplicable_skill_misconception_ids list is has duplicate values. """ self.question.inapplicable_skill_misconception_ids = [ 'skillid12345-1', 'skillid12345-1'] self._assert_validation_error( 'inapplicable_skill_misconception_ids has duplicate values') def test_strict_validation_passes(self): """Test to verify validate method of a finalized Question domain object with correct input. """ self.question.validate() def test_not_strict_validation(self): """Test to verify validate method of Question domain object with strict as False. """ self.question.language_code = 'abc' self._assert_validation_error('Invalid language code') self.question.question_state_data = 'State data' self._assert_validation_error( 'Expected question state data to be a State object') self.question.question_state_data_schema_version = 'abc' self._assert_validation_error( 'Expected schema version to be an integer') self.question.linked_skill_ids = 'Test' self._assert_validation_error( 'Expected linked_skill_ids to be a list of strings') self.question.linked_skill_ids = None self._assert_validation_error( 'inked_skill_ids is either null or an empty list') self.question.linked_skill_ids = [] self._assert_validation_error( 'linked_skill_ids is either null or an empty list') self.question.linked_skill_ids = ['Test', 1] self._assert_validation_error( 'Expected linked_skill_ids to be a list of strings') self.question.linked_skill_ids = ['skill1', 'skill1'] self._assert_validation_error( 'linked_skill_ids has duplicate skill ids') self.question.language_code = 1 self._assert_validation_error('Expected language_code to be a string') self.question.version = 'abc' self._assert_validation_error('Expected version to be an integer') self.question.id = 123 self._assert_validation_error('Expected ID to be a string') def test_create_default_question(self): """Test to verify create_default_question method of the Question domain object. """ question_id = 'col1.random' skill_ids = ['test_skill1', 'test_skill2'] question = question_domain.Question.create_default_question( question_id, skill_ids) default_question_data = ( question_domain.Question.create_default_question_state().to_dict()) self.assertEqual(question.id, question_id) self.assertEqual( question.question_state_data.to_dict(), default_question_data) self.assertEqual(question.language_code, 'en') self.assertEqual(question.version, 0) self.assertEqual(question.linked_skill_ids, skill_ids) def test_update_language_code(self): """Test to verify update_language_code method of the Question domain object. """ self.question.update_language_code('pl') self.assertEqual('pl', self.question.language_code) def test_update_linked_skill_ids(self): """Test to verify update_linked_skill_ids method of the Question domain object. """ self.question.update_linked_skill_ids(['skill_id1']) self.assertEqual(['skill_id1'], self.question.linked_skill_ids) def test_update_inapplicable_skill_misconception_ids(self): """Test to verify update_inapplicable_skill_misconception_ids method of the Question domain object. """ self.assertEqual( ['skillId12345-123'], self.question.inapplicable_skill_misconception_ids) self.question.update_inapplicable_skill_misconception_ids( ['skillid-misconceptionid']) self.assertEqual( ['skillid-misconceptionid'], self.question.inapplicable_skill_misconception_ids) def test_update_question_state_data(self): """Test to verify update_question_state_data method of the Question domain object. """ question_state_data = self._create_valid_question_data('Test') self.question.update_question_state_data(question_state_data) self.assertEqual( question_state_data.to_dict(), self.question.question_state_data.to_dict() ) class QuestionSummaryTest(test_utils.GenericTestBase): """Test for Question Summary object.""" def setUp(self): super(QuestionSummaryTest, self).setUp() self.fake_date_created = datetime.datetime( 2018, 11, 17, 20, 2, 45, 0) self.fake_date_updated = datetime.datetime( 2018, 11, 17, 20, 3, 14, 0) self.observed_object = question_domain.QuestionSummary( question_id='question_1', question_content='<p>question content</p>', interaction_id='TextInput', question_model_created_on=self.fake_date_created, question_model_last_updated=self.fake_date_updated, misconception_ids=['skill1-1', 'skill2-2'] ) def test_to_dict(self): """Test to verify to_dict method of the Question Summary object. """ expected_object_dict = { 'id': 'question_1', 'question_content': '<p>question content</p>', 'interaction_id': 'TextInput', 'last_updated_msec': utils.get_time_in_millisecs( self.fake_date_updated), 'created_on_msec': utils.get_time_in_millisecs( self.fake_date_created), 'misconception_ids': ['skill1-1', 'skill2-2'] } self.assertEqual(expected_object_dict, self.observed_object.to_dict()) def test_validation_with_valid_properties(self): self.observed_object.validate() def test_validation_with_invalid_id(self): self.observed_object.id = 1 with self.assertRaisesRegexp( utils.ValidationError, 'Expected id to be a string, received 1'): self.observed_object.validate() def test_validation_with_invalid_interaction_id(self): self.observed_object.interaction_id = 1 with self.assertRaisesRegexp( utils.ValidationError, 'Expected interaction id to be a string, received 1'): self.observed_object.validate() def test_validation_with_invalid_question_content(self): self.observed_object.question_content = 1 with self.assertRaisesRegexp( utils.ValidationError, 'Expected question content to be a string, received 1'): self.observed_object.validate() def test_validation_with_invalid_created_on(self): self.observed_object.created_on = 1 with self.assertRaisesRegexp( utils.ValidationError, 'Expected created on to be a datetime, received 1'): self.observed_object.validate() def test_validation_with_invalid_last_updated(self): self.observed_object.last_updated = 1 with self.assertRaisesRegexp( utils.ValidationError, 'Expected last updated to be a datetime, received 1'): self.observed_object.validate() def test_validate_invalid_list_of_misconception_ids(self): """Test to verify that the validation fails when misconception_ids value is an invalid list. """ self.observed_object.misconception_ids = ['Test', 1] with self.assertRaisesRegexp( utils.ValidationError, r'Expected misconception ids to be a list of strings, ' r'received \[u\'Test\', 1\]'): self.observed_object.validate() def test_validate_invalid_type_of_misconception_ids(self): """Test to verify that the validation fails when misconception_ids value is an invalid type. """ self.observed_object.misconception_ids = 123 with self.assertRaisesRegexp( utils.ValidationError, 'Expected misconception ids to be a list of strings, ' 'received 123'): self.observed_object.validate() class QuestionSkillLinkDomainTest(test_utils.GenericTestBase): """Test for Question Skill Link Domain object.""" def test_to_dict(self): """Test to verify to_dict method of the Question Skill Link Domain object. """ expected_object_dict = { 'question_id': 'testquestion', 'skill_id': 'testskill', 'skill_description': 'testskilldescription', 'skill_difficulty': 0.5, } observed_object = question_domain.QuestionSkillLink( 'testquestion', 'testskill', 'testskilldescription', 0.5) self.assertEqual(expected_object_dict, observed_object.to_dict()) class MergedQuestionSkillLinkDomainTest(test_utils.GenericTestBase): """Test for Merged Question Skill Link Domain object.""" def test_to_dict(self): """Test to verify to_dict method of the Merged Question Skill Link Domain object. """ expected_object_dict = { 'question_id': 'testquestion', 'skill_ids': ['testskill'], 'skill_descriptions': ['testskilldescription'], 'skill_difficulties': [0.5], } observed_object = question_domain.MergedQuestionSkillLink( 'testquestion', ['testskill'], ['testskilldescription'], [0.5]) self.assertEqual(expected_object_dict, observed_object.to_dict())
39.082443
80
0.643814
69ee2b5a4ecd2a458f15db1354a4795fcbf43127
823
py
Python
easy-receptive-fields-pytorch/houseNet/train.py
Swinsie/cv-rep-fork
1c3454934645e3f9afa39ba90c3b216eb9ed7f75
[ "Apache-2.0" ]
17
2020-03-09T07:13:07.000Z
2022-03-31T13:49:03.000Z
easy-receptive-fields-pytorch/houseNet/train.py
Swinsie/cv-rep-fork
1c3454934645e3f9afa39ba90c3b216eb9ed7f75
[ "Apache-2.0" ]
null
null
null
easy-receptive-fields-pytorch/houseNet/train.py
Swinsie/cv-rep-fork
1c3454934645e3f9afa39ba90c3b216eb9ed7f75
[ "Apache-2.0" ]
5
2020-03-25T14:46:59.000Z
2021-07-18T17:03:49.000Z
import configparser import numpy as np from keras.metrics import binary_accuracy from keras.optimizers import Adam from networks.trainNetwork import train_network from networks.uNet3 import UNet3 from util.losses import dice from util.metrics import intersection_over_union config = configparser.ConfigParser() config.read('config.ini') weights_file_name = 'myUNet' net = UNet3() net.compile(optimizer=Adam(), loss=dice, metrics=[intersection_over_union, binary_accuracy]) train_network(model=net, path_config=config, weights_file_name=weights_file_name, batch_size=8, train_random_state=np.random.RandomState(2009), val_random_state=np.random.RandomState(2013), epochs=50, checkpoint_period=10, verbose=2)
30.481481
92
0.71932
f7ba165d566d105b1aa8ce9af97d76d3582d3cbe
7,216
py
Python
pyvies/__init__.py
MrMebelMan/pyvies
a0f9c1a5b17be61813bcd3a2308e64ed350df8bb
[ "MIT" ]
1
2020-05-22T14:17:41.000Z
2020-05-22T14:17:41.000Z
pyvies/__init__.py
MrMebelMan/pyvies
a0f9c1a5b17be61813bcd3a2308e64ed350df8bb
[ "MIT" ]
null
null
null
pyvies/__init__.py
MrMebelMan/pyvies
a0f9c1a5b17be61813bcd3a2308e64ed350df8bb
[ "MIT" ]
1
2019-01-08T14:58:05.000Z
2019-01-08T14:58:05.000Z
#!/usr/bin/env python3 from requests import post as requests_post from bs4 import BeautifulSoup as Soup from re import match as re_match NoneType = type(None) class Vies: # ISO 3166-1 alpha-2 country codes. EU_COUNTRY_CODES = set([ 'AT', # Austria. 'BE', # Belgium. 'BG', # Bulgaria. 'CY', # Cyprus. 'CZ', # Czech Republic. 'DE', # Germany. 'DK', # Denmark. 'EE', # Estonia. 'ES', # Spain. 'FI', # Finland. 'FR', # France. 'GB', # United Kingdom. 'EL', # Greece. 'HR', # Croatia. 'HU', # Hungary. 'IE', # Ireland. 'IT', # Italy. 'LT', # Lithuania. 'LU', # Luxembourg. 'LV', # Latvia. 'MT', # Malta. 'NL', # Netherlands. 'PL', # Poland. 'PT', # Portugal. 'RO', # Romania. 'SE', # Sweden. 'SI', # Slovenia. 'SK', # Slovakia. ]) COUNTRY_CODE_ALIASES = { 'GR': 'EL', } def request(self, vat_id: (str, NoneType), country_code: (str, NoneType) = '', bypass_ratelimit: bool = False): allowed_arg_types = (NoneType, str) vat_re = r'^([0-9A-Za-z]{2,12})$' country_code_re = r'^([A-Z]{2})$' if not isinstance(vat_id, allowed_arg_types): raise TypeError('vat_id should be either str, or NoneType, not %s' % type(vat_id)) elif not isinstance(country_code, allowed_arg_types): raise TypeError('country_code should be either str, or NoneType, not %s') % type(country_code) country_code = country_code or '' country_code = country_code.upper() if country_code in self.COUNTRY_CODE_ALIASES: country_code = self.COUNTRY_CODE_ALIASES[country_code] vat_id = vat_id.lstrip().rstrip().upper() if vat_id else '' vat_id = ''.join([c for c in vat_id if c not in '\n\t -']) request = ViesRequest(vat_id, country_code) if len(vat_id) < 2: request.error = 'vat_id (%s) should be at least 2 characters long' % vat_id elif country_code and vat_id[:2] == country_code: vat_id = vat_id[2:] elif not country_code: country_code, vat_id = vat_id[:2], vat_id[2:] if request.error: request.is_valid = False return request if not re_match(vat_re, vat_id): request.error = "vat_id '%s' doesn't match the pattern '%s'" % (vat_id, vat_re) elif not re_match(country_code_re, country_code): request.error = "country_code '%s' doesn't match the pattern '%s'" % (country_code, country_code_re) elif country_code not in self.EU_COUNTRY_CODES: request.error = 'unsupported country code: "%s"' % country_code if request.error: request.is_valid = False return request request.country_code = country_code request.vat_id = vat_id request.post(bypass_ratelimit) return request class ViesRequest: RATELIMIT_RESPONSE = 'MS_UNAVAILABLE' url = 'http://ec.europa.eu/taxation_customs/vies/services/checkVatService' def __init__(self, vat_id: str, country_code: str): self.timeout = 10 self.vat_id = vat_id self.country_code = country_code self.is_valid = None self.company_name = None self.company_address = None self.data = None self.response = None self.error = None def __str__(self): if self.is_valid is None: validity = 'not validated' elif self.is_valid: validity = 'valid' else: validity = 'invalid' country_code = self.country_code or '' vat_id = self.vat_id or '' ret = 'VAT number "%s%s" (%s)' % (country_code, vat_id, validity) if self.error: ret += ', error: %s' % self.error return ret @property def pretty(self): if self.response: return self.soup.prettify() def save_error(self): error_attr = self.soup.find('faultstring') if error_attr: self.error = error_attr.text def get_tag_text(self, name: str, optional: bool = False): tag = self.soup.find(name) if not tag: if not optional: self.is_valid = False self.save_error() return None else: return tag.text def validate(self, bypass_ratelimit=False): self.soup = Soup(self.response.text, 'xml') self.is_valid = self.get_tag_text('valid') == 'true' if bypass_ratelimit and self.error == self.RATELIMIT_RESPONSE: self.error = None self.is_valid = True return # we will not get the company name and address from ratelimited response anyway self.company_name = self.get_tag_text('name', optional=True) if self.company_name: self.company_name = self.company_name.replace('---', '') or None self.company_address = self.get_tag_text('address', optional=True) if self.company_address: self.company_address = self.company_address.replace('---', '') or None def post(self, bypass_ratelimit: bool = False): # bypass_ratelimit is a switch to bypass the 1 minute API ban after sending the same data twice # API returns valid=False correctly for invalid requests, even when ratelimited # The idea is to exploit this behaviour by first sending the invalid request for the same country, # making sure that server returned the correct valid=False response, # and then continuing to check the real VAT ID, considering ratelimit error as success headers = {'Content-type': 'text/xml'} xml_request = '' \ '<?xml version="1.0" encoding="UTF-8"?>' \ '<SOAP-ENV:Envelope ' \ 'xmlns:ns0="urn:ec.europa.eu:taxud:vies:services:checkVat:types" ' \ 'xmlns:ns1="http://schemas.xmlsoap.org/soap/envelope/" ' \ 'xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" ' \ 'xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">' \ '<SOAP-ENV:Header/>' \ '<ns1:Body>' \ '<ns0:checkVat>' \ '<ns0:countryCode>%s</ns0:countryCode>' \ '<ns0:vatNumber>%s</ns0:vatNumber>' \ '</ns0:checkVat>' \ '</ns1:Body>' \ '</SOAP-ENV:Envelope>' self.data = xml_request % (self.country_code, self.vat_id) if bypass_ratelimit: data = xml_request % (self.country_code, '1337') self.response = requests_post( url=self.url, data=data, headers=headers, timeout=self.timeout ) self.validate() if self.error: return # The server is down, do not try to send the real request self.response = requests_post( url=self.url, data=self.data, headers=headers, timeout=self.timeout ) self.validate(bypass_ratelimit)
32.651584
115
0.573032
0475370627154153a57372b2b1879cfa44ff17b5
10,761
py
Python
pyabsa/functional/checkpoint/checkpoint_manager.py
onlyrico/PyABSA
d0905eb5253eaa564d2244cd777e3a734bca777a
[ "MIT" ]
null
null
null
pyabsa/functional/checkpoint/checkpoint_manager.py
onlyrico/PyABSA
d0905eb5253eaa564d2244cd777e3a734bca777a
[ "MIT" ]
null
null
null
pyabsa/functional/checkpoint/checkpoint_manager.py
onlyrico/PyABSA
d0905eb5253eaa564d2244cd777e3a734bca777a
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # file: checkpoint_manager.py # time: 2021/6/11 0011 # author: yangheng <[email protected]> # github: https://github.com/yangheng95 # Copyright (C) 2021. All Rights Reserved. import json import os.path import sys import zipfile from autocuda import auto_cuda from findfile import find_files, find_dir, find_file from google_drive_downloader import GoogleDriveDownloader as gdd from termcolor import colored from pyabsa import __version__ from pyabsa.core.apc.prediction.sentiment_classifier import SentimentClassifier from pyabsa.core.atepc.prediction.aspect_extractor import AspectExtractor from pyabsa.core.tc.prediction.text_classifier import TextClassifier def unzip_checkpoint(zip_path): try: print('Find zipped checkpoint: {}, unzipping...'.format(zip_path)) sys.stdout.flush() with zipfile.ZipFile(zip_path, 'r') as z: z.extractall(zip_path.replace('.zip', '')) print('Done.') except zipfile.BadZipfile: print('Unzip failed'.format(zip_path)) return zip_path.replace('.zip', '') class APCCheckpointManager: @staticmethod def get_sentiment_classifier(checkpoint: str = None, sentiment_map: dict = None, auto_device: bool = True): if find_dir(os.getcwd(), checkpoint): checkpoint = find_dir(os.getcwd(), checkpoint) elif checkpoint.endswith('.zip'): checkpoint = unzip_checkpoint(find_file(os.getcwd(), checkpoint)) elif not find_dir(os.getcwd(), checkpoint): checkpoint = APCCheckpointManager.get_checkpoint(checkpoint) sent_classifier = SentimentClassifier(find_dir(os.getcwd(), checkpoint), sentiment_map=sentiment_map) sent_classifier.to(auto_cuda()) if auto_device else sent_classifier.cpu() return sent_classifier @staticmethod def get_checkpoint(checkpoint: str = 'Chinese'): aspect_sentiment_classification_checkpoint = update_checkpoints('APC') if checkpoint.lower() in [k.lower() for k in aspect_sentiment_classification_checkpoint.keys()]: print(colored('Downloading checkpoint:{} from Google Drive...'.format(checkpoint), 'green')) else: print(colored( 'Checkpoint:{} is not found, you can raise an issue for requesting shares of checkpoints'.format( checkpoint), 'red')) sys.exit(-1) return download_pretrained_model(task='apc', language=checkpoint.lower(), archive_path=aspect_sentiment_classification_checkpoint[checkpoint.lower()]['id']) class ATEPCCheckpointManager: @staticmethod def get_aspect_extractor(checkpoint: str = None, sentiment_map: dict = None, auto_device: bool = True): if find_dir(os.getcwd(), checkpoint): checkpoint = find_dir(os.getcwd(), checkpoint) elif checkpoint.endswith('.zip'): checkpoint = unzip_checkpoint(find_file(os.getcwd(), checkpoint)) elif not find_dir(os.getcwd(), checkpoint): checkpoint = ATEPCCheckpointManager.get_checkpoint(checkpoint) aspect_extractor = AspectExtractor(find_dir(os.getcwd(), checkpoint), sentiment_map=sentiment_map) aspect_extractor.to(auto_cuda()) if auto_device else aspect_extractor.cpu() return aspect_extractor @staticmethod def get_checkpoint(checkpoint: str = 'Chinese'): atepc_checkpoint = update_checkpoints('ATEPC') if checkpoint.lower() in [k.lower() for k in atepc_checkpoint.keys()]: print(colored('Downloading checkpoint:{} from Google Drive...'.format(checkpoint), 'green')) else: print(colored('Checkpoint:{} is not found.'.format(checkpoint), 'red')) sys.exit(-1) return download_pretrained_model(task='atepc', language=checkpoint.lower(), archive_path=atepc_checkpoint[checkpoint.lower()]['id']) class TextClassifierCheckpointManager: @staticmethod def get_text_classifier(checkpoint=None, label_map=None, auto_device=True): if find_dir(os.getcwd(), checkpoint): checkpoint = find_dir(os.getcwd(), checkpoint) elif checkpoint.endswith('.zip'): checkpoint = unzip_checkpoint(find_file(os.getcwd(), checkpoint)) elif not find_dir(os.getcwd(), checkpoint): checkpoint = TextClassifierCheckpointManager.get_checkpoint(checkpoint) text_classifier = TextClassifier(find_dir(os.getcwd(), checkpoint), label_map=label_map) text_classifier.to(auto_cuda()) if auto_device else text_classifier.cpu() return text_classifier @staticmethod def get_checkpoint(checkpoint: str = 'Chinese'): text_classification_checkpoint = update_checkpoints('TextClassification') if checkpoint.lower() in [k.lower() for k in text_classification_checkpoint.keys()]: print(colored('Downloading checkpoint:{} from Google Drive...'.format(checkpoint), 'green')) else: print(colored('Checkpoint:{} is not found.'.format(checkpoint), 'red')) sys.exit(-1) return download_pretrained_model(task='atepc', language=checkpoint.lower(), archive_path=text_classification_checkpoint[checkpoint.lower()]['id']) def compare_version(version1, version2): # 1 means greater, 0 means equal, -1 means lower if version1 and not version2: return 1 elif version2 and not version1: return -1 else: version1 = version1.split('.') version2 = version2.split('.') for v1, v2 in zip(version1, version2): if len(v1) == len(v2): if v1 > v2: return 1 if v2 > v1: return -1 else: if v1.startswith(v2): return -1 elif v2.startswith(v1): return 1 elif v1 == v2: return 0 else: return int(v1 > v2) return 0 def parse_checkpoint_info(t_checkpoint_map, task='APC'): print('*' * 23, colored('Available {} model checkpoints for Version:{}'.format(task, __version__), 'green'), '*' * 23) for i, checkpoint in enumerate(t_checkpoint_map): print('-' * 100) print("{}. Checkpoint Name: {}\nDescription: {}\nComment: {} \nVersion: {}".format( i + 1, checkpoint, t_checkpoint_map[checkpoint]['description'] if 'description' in t_checkpoint_map[checkpoint] else '', t_checkpoint_map[checkpoint]['comment'] if 'comment' in t_checkpoint_map[checkpoint] else '', t_checkpoint_map[checkpoint]['version'] if 'version' in t_checkpoint_map[checkpoint] else '' )) print('-' * 100) return t_checkpoint_map def update_checkpoints(task=''): try: checkpoint_url = '1jjaAQM6F9s_IEXNpaY-bQF9EOrhq0PBD' if os.path.isfile('./checkpoints.json'): os.remove('./checkpoints.json') gdd.download_file_from_google_drive(file_id=checkpoint_url, dest_path='./checkpoints.json') checkpoint_map = json.load(open('./checkpoints.json', 'r')) current_version_map = {} for t_map in checkpoint_map: if '-' in t_map: min_ver, _, max_ver = t_map.partition('-') elif '+' in t_map: min_ver, _, max_ver = t_map.partition('-') else: min_ver = t_map max_ver = '' max_ver = max_ver if max_ver else 'N.A.' if compare_version(min_ver, __version__) <= 0 and compare_version(__version__, max_ver) <= 0: current_version_map.update(checkpoint_map[t_map]) # add checkpoint_map[t_map] t_checkpoint_map = {} if task: t_checkpoint_map = dict(current_version_map)[task.upper()] if task in current_version_map else {} parse_checkpoint_info(t_checkpoint_map, task) else: for task_map in current_version_map: parse_checkpoint_info(current_version_map[task_map], task_map) # os.remove('./checkpoints.json') return t_checkpoint_map if task else current_version_map except Exception as e: print('\nFailed to query checkpoints (Error: {}), try manually download the checkpoints from: \n'.format(e), '[1]\tGoogle Drive\t: https://drive.google.com/drive/folders/1yiMTucHKy2hAx945lgzhvb9QeHvJrStC\n' '[2]\tBaidu NetDisk\t: https://pan.baidu.com/s/1K8aYQ4EIrPm1GjQv_mnxEg (Access Code: absa)\n') sys.exit(-1) def download_pretrained_model(task='apc', language='chinese', archive_path='', model_name='any_model'): print(colored('Notice: The pretrained model are used for testing, ' 'neither trained using fine-tuned the hyper-parameters nor trained with enough steps, ' 'it is recommended to train the model on your own custom datasets', 'red') ) # if not os.path.exists('./checkpoints'): # os.mkdir('./checkpoints') tmp_dir = '{}_{}_TRAINED_MODEL'.format(task.upper(), language.upper()) dest_path = os.path.join('./checkpoints', tmp_dir) if not os.path.exists(dest_path): os.makedirs(dest_path) if find_files(dest_path, '.model') and find_files(dest_path, '.config'): return dest_path save_path = os.path.join(dest_path, '{}.zip'.format(model_name)) try: if '/' in archive_path: archive_path = archive_path.split('/')[-2] gdd.download_file_from_google_drive(file_id=archive_path, dest_path=save_path, unzip=True, showsize=True) except: raise ConnectionError("Fail to download checkpoint, seems to be a connection error.") os.remove(save_path) return dest_path def load_sentiment_classifier(checkpoint: str = None, sentiment_map: dict = None, auto_device: bool = True): infer_model = SentimentClassifier(checkpoint, sentiment_map=sentiment_map) infer_model.to(auto_cuda()) if auto_device else infer_model.cpu() return infer_model
43.216867
123
0.617508
5db5cb7fd89ecb47981c8921f43411b6ab6d59d0
2,078
py
Python
scripts/create_background_data.py
open-dynamic-robot-initiative/trifinger_object_tracking
d57cd6abcd880c228b4e26a8b8deeaea55d32828
[ "BSD-3-Clause" ]
6
2020-11-03T12:58:54.000Z
2022-01-05T23:39:52.000Z
scripts/create_background_data.py
open-dynamic-robot-initiative/trifinger_object_tracking
d57cd6abcd880c228b4e26a8b8deeaea55d32828
[ "BSD-3-Clause" ]
1
2020-12-03T10:06:13.000Z
2020-12-03T10:06:13.000Z
scripts/create_background_data.py
open-dynamic-robot-initiative/trifinger_object_tracking
d57cd6abcd880c228b4e26a8b8deeaea55d32828
[ "BSD-3-Clause" ]
5
2020-11-12T00:43:41.000Z
2021-05-21T14:21:25.000Z
#!/usr/bin/env python3 # %% import argparse import os import cv2 as cv import numpy as np from PIL import Image from scipy import ndimage def show_image(image): image = Image.fromarray(image[:, :, ::-1], "RGB") image.show() def load_images(path): image_names = [n for n in os.listdir(path) if ".png" in n] images = {} for image_name in image_names: image_path = os.path.join(path, image_name) image = cv.imread(image_path) # BGR images[image_name] = image return images # %% if __name__ == "__main__": parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( "data_dir", type=str, help="Directory containing the dataset", ) args = parser.parse_args() # %% # load data ---------------------------------------------------- frame_folders = [ f for f in os.listdir(args.data_dir) if os.path.isdir(os.path.join(args.data_dir, f)) ] for frame_folder in frame_folders: frame_path = os.path.join(args.data_dir, frame_folder) segment_names = [ name for name in os.listdir(frame_path) if name[1].isdigit() ] if len(segment_names) == 0: continue images = load_images(frame_path) for camera_name in ["60", "180", "300"]: image = images["camera" + camera_name + ".png"] masks = { key: images[key] for key in images.keys() if camera_name in key and key[1].isdigit() and key[0] != "n" } for key in masks: binary_mask = np.sum(masks[key], axis=2) == 0 eroded_binary_mask = ndimage.binary_erosion( binary_mask, structure=np.ones([10, 10]) ) image = eroded_binary_mask[..., None] * image cv.imwrite( os.path.join(frame_path, "n" + camera_name + ".png"), image ) print(os.path.join(frame_path, "n" + camera_name + ".png"))
25.975
76
0.54283
4b38618b312709d7a15ca792cc55d4094e1afe08
9,383
py
Python
scripts/stastic_disparity.py
HKBU-HPML/FADNet-PP
6e653e8f1fa0f55f10068f5592cbc8b49bb571e4
[ "MIT" ]
null
null
null
scripts/stastic_disparity.py
HKBU-HPML/FADNet-PP
6e653e8f1fa0f55f10068f5592cbc8b49bb571e4
[ "MIT" ]
null
null
null
scripts/stastic_disparity.py
HKBU-HPML/FADNet-PP
6e653e8f1fa0f55f10068f5592cbc8b49bb571e4
[ "MIT" ]
null
null
null
from __future__ import print_function import os import numpy as np import csv import matplotlib from matplotlib import pyplot as plt from matplotlib.ticker import PercentFormatter from PIL import Image, ImageOps from skimage import io from utils.preprocess import load_pfm FONTSIZE=20 matplotlib.rcParams.update({'font.size': FONTSIZE}) #matplotlib.rc('xtick', labelsize=FONTSIZE) #matplotlib.rc('ytick', labelsize=FONTSIZE) #matplotlib.rc('xlabel', labelsize=FONTSIZE) #matplotlib.rc('ylabel', labelsize=FONTSIZE) #DATAPATH = '/media/sf_Shared_Data/gpuhomedataset/dispnet' #DATAPATH = '/home/datasets/imagenet/dispnet/virtual' #DATAPATH = '/home/datasets/imagenet/dispnet' DATAPATH = './data' OUTPUTPATH = '/tmp' #FILELIST = 'FlyingThings3D_release_TEST.list' #FILELIST = 'FlyingThings3D_release_TRAIN.list' #FILELIST='lists/real_release.list' #FILELIST='lists/kitti-groundtruth.list' #FILELIST='lists/kitti2015_train.list' #FILELIST='lists/MB2014_TRAIN.list' #FILELIST='lists/eth3d_train.list' FILELIST='lists/FlyingThings3D_release_TRAIN_100.list' RESULTLIST = 'NEW_' + FILELIST CLEANRESULTLIST = 'CLEAN_' + FILELIST def plot_hist(d, save=False, filename=None, plot=True, color='r'): flatten = d.ravel() mean = np.mean(flatten) max = np.max(flatten) std = np.std(flatten) print('len: %d, mean: %.3f, std: %.3f' % (len(flatten), mean, std)) #return n_neg, flatten.size # return #negative, total if plot: #count, bins, ignored = plt.hist(flatten, 50, color=color) flatten = flatten[np.abs(flatten) > 0.0] count, bins, ignored = plt.hist(flatten, bins=np.arange(0,300), density=True, color=color) plt.gca().yaxis.set_major_formatter(PercentFormatter(1)) plt.xlabel('Disparity') plt.ylabel('Percentage') if save: plt.savefig(os.path.join(OUTPUTPATH, '%s.pdf'%filename), bbox_inches='tight') else: #plt.show() pass #plt.clf() return mean, std, max def statistic(file_list): img_pairs = [] with open(file_list, "r") as f: img_pairs = f.readlines() csv_file = open(RESULTLIST, 'a') for f in img_pairs: names = f.split() name = names[2] print('Name: ', name) gt_disp_name = os.path.join(DATAPATH, name) gt_disp, scale = load_pfm(gt_disp_name) print('Shape: ', gt_disp.shape, ', Mean: ', np.mean(gt_disp)) name_items = name.split('/') save_name = 'hist_{}_{}_{}'.format(name_items[-4], name_items[-3], name_items[-1].split('.')[0]) mean, std, max = plot_hist(gt_disp, save=True, filename=save_name, plot=False) writer = csv.writer(csv_file, delimiter='\t') writer.writerow([name, mean, std, max]) csv_file.close() def statistic_with_file(fn): result_file = open(CLEANRESULTLIST, 'a') with open(fn, 'r') as f: total_array = [] fns = [] for line in f.readlines(): items = line.split('\t') total_array.append([float(i) for i in items[1:]]) fns.append(items[0]) total_array = np.array(total_array) print('Shape: ', total_array[:, 0].shape) for i, mean in enumerate(total_array[:, 0]): if mean < 150: grt = fns[i] name_items = grt.split('/') left = 'FlyingThings3D_release/frames_cleanpass/%s/%s/%s/left/%s.png' % (name_items[-5], name_items[-4], name_items[-3], name_items[-1].split('.')[0]) right = 'FlyingThings3D_release/frames_cleanpass/%s/%s/%s/right/%s.png' % (name_items[-5], name_items[-4], name_items[-3], name_items[-1].split('.')[0]) #result_file.write("%s %s %s\n" % (left, right, fns[i])) plot_hist(total_array[:, 0]) #plot_hist(total_array[:, 1]) #plot_hist(total_array[:, 2]) result_file.close() def statistic_mean_std(filelist): img_pairs = [] with open(filelist, "r") as f: img_pairs = f.readlines() means = [] for f in img_pairs: names = f.split() leftname = names[0] rightname = names[1] leftfn = os.path.join(DATAPATH, leftname) rightfn = os.path.join(DATAPATH, rightname) leftimgdata = io.imread(leftfn) rightimgdata = io.imread(rightfn) leftmean = np.mean(leftimgdata.ravel()) rightmean = np.mean(rightimgdata.ravel()) print('leftmean: ', leftmean) print('rightmean: ', rightmean) means.append((leftmean+rightmean)/2) means = np.array(means) print('total mean: ', np.mean(means)) print('total std: ', np.std(means)) def statistic_disparity(filelist): img_pairs = [] with open(filelist, "r") as f: img_pairs = f.readlines() all = np.array([], dtype=np.float32) for f in img_pairs: names = f.split() dispname = names[2] fn = os.path.join(DATAPATH, dispname) print('fn: ', fn) if fn.find('.png') >= 0: gt_disp = Image.open(fn) gt_disp = np.ascontiguousarray(gt_disp,dtype=np.float32)/256 else: gt_disp, _ = load_pfm(fn) gt_disp[np.isinf(gt_disp)] = 0 all = np.concatenate((gt_disp.ravel(), all)) mean = np.mean(all) std = np.std(all) color='#A9D18E' mean, std, max = plot_hist(all, save=True, filename=filelist, plot=True, color=color) print('total mean: ', mean) print('total std: ', std) def statistic_kitti_disparity(filelist): img_pairs = [] with open(filelist, "r") as f: img_pairs = f.readlines() all = np.array([], dtype=np.float32) for f in img_pairs: dispname = f[:-1] fn = dispname gt_disp = Image.open(fn) gt_disp = np.ascontiguousarray(gt_disp,dtype=np.float32)/256 #gt_disp, _ = load_pfm(fn) all = np.concatenate((gt_disp.ravel(), all)) np.save('stat.npy', all) mean = np.mean(all) std = np.std(all) print('total mean: ', mean) print('total std: ', std) mean, std, max = plot_hist(all, save=True, filename='real_disp.png', plot=False, color='r') def force_plot(): all = np.load('stat.npy') mean, std, max = plot_hist(all, save=True, filename='real_disp.png', plot=True, color='r') def plot_hist_with_filename(fn): fnt='img00000.bmp' leftfn = '/media/sf_Shared_Data/gpuhomedataset/dispnet/real_release/frames_cleanpass/left/%s'%fnt rightfn = '/media/sf_Shared_Data/gpuhomedataset/dispnet/real_release/frames_cleanpass/right/%s'%fnt realimgdata = io.imread(leftfn) #leftfn = '/media/sf_Shared_Data/gpuhomedataset/FlyingThings3D_release/frames_cleanpass/TRAIN/A/0001/left/%s'%fn #rightfn = '/media/sf_Shared_Data/gpuhomedataset/FlyingThings3D_release/frames_cleanpass/TRAIN/A/0001/right/%s'%fn #realimgdata = io.imread(leftfn) leftfn = '/media/sf_Shared_Data/gpuhomedataset/FlyingThings3D_release/frames_cleanpass/TRAIN/A/0000/left/%s'%fn rightfn = '/media/sf_Shared_Data/gpuhomedataset/FlyingThings3D_release/frames_cleanpass/TRAIN/A/0000/right/%s'%fn leftimgdata = io.imread(leftfn) rightimgdata = io.imread(rightfn) mean, std, max = plot_hist(leftimgdata, save=False, filename=None, plot=True, color='r') mean, std, max = plot_hist(realimgdata, save=False, filename=None, plot=True, color='b') plt.show() def extract_exception_of_occulution(): #occulution_list = 'CC_FlyingThings3D_release_TRAIN.list' #occulution_list = './lists/CC_FlyingThings3D_release_TRAIN.list' occulution_list = './lists/girl20_TRAIN.list' img_pairs = [] with open(occulution_list, "r") as f: img_pairs = f.readlines() means = [] maxcount = 10000 i = 0 for f in img_pairs: names = f.split() name = names[2] #gt_disp_name = os.path.join(DATAPATH, 'clean_dispnet', name) gt_disp_name = os.path.join(DATAPATH, name) if not os.path.isfile(gt_disp_name): #print('Not found: ', gt_disp_name) continue gt_disp, scale = load_pfm(gt_disp_name) mean = np.mean(gt_disp) means.append(mean) i+=1 if i > maxcount: break print('Name: ', name, ', Mean: ', mean, ', std: ', np.std(gt_disp), ' min: ', np.min(gt_disp), ' max: ', np.max(gt_disp)) np.save('virtualmean.log', np.array(means)) #mean, std, max = plot_hist(np.array(means), save=False, filename=None, plot=True, color='r') #plt.show() def parse_mean_log(): filename = './logs/meanstd_test.log' f = open(filename, 'r') means = [] fns = [] for line in f.readlines(): mean = line.split()[-4] means.append(float(mean)) fns.append(line.split()[1]) means = np.array(means) fns = np.array(fns) k = 10 #sorted = np.argsort(means)[-k:] sorted = np.argsort(means)[:k] print(sorted) print(means[sorted]) print(fns[sorted]) #plt.scatter(range(0, len(means)), means) #plot_hist(np.array(means), plot=True) #plt.show() if __name__ == '__main__': #statistic(FILELIST) #statistic_with_file(RESULTLIST) #fn='img00000.bmp' #fn='0006.png' #plot_hist_with_filename(fn) #statistic_mean_std(FILELIST) statistic_disparity(FILELIST) #statistic_kitti_disparity(FILELIST) #extract_exception_of_occulution() #parse_mean_log()
37.086957
168
0.636044
998d4c432624cb536db530bd06e771556c57820a
6,586
py
Python
3D_Printed_Daft_Punk_Helmet/3D_Printed_Daft_Punk_Helmet-Side-Animation/code.py
gamblor21/Adafruit_Learning_System_Guides
f5dab4a758bc82d0bfc3c299683fe89dc093912a
[ "MIT" ]
665
2017-09-27T21:20:14.000Z
2022-03-31T09:09:25.000Z
3D_Printed_Daft_Punk_Helmet/3D_Printed_Daft_Punk_Helmet-Side-Animation/code.py
gamblor21/Adafruit_Learning_System_Guides
f5dab4a758bc82d0bfc3c299683fe89dc093912a
[ "MIT" ]
641
2017-10-03T19:46:37.000Z
2022-03-30T18:28:46.000Z
3D_Printed_Daft_Punk_Helmet/3D_Printed_Daft_Punk_Helmet-Side-Animation/code.py
gamblor21/Adafruit_Learning_System_Guides
f5dab4a758bc82d0bfc3c299683fe89dc093912a
[ "MIT" ]
734
2017-10-02T22:47:38.000Z
2022-03-30T14:03:51.000Z
# SPDX-FileCopyrightText: 2014 Phil Burgess for Adafruit Industries # # SPDX-License-Identifier: MIT # Adafruit Trinket+NeoPixel animation for Daft Punk-inspired helmet. # Contains some ATtiny85-specific stuff; won't run as-is on Uno, etc. # Operates in HSV (hue, saturation, value) colorspace rather than RGB. # Animation is an interference pattern between two waves; one controls # saturation, the other controls value (brightness). The wavelength, # direction, speed and type (square vs triangle wave) for each is randomly # selected every few seconds. Hue is always linear, but other parameters # are similarly randomized. import random import board import neopixel from analogio import AnalogIn n_leds = 29 # number of LEDs per horn led_pin = board.D0 # which pin your pixels are connected to # initialize neopixel strip pixels = neopixel.NeoPixel(led_pin, n_leds, brightness=1, auto_write=False) count = 1 # countdown to next animation change # Gamma-correction table gamma = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25, 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36, 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 109, 110, 112, 114, 115, 117, 119, 120, 122, 124, 126, 127, 129, 131, 133, 135, 137, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 167, 169, 171, 173, 175, 177, 180, 182, 184, 186, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213, 215, 218, 220, 223, 225, 228, 231, 233, 236, 239, 241, 244, 247, 249, 252, 255 ] # initialize 3D list wave = [0] * 5, [0] * 5, [0] * 5 wave_type = 0 # 0 = square wave, 1 = triangle wave value_frame = 1 # start-of-frame value value_pixel = 2 # pixel-to-pixel value inc_frame = 3 # frame-to-frame increment inc_pixel = 4 # pixel-to-pixel inc wave_h = 0 # hue wave_s = 1 # saturation wave_v = 2 # brightness # Random number generator is seeded from an unused 'floating' # analog input - this helps ensure the random color choices # aren't always the same order. pin = AnalogIn(board.A0) random.seed(pin.value) pin.deinit() # generate a non-zero random number for frame and pixel increments def nz_random(): random_number = 0 while random_number <= 0: random_number = random.randint(0,15) - 7 return random_number while True: w = i = n = s = v = r = g = b = v1 = s1 = 0 if count <= 0: # time for new animation count = 250 + random.randint(0,250) # effect run for 5-10 sec. for w in range(3): # three waves (H,S,V) wave[w][wave_type] = random.randint(0,2)# square vs triangle wave[w][inc_frame] = nz_random() # frame increment wave[w][inc_pixel] = nz_random() # pixel increment wave[w][value_pixel] = wave[w][value_frame] wave[wave_s][inc_pixel] *= 16 # make saturation & value wave[wave_v][inc_pixel] *= 16 # blinkier along strip else: # continue animation count -= 1 for w in range(3): wave[w][value_frame] += wave[w][inc_frame] wave[w][value_pixel] = wave[w][value_frame] # Render current animation frame. COGNITIVE HAZARD: fixed point math. for i in range(n_leds): # for each LED along strip... # Coarse (8-bit) HSV-to-RGB conversion, hue first: n = (wave[wave_h][value_pixel] % 43) * 6 # angle within sextant sextant = wave[wave_h][value_pixel] / 43 # sextant number 0-5 # R to Y if sextant == 0: r = 255 g = n b = 0 # Y to G elif sextant == 1: r = 254 - n g = 255 b = 0 # G to C elif sextant == 2: r = 0 g = 255 b = n # C to B elif sextant == 3: r = 0 g = 254 - n b = 255 # B to M elif sextant == 4: r = n g = 0 b = 255 # M to R else: r = 255 g = 0 b = 254 - n # Saturation = 1-256 to allow >>8 instead of /255 s = wave[wave_s][value_pixel] if wave[wave_s][wave_type]: # triangle wave? if s & 0x80: # downslope s = (s & 0x7F) << 1 s1 = 256 - s else: # upslope s = s<<1 s1 = 1 + s s = 255 - s else: if s & 0x80: # square wave s1 = 256 # 100% saturation s = 0 else: # 0% saturation s1 = 1 s = 255 # Value (brightness) = 1-256 for similar reasons v = wave[wave_v][value_pixel] # value (brightness) = 1-256 for similar reasons if wave[wave_v][wave_type]: # triangle wave? if v & 0x80: # downslope v1 = 64 - ((v & 0x7F) << 1) else: # upslope v1 = 1 + (v << 1) else: if v & 0x80: # square wave; on/off v1 = 256 else: v1 = 1 # gamma rgb values gr = ((((r * s1) >> 8) + s) * v1) >> 8 gg = ((((g * s1) >> 8) + s) * v1) >> 8 gb = ((((b * s1) >> 8) + s) * v1) >> 8 # gamma rgb indices range check if -256 < gr < 256: r = gamma[gr] if -256 < gg < 256: g = gamma[gg] if -256 < gb < 256: b = gamma[gb] pixels[i] = (r, g, b) # update wave values along length of strip (values may wrap, is OK!) for w in range(3): wave[w][value_pixel] += wave[w][inc_pixel] pixels.show()
33.948454
85
0.4959
6077061e55392fc62721aa80b6bf3c5b134e14a4
43,916
py
Python
deepspeed/pt/deepspeed_light.py
jeffra/ghpages-test
d2500f2acfb6708efbd52e7857b92cc269a1ffa8
[ "MIT" ]
null
null
null
deepspeed/pt/deepspeed_light.py
jeffra/ghpages-test
d2500f2acfb6708efbd52e7857b92cc269a1ffa8
[ "MIT" ]
null
null
null
deepspeed/pt/deepspeed_light.py
jeffra/ghpages-test
d2500f2acfb6708efbd52e7857b92cc269a1ffa8
[ "MIT" ]
null
null
null
''' Copyright 2019 The Microsoft DeepSpeed Team ''' import logging import torch import os import torch.distributed as dist from torch.nn.modules import Module from tensorboardX import SummaryWriter from deepspeed.pt.deepspeed_timer import ThroughputTimer, SynchronizedWallClockTimer from deepspeed.pt.deepspeed_zero_optimizer import FP16_DeepSpeedZeroOptimizer from deepspeed.pt.fp16_optimizer import FP16_Optimizer from deepspeed.pt.fp16_unfused_optimizer import FP16_UnfusedOptimizer from deepspeed.pt.deepspeed_fused_lamb import FusedLamb from deepspeed.pt.deepspeed_config import DeepSpeedConfig, \ ADAM_OPTIMIZER, LAMB_OPTIMIZER, DEEPSPEED_OPTIMIZERS from deepspeed.pt.deepspeed_dataloader import DeepSpeedDataLoader from deepspeed.pt.deepspeed_constants import ROUTE_TRAIN, ROUTE_PREDICT, \ ROUTE_EVAL, TORCH_DISTRIBUTED_DEFAULT_PORT import deepspeed.pt.deepspeed_lr_schedules as lr_schedules from deepspeed.pt.deepspeed_csr_tensor import CSRTensor MEMORY_OPT_ALLREDUCE_SIZE = 500000000 SUMMARY_WRITER_DIR_NAME = "JobId" try: from apex_C import flatten from apex_C import unflatten except ImportError: try: _ = warned_flatten except NameError: print( "Warning: apex was installed without --cpp_ext. Falling back to Python flatten and unflatten." ) warned_flatten = True from torch._utils import _flatten_dense_tensors as flatten from torch._utils import _unflatten_dense_tensors as unflatten def split_half_float_double_csr(tensors): dtypes = [ "torch.cuda.HalfTensor", "torch.cuda.FloatTensor", "torch.cuda.DoubleTensor", CSRTensor.type() ] buckets = [] for i, dtype in enumerate(dtypes): bucket = [t for t in tensors if t.type() == dtype] if bucket: buckets.append((dtype, bucket)) return buckets def _initialize_parameter_parallel_groups(parameter_parallel_size=None): data_parallel_size = int(dist.get_world_size()) if parameter_parallel_size is None: parameter_parallel_size = int(data_parallel_size) print(data_parallel_size, parameter_parallel_size) assert data_parallel_size % parameter_parallel_size == 0, \ 'world size should be divisible by parameter parallel size' rank = dist.get_rank() my_group = None for i in range(dist.get_world_size() // parameter_parallel_size): ranks = range(i * parameter_parallel_size, (i + 1) * parameter_parallel_size) group = torch.distributed.new_group(ranks) if rank in ranks: my_group = group return my_group def print_configuration(args, name): print('{}:'.format(name), flush=True) for arg in sorted(vars(args)): dots = '.' * (29 - len(arg)) print(' {} {} {}'.format(arg, dots, getattr(args, arg)), flush=True) class DeepSpeedLight(Module): r"""DeepSpeed engine for training. """ def __init__(self, args, model, optimizer=None, model_parameters=None, training_data=None, lr_scheduler=None, mpu=None, dist_init_required=None, collate_fn=None): super(DeepSpeedLight, self).__init__() logging.basicConfig(level=logging.INFO, format="[%(levelname)s %(asctime)s] %(message)s", datefmt="%Y-%m-%d %H:%M:%S") self.client_optimizer = optimizer self.client_model_parameters = model_parameters self.client_lr_scheduler = lr_scheduler self.training_data = training_data self.collate_fn = collate_fn self.mpu = mpu self.data_parallel_group = None self.global_steps = 0 self.micro_steps = 0 self.skipped_steps = 0 self.gradient_predivide_factor = 1.0 self.gradient_average = True self.warn_unscaled_loss = True if dist_init_required is None: dist_init_required = not dist.is_initialized() self._mpi_check(args, dist_init_required) self.dist_backend = "nccl" if dist_init_required: if not dist.is_initialized(): logging.info("Initializing torch distributed with backend: {}".format( self.dist_backend)) dist.init_process_group(backend=self.dist_backend) else: logging.warning( "Was given dist_init_required=True but detected that torch" "distributed was already initialized, cannot initialize twice.") self._do_args_sanity_check(args) self._configure_with_arguments(args, mpu) self._do_sanity_check() self.sample_count = 0 if self.tensorboard_enabled(): self.summary_writer = self.get_summary_writer() self._init_distributed(dist_init_required) # Throughput timer self.tput_timer = ThroughputTimer( batch_size=self.train_micro_batch_size_per_gpu(), num_workers=self.world_size, monitor_memory=False) self.training_dataloader = self.deepspeed_io( training_data) if training_data else None # Configure distributed model self._configure_distributed_model(model) # Configure optimizer and scheduler self.optimizer = None self.lr_scheduler = None if model_parameters or optimizer: self._configure_optimizer(optimizer, model_parameters) self._configure_lr_scheduler(lr_scheduler) self._report_progress(0) # Configure wall clock timer self.timers = SynchronizedWallClockTimer() # Bookkeeping for csr support self.csr_tensor_module_names = set() if self.sparse_gradients_enabled(): for name, module in self.module.named_modules(): if isinstance(module, torch.nn.Embedding): self.csr_tensor_module_names.add(name) logging.info("Will convert {} to sparse (csr) " "tensor during training".format(name)) self.save_non_zero_checkpoint = False self.save_zero_checkpoint = False self._configure_checkpointing(dist_init_required) if self.global_rank == 0: self._config.print('DeepSpeedLight configuration') if self.dump_state(): print_configuration(self, 'DeepSpeedLight') def _mpi_check(self, args, dist_init_required): if hasattr(args, 'deepspeed_mpi') and args.deepspeed_mpi: from mpi4py import MPI import subprocess comm = MPI.COMM_WORLD rank = comm.Get_rank() world_size = comm.Get_size() master_addr = None if rank == 0: hostname_cmd = ["hostname -I"] result = subprocess.check_output(hostname_cmd, shell=True) master_addr = result.decode('utf-8').split()[0] master_addr = comm.bcast(master_addr, root=0) # Determine local rank by assuming hostnames are unique proc_name = MPI.Get_processor_name() all_procs = comm.allgather(proc_name) local_rank = sum([i == proc_name for i in all_procs[:rank]]) os.environ['RANK'] = str(rank) os.environ['WORLD_SIZE'] = str(world_size) args.local_rank = local_rank os.environ['MASTER_ADDR'] = master_addr os.environ['MASTER_PORT'] = TORCH_DISTRIBUTED_DEFAULT_PORT logging.info( "Discovered MPI settings of world_rank={}, local_rank={}, world_size={}, master_addr={}, master_port={}" .format(os.environ['RANK'], args.local_rank, os.environ['WORLD_SIZE'], os.environ['MASTER_ADDR'], os.environ['MASTER_PORT'])) if not dist_init_required and dist.is_initialized(): assert dist.get_rank() == rank, "MPI rank {} does not match torch rank {}".format(rank, dist.get_rank()) assert dist.get_world_size() == world_size, "MPI world size {} does not match torch world size {}".format(world_size, dist.get_world_size()) def tensorboard_enabled(self): return self._config.tensorboard_enabled def tensorboard_output_path(self): return self._config.tensorboard_output_path def tensorboard_job_name(self): return self._config.tensorboard_job_name def get_summary_writer(self, name="DeepSpeedJobName", base=os.environ["HOME"] + "/tensorboard"): if self.tensorboard_job_name(): name = self.tensorboard_job_name() if self.tensorboard_output_path(): return SummaryWriter(log_dir=self.tensorboard_output_path()) if 'DLWS_JOB_ID' in os.environ: SUMMARY_WRITER_DIR_NAME = os.environ['DLWS_JOB_ID'] + "/logs" return SummaryWriter(log_dir=os.path.join(base, SUMMARY_WRITER_DIR_NAME, name)) def wall_clock_breakdown(self): return self._config.wall_clock_breakdown def sparse_gradients_enabled(self): return self._config.sparse_gradients_enabled def train_batch_size(self): return self._config.train_batch_size def train_micro_batch_size_per_gpu(self): return self._config.train_micro_batch_size_per_gpu def optimizer_name(self): return self._config.optimizer_name def optimizer_params(self): return self._config.optimizer_params def optimizer_legacy_fusion(self): return self._config.optimizer_legacy_fusion def scheduler_name(self): return self._config.scheduler_name def scheduler_params(self): return self._config.scheduler_params def zero_optimization(self): return self._config.zero_enabled def allgather_size(self): return self._config.allgather_size def fp16_enabled(self): return self._config.fp16_enabled def loss_scale(self): return self._config.loss_scale def gradient_accumulation_steps(self): return self._config.gradient_accumulation_steps def allreduce_always_fp32(self): return self._config.allreduce_always_fp32 def postscale_gradients(self): return not self._config.prescale_gradients def steps_per_print(self): return self._config.steps_per_print def disable_allgather(self): return self._config.disable_allgather def dump_state(self): return self._config.dump_state def gradient_clipping(self): return self._config.gradient_clipping def dynamic_loss_scale(self): return self._config.loss_scale == 0 def initial_dynamic_scale(self): return self._config.initial_dynamic_scale def dynamic_loss_scale_args(self): return self._config.dynamic_loss_scale_args def _configure_lr_scheduler(self, client_lr_scheduler): # First check for scheduler in json configuration lr_scheduler = self._scheduler_from_config(self.optimizer) if lr_scheduler: logging.info( f'DeepSpeed using configured LR scheduler = {self.scheduler_name()}') self.lr_scheduler = lr_scheduler else: logging.warning('DeepSpeed using client LR scheduler') self.lr_scheduler = client_lr_scheduler logging.info(f'DeepSpeed LR Scheduler = {self.lr_scheduler}') def _configure_checkpointing(self, dist_init_required): dp_rank = torch.distributed.get_rank( ) if self.mpu is None else self.mpu.get_data_parallel_rank() #only the first data parallel process needs to store the model checkpoint self.save_non_zero_checkpoint = True if dp_rank == 0 else False if self.zero_optimization(): pp_rank = torch.distributed.get_rank(group=self.optimizer.dp_process_group) #only the first parameter parallel process needs to store the optimizer state checkpoints for zero self.save_zero_checkpoint = True if pp_rank == dp_rank else False def _scheduler_from_config(self, optimizer): scheduler_name = self.scheduler_name() if scheduler_name is not None: if hasattr(lr_schedules, scheduler_name): scheduler = getattr(lr_schedules, scheduler_name) else: assert hasattr(torch.optim.lr_scheduler, scheduler_name), \ f"DeepSpeed does not recognize LR scheduler {scheduler_name}" scheduler = getattr(torch.optim.lr_scheduler, scheduler_name) scheduler_params = self.scheduler_params() instantiated_scheduler = scheduler(optimizer, **scheduler_params) return instantiated_scheduler else: return None def _init_distributed(self, dist_init_required): if self.local_rank >= 0: torch.cuda.set_device(self.local_rank) self.device = torch.device("cuda", self.local_rank) self.world_size = dist.get_world_size() self.global_rank = dist.get_rank() logging.info("Set device to local rank {} within node.".format( self.local_rank)) else: self.world_size = 1 self.global_rank = 0 self.device = torch.device("cuda") # Configure based on command line arguments def _configure_with_arguments(self, args, mpu): self.local_rank = args.local_rank if hasattr(args, 'local_rank') else 0 self._config = DeepSpeedConfig(args.deepspeed_config, mpu) # Validate command line arguments def _do_args_sanity_check(self, args): if hasattr(args, 'deepscale_config') and args.deepscale_config is not None: logging.warning( "************ --deepscale_config is deprecated, please use --deepspeed_config ************" ) if hasattr(args, 'deepspeed_config'): assert args.deepspeed_config is None, "Not sure how to proceed, we were given both a deepscale_config and deepspeed_config" args.deepspeed_config = args.deepscale_config assert hasattr(args, 'local_rank') and type(args.local_rank) == int, \ 'DeepSpeed requires integer command line parameter --local_rank' assert hasattr(args, 'deepspeed_config') and args.deepspeed_config is not None, \ 'DeepSpeed requires --deepspeed_config to specify configuration file' assert os.path.isfile(args.deepspeed_config), \ 'DeepSpeed configuration file: {} is not an existing file'.format(args.deepspeed_config) def _is_supported_optimizer(self, optimizer_name): return optimizer_name in DEEPSPEED_OPTIMIZERS or \ getattr(torch.optim, optimizer_name, None) is not None # Validate configuration based on command line arguments def _do_sanity_check(self): if not self.client_optimizer: assert self._is_supported_optimizer(self.optimizer_name()), \ '{} is not a supported DeepSpeed Optimizer'.format(self.optimizer_name()) assert self.client_model_parameters, \ 'DeepSpeed {} optimizer requires parameters in initialize() call'.format(self.optimizer_name()) if self.optimizer_name() == LAMB_OPTIMIZER: assert self.dynamic_loss_scale(), \ 'DeepSpeed {} optimizer requires dynamic loss scaling'.format(self.optimizer_name()) def _configure_distributed_model(self, model): self.module = model if self.fp16_enabled(): self.module.half() self.module.to(self.device) if self.mpu is None: self.data_parallel_group = _initialize_parameter_parallel_groups() self.dp_world_size = dist.get_world_size() src_rank = 0 else: self.data_parallel_group = self.mpu.get_data_parallel_group() self.dp_world_size = self.mpu.get_data_parallel_world_size() src_rank = self.mpu.get_model_parallel_rank() for p in self.module.parameters(): if torch.is_tensor(p): dist.broadcast(p, src_rank, group=self.data_parallel_group) # TODO: support new AMP optimizer # self.module.half() # self.module.to(self.local_rank) #self.module, self.optimizer = amp.initialize(self.module, self.optimizer, opt_level="O2") # Configure optimizer def _configure_optimizer(self, client_optimizer, model_parameters): if client_optimizer is not None: basic_optimizer = client_optimizer logging.info('Using client Optimizer as basic optimizer') else: basic_optimizer = self._configure_basic_optimizer(model_parameters) logging.info( 'Using DeepSpeed Optimizer param name {} as basic optimizer'.format( self.optimizer_name())) logging.info('DeepSpeed Basic Optimizer = {}'.format(basic_optimizer)) if self.zero_optimization() and self.optimizer_name() == ADAM_OPTIMIZER: self.optimizer = self._configure_zero_optimizer(basic_optimizer) elif self.fp16_enabled(): self.optimizer = self._configure_fp16_optimizer(basic_optimizer) else: self.optimizer = basic_optimizer # logging.info('DeepSpeed Final Optimizer = {}'.format(self.optimizer.state_dict())) def _configure_basic_optimizer(self, model_parameters): optimizer_parameters = self.optimizer_params() if self.fp16_enabled() and 'max_grad_norm' in optimizer_parameters.keys(): optimizer_parameters['max_grad_norm'] = 0.0 if self.optimizer_name() == ADAM_OPTIMIZER: from apex.optimizers.fused_adam import FusedAdam optimizer = FusedAdam(model_parameters, **optimizer_parameters) elif self.optimizer_name() == LAMB_OPTIMIZER: optimizer = FusedLamb(model_parameters, **optimizer_parameters) else: torch_optimizer = getattr(torch.optim, self.optimizer_name()) optimizer = torch_optimizer(model_parameters, **optimizer_parameters) return optimizer def _configure_fp16_optimizer(self, optimizer): initial_dynamic_scale = self.initial_dynamic_scale() dynamic_loss_args = self.dynamic_loss_scale_args() clip_grad = self.gradient_clipping() if self.optimizer_name() == ADAM_OPTIMIZER: if self.dynamic_loss_scale(): logging.info('Creating fp16 optimizer with dynamic loss scale') optimizer = FP16_Optimizer( optimizer, dynamic_loss_scale=True, initial_dynamic_scale=initial_dynamic_scale, dynamic_loss_args=dynamic_loss_args, mpu=self.mpu, clip_grad=clip_grad, fused_adam_legacy=self.optimizer_legacy_fusion()) else: logging.info('Creating fp16 optimizer with static loss scale: {}'.format( self.loss_scale())) optimizer = FP16_Optimizer( optimizer, static_loss_scale=self.loss_scale(), mpu=self.mpu, clip_grad=clip_grad, fused_adam_legacy=self.optimizer_legacy_fusion()) else: logging.info('Creating fp16 unfused optimizer with dynamic loss scale') optimizer = FP16_UnfusedOptimizer( optimizer, dynamic_loss_scale=self.dynamic_loss_scale(), dynamic_loss_args=dynamic_loss_args, mpu=self.mpu, clip_grad=clip_grad, fused_lamb_legacy=self.optimizer_legacy_fusion() if self.optimizer_name() == LAMB_OPTIMIZER else False) return optimizer def _configure_zero_optimizer(self, optimizer): logging.info('Creating fp16 zero optimizer') optimizer = FP16_DeepSpeedZeroOptimizer( optimizer, static_loss_scale=self.loss_scale(), dynamic_loss_scale=self.dynamic_loss_scale(), dynamic_loss_args=self.dynamic_loss_scale_args(), dp_process_group=self.data_parallel_group, clip_grad=self.gradient_clipping(), all_gather_partitions=not self.disable_allgather(), allgather_size=self.allgather_size(), mpu=self.mpu) return optimizer def deepspeed_io(self, dataset, batch_size=None, route=ROUTE_TRAIN, pin_memory=True, data_sampler=None, collate_fn=None, num_local_io_workers=None): if not isinstance(dataset, torch.utils.data.Dataset): raise ValueError("Training data must be a torch Dataset") if data_sampler is None and (route == ROUTE_PREDICT or route == ROUTE_EVAL): data_sampler = torch.utils.data.SequentialSampler(dataset) if batch_size is None: batch_size = self.train_micro_batch_size_per_gpu() if collate_fn is None: collate_fn = self.collate_fn # Currently we only use timer in train route deepspeed_io_timer = None if route == ROUTE_TRAIN: deepspeed_io_timer = self.tput_timer return DeepSpeedDataLoader(dataset=dataset, batch_size=batch_size, pin_memory=pin_memory, collate_fn=collate_fn, local_rank=self.local_rank, tput_timer=deepspeed_io_timer, num_local_io_workers=num_local_io_workers, data_sampler=data_sampler) def train(self): r""" """ self.warn_unscaled_loss = True self.module.train() def eval(self): r""" """ self.warn_unscaled_loss = True self.module.train(False) def _scale_loss(self, loss): if isinstance(loss, torch.Tensor): loss = loss / self.gradient_accumulation_steps() elif isinstance(loss, tuple) and isinstance(loss[0], torch.Tensor): loss = (l / self.gradient_accumulation_steps() for l in loss) elif isinstance(loss, list) and isinstance(loss[0], torch.Tensor): loss = [l / self.gradient_accumulation_steps() for l in loss] else: if self.warn_unscaled_loss: logging.warning( f'DeepSpeed unable to scale loss because of type: {type(loss)}') self.warn_unscaled_loss = False return loss def forward(self, *inputs, **kwargs): r"""Execute forward propagation Arguments: *inputs: Variable length input list **kwargs: variable length keyword arguments """ if self.wall_clock_breakdown(): self.timers('forward_microstep').start() self.timers('forward').start() if self.training_dataloader is None: self.tput_timer.start() loss = self.module(*inputs, **kwargs) # scale loss w.r.t. gradient accumulation if needed if self.gradient_accumulation_steps() > 1: loss = self._scale_loss(loss) if self.wall_clock_breakdown(): self.timers('forward').stop() self.timers('forward_microstep').stop() return loss def allreduce_gradients(self, bucket_size=MEMORY_OPT_ALLREDUCE_SIZE): if self.is_gradient_accumulation_boundary(): self.buffered_allreduce_fallback(elements_per_buffer=bucket_size) def backward(self, loss, allreduce_gradients=True): r"""Execute backward pass on the loss Arguments: loss: Torch tensor on which to execute backward propagation allreduce_gradients: If this is False, then gradient averaging will be skipped. Default is True. """ if self.is_gradient_accumulation_boundary() and self.tensorboard_enabled( ) and torch.distributed.get_rank( ) == 0: # deepspeed tensorboard support for loss self.sample_count += (self.train_micro_batch_size_per_gpu() * torch.distributed.get_world_size() * self.gradient_accumulation_steps()) self.summary_events = [ (f'Train/Samples/train_loss', loss.mean().item() * self.gradient_accumulation_steps(), self.sample_count) ] for event in self.summary_events: # write_summary_events self.summary_writer.add_scalar(event[0], event[1], event[2]) self.summary_writer.flush() if self.wall_clock_breakdown(): self.timers('backward_microstep').start() self.timers('backward').start() assert self.optimizer is not None, "must provide optimizer during " \ "init in order to use backward" if self.wall_clock_breakdown(): self.timers('backward_inner_microstep').start() self.timers('backward_inner').start() if self.zero_optimization(): self.optimizer.backward(loss) elif self.fp16_enabled(): self.optimizer.backward(loss) # TODO: Use new AMP semantics as below # with amp.scale_loss(loss, self.optimizer) as scaled_loss: # scaled_loss.backward() else: loss.backward() if self.wall_clock_breakdown(): self.timers('backward_inner').stop() self.timers('backward_inner_microstep').stop() if self.wall_clock_breakdown(): self.timers('backward_allreduce_microstep').start() self.timers('backward_allreduce').start() if allreduce_gradients: self.allreduce_gradients() if self.wall_clock_breakdown(): self.timers('backward_allreduce').stop() self.timers('backward_allreduce_microstep').stop() self.timers('backward').stop() self.timers('backward_microstep').stop() def is_gradient_accumulation_boundary(self): return (self.micro_steps + 1) % \ self.gradient_accumulation_steps() == 0 def step(self): r"""Execute the weight update step after forward and backward propagation on effective_train_batch """ if self.wall_clock_breakdown(): self.timers('step_microstep').start() self.timers('step').start() assert self.optimizer is not None, "must provide optimizer during " \ "init in order to use step" report_progress = self.global_rank == 0 if self.global_rank else True if self.is_gradient_accumulation_boundary(): self.optimizer.step() self.optimizer.zero_grad() # Check overlow here since in DS fp16 optimizer, the overflow is updated in above step() function. overflow = False if hasattr(self.optimizer, 'overflow'): overflow = self.optimizer.overflow if overflow: self.skipped_steps += 1 else: if self.lr_scheduler is not None: self.lr_scheduler.step() if report_progress and (self.global_steps + 1) % self.steps_per_print() == 0: self._report_progress(self.global_steps + 1) self.global_steps += 1 self.tput_timer.stop(report_progress) if self.is_gradient_accumulation_boundary() and self.tensorboard_enabled( ) and torch.distributed.get_rank() == 0: # deepspeed tensorboard support for lr self.summary_events = [(f'Train/Samples/lr', self.get_lr()[0], self.sample_count)] for event in self.summary_events: # write_summary_events self.summary_writer.add_scalar(event[0], event[1], event[2]) self.summary_writer.flush() if self.wall_clock_breakdown(): self.timers('step').stop() self.timers('step_microstep').stop() self.timers.log([ 'forward_microstep', 'backward_microstep', 'backward_inner_microstep', 'backward_allreduce_microstep', 'step_microstep' ]) if self.is_gradient_accumulation_boundary(): if self.tensorboard_enabled() and torch.distributed.get_rank( ) == 0: # this is done before the log because log resets timers self.summary_events = [(f'Train/Samples/elapsed_time_ms_forward', self.timers('forward').elapsed(reset=False) * 1000.0, self.sample_count), \ (f'Train/Samples/elapsed_time_ms_backward', self.timers('backward').elapsed(reset=False) * 1000.0, self.sample_count), \ (f'Train/Samples/elapsed_time_ms_backward_inner', self.timers('backward_inner').elapsed(reset=False) * 1000.0, self.sample_count), \ (f'Train/Samples/elapsed_time_ms_backward_allreduce', self.timers('backward_allreduce').elapsed(reset=False) * 1000.0, self.sample_count), \ (f'Train/Samples/elapsed_time_ms_step', self.timers('step').elapsed(reset=False) * 1000.0, self.sample_count) ] for event in self.summary_events: # write_summary_events self.summary_writer.add_scalar(event[0], event[1], event[2]) self.summary_writer.flush() self.timers.log([ 'forward', 'backward', 'backward_inner', 'backward_allreduce', 'step' ]) self.micro_steps += 1 def _get_optimizer_param(self, param_name): result = [] if not self.optimizer: return result for group in self.optimizer.param_groups: if param_name in group: result.append(group[param_name]) else: result.append(0.0) return result def get_lr(self): return self._get_optimizer_param('lr') def get_mom(self): return self._get_optimizer_param('betas') def _report_progress(self, step): lr = self.get_lr() mom = self.get_mom() logging.info('rank:{} step={}, skipped={}, lr={}, mom={}'.format( self.global_rank, step, self.skipped_steps, lr, mom)) def allreduce_bucket(self, bucket): tensor = flatten(bucket) tensor_to_allreduce = tensor if self.allreduce_always_fp32(): tensor_to_allreduce = tensor.float() if self.postscale_gradients(): if self.gradient_predivide_factor != 1.0: tensor_to_allreduce.mul_(1. / self.gradient_predivide_factor) dist.all_reduce(tensor_to_allreduce, group=self.data_parallel_group) if self.gradient_average: if self.gradient_predivide_factor != self.dp_world_size: tensor_to_allreduce.mul_(self.gradient_predivide_factor / self.dp_world_size) else: tensor_to_allreduce.div_(self.dp_world_size) dist.all_reduce(tensor_to_allreduce, group=self.data_parallel_group) if self.allreduce_always_fp32() and tensor is not tensor_to_allreduce: tensor.copy_(tensor_to_allreduce) return tensor def allreduce_and_copy(self, small_bucket): allreduced = self.allreduce_bucket(small_bucket) for buf, synced in zip(small_bucket, unflatten(allreduced, small_bucket)): buf.copy_(synced) def allreduce_no_retain(self, bucket, numel_per_bucket=500000000): small_bucket = [] numel = 0 for tensor in bucket: small_bucket.append(tensor) numel = numel + tensor.numel() if numel > numel_per_bucket: self.allreduce_and_copy(small_bucket) small_bucket = [] if len(small_bucket) > 0: self.allreduce_and_copy(small_bucket) def buffered_allreduce_fallback(self, grads=None, elements_per_buffer=500000000): grads = [] for param_name, param in self.module.named_parameters(): if param.grad is not None: grad_data = param.grad.data param_name_root = param_name.split('.', 1)[0] if self.sparse_gradients_enabled( ) and param_name_root in self.csr_tensor_module_names: grads.append(CSRTensor(grad_data)) else: grads.append(grad_data) split_buckets = split_half_float_double_csr(grads) for i, bucket_tuple in enumerate(split_buckets): bucket_type, bucket = bucket_tuple if bucket_type == CSRTensor.type(): self.csr_allreduce_no_retain(bucket) else: self.allreduce_no_retain(bucket, numel_per_bucket=elements_per_buffer) def csr_allreduce_no_retain(self, bucket): allreduced_csrs = self.csr_allreduce_bucket(bucket) # Densify csr tensor and copy back to original location for csr in allreduced_csrs: dense_tensor = csr.to_dense() csr.orig_dense_tensor.copy_(dense_tensor) def csr_allreduce_bucket(self, bucket): csr_list = [] for csr in bucket: csr_list.append(self.csr_allreduce(csr)) return csr_list def csr_allreduce(self, csr): # Pre-divide for fp16 stability csr.values.div_(self.dp_world_size) indices_device_list = self.csr_all_gather(csr.indices) values_device_list = self.csr_all_gather(csr.values) csr.indices = torch.cat(indices_device_list) csr.values = torch.cat(values_device_list) return csr def csr_all_gather(self, value): my_size = torch.LongTensor([value.size()[0]]).cuda() all_sizes = self.all_gather_scalar(my_size) max_size = torch.cat(all_sizes).max() fill_size = (max_size - my_size) assert value.dim() in [1, 2] if value.dim() == 1: if fill_size > 0: value = torch.cat([value, value.new_zeros(fill_size)]) tensor_list = [ value.new_zeros(max_size) for _ in range(dist.get_world_size()) ] else: if fill_size > 0: value = torch.cat([value, value.new_zeros(fill_size, value.size()[1])]) tensor_list = [ value.new_zeros(max_size, value.size()[1]) for _ in range(dist.get_world_size()) ] dist.all_gather(tensor_list, value, group=self.data_parallel_group) tensors = [] for dev_idx, t in enumerate(tensor_list): size = all_sizes[dev_idx][0] tensors.append(t.index_select(0, torch.LongTensor(range(size)).cuda())) return tensors def all_gather_scalar(self, value): tensor_list = [value.new_zeros(value.size()) for _ in range(self.dp_world_size)] dist.all_gather(tensor_list, value, group=self.data_parallel_group) return tensor_list def module_state_dict(self, destination=None, prefix='', keep_vars=False): sd = self.module.state_dict(destination, prefix, keep_vars) return sd def load_module_state_dict(self, state_dict, strict=True): self.module.load_state_dict(state_dict, strict=strict) def _get_zero_ckpt_name(self, checkpoints_path, tag): mp_rank = 0 if self.mpu is None else self.mpu.get_model_parallel_rank() pp_rank = torch.distributed.get_rank(group=self.optimizer.dp_process_group) filename = 'zero_pp_rank_{}'.format(pp_rank) zero_ckpt_name = os.path.join( checkpoints_path, str(tag), filename + '_mp_rank_{:02d}'.format(mp_rank) + 'optim_states.pt') return zero_ckpt_name def _get_ckpt_name(self, checkpoints_path, tag): mp_rank = 0 if self.mpu is None else self.mpu.get_model_parallel_rank() ckpt_name = os.path.join(checkpoints_path, str(tag), 'mp_rank_{:02d}'.format(mp_rank) + '_model_states.pt') return ckpt_name def _ensure_directory_exists(self, filename): dirname = os.path.dirname(filename) if not os.path.exists(dirname): os.makedirs(dirname) def load_checkpoint(self, load_dir, tag, load_optimizer_states=True): r"""Load training checkpoint Arguments: load_dir: Required. Directory to load the checkpoint from tag: Required. Checkpoint tag used as a unique identifier for the checkpoint. Ex. Global Step. load_optimizer_states: Optional. Boolean to load the training optimizer states from Checkpoint. Ex. ADAM's momentum and variance Return: load_path: Path of the loaded checkpoint. None if loading the checkpoint failed client_state: State dictionary used for loading required training states in the client code. """ load_path, client_states = self._load_checkpoint(load_dir, tag, load_optimizer_states=load_optimizer_states) if self.zero_optimization() and load_path is not None: self._load_zero_checkpoint(load_dir, tag, load_optimizer_states=load_optimizer_states) return load_path, client_states def _load_checkpoint(self, load_dir, tag, load_optimizer_states=True): load_path = self._get_ckpt_name(load_dir, tag) if not os.path.exists(load_path): logging.warn( 'Client provided checkpoint load path: {} does not exist ... skip checkpoint load' .format(load_path)) return None, None logging.info('Loading checkpoint: {}'.format(load_path)) checkpoint = torch.load(load_path, map_location=lambda storage, loc: storage) self.load_module_state_dict(checkpoint['module']) if not self.zero_optimization(): self.optimizer.load_state_dict(checkpoint['optimizer'], load_optimizer_states=load_optimizer_states) if self.lr_scheduler is not None: self.lr_scheduler.load_state_dict(checkpoint['lr_scheduler']) self.csr_tensor_module_names = checkpoint['csr_tensor_module_names'] self.global_steps = checkpoint['global_steps'] self.skipped_steps = checkpoint['skipped_steps'] deepspeed_states = [ 'module', 'optimizer', 'csr_tensor_module_names', 'skipped_steps', 'global_steps' ] client_state = { key: value for key, value in checkpoint.items() if not key in deepspeed_states } return load_path, client_state def _load_zero_checkpoint(self, load_dir, tag, load_optimizer_states=True): zero_checkpoint_name = self._get_zero_ckpt_name(load_dir, tag) if not os.path.exists(zero_checkpoint_name): logging.warn( 'Client provided checkpoint load path: {} does not exist ... skip checkpoint load' .format(zero_checkpoint_name)) return None zero_sd = torch.load(zero_checkpoint_name, map_location='cpu') self.optimizer.load_state_dict(zero_sd['optimizer_state_dict'], load_optimizer_states=load_optimizer_states) logging.info('loading zero checkpoint {}'.format(zero_checkpoint_name)) def save_checkpoint(self, save_dir, tag, client_state={}): r"""Save training checkpoint Arguments: save_dir: Required. Directory for saving the checkpoint tag: Required. Checkpoint tag used as a unique identifier for the checkpoint. Ex. Global Step. client_state: Optional. State dictionary used for saving required training states in the client code. """ #This is to make sure the checkpoint names are created without collision #There seems to be issue creating them in parallel self._create_checkpoint_files(save_dir, tag) try: if self.save_non_zero_checkpoint: self._save_checkpoint(save_dir, tag, client_state=client_state) if self.save_zero_checkpoint: self._save_zero_checkpoint(save_dir, tag) except: logging.error(f'Failed Saving model checkpoint to {save_dir} with tag {tag}') return False return True def _create_checkpoint_files(self, save_dir, tag): #checkpoint files are created sequentially for rank in range(dist.get_world_size()): if rank == dist.get_rank(): try: if self.save_non_zero_checkpoint: checkpoint_name = self._get_ckpt_name(save_dir, tag) self._ensure_directory_exists(checkpoint_name) if self.save_zero_checkpoint: checkpoint_name = self._get_zero_ckpt_name(save_dir, tag) self._ensure_directory_exists(checkpoint_name) except: logging.error( f'Failed Saving model checkpoint to {save_dir} with tag {tag}') return False dist.barrier() def _save_checkpoint(self, save_dir, tag, client_state={}): save_path = self._get_ckpt_name(save_dir, tag) #self._ensure_directory_exists(save_path) state = { 'module': self.module_state_dict(), 'optimizer': self.optimizer.state_dict() if self.optimizer and not self.zero_optimization() else None, 'lr_scheduler': self.lr_scheduler.state_dict() if self.lr_scheduler is not None else None, 'csr_tensor_module_names': self.csr_tensor_module_names, 'skipped_steps': self.skipped_steps, 'global_steps': self.global_steps, } state.update(client_state) logging.info('Saving model checkpoint: {}'.format(save_path)) torch.save(state, save_path) def _save_zero_checkpoint(self, save_path, tag): try: zero_checkpoint_name = self._get_zero_ckpt_name(save_path, tag) #self._ensure_directory_exists(zero_checkpoint_name) except: logging.error( f'Failed Saving Zero model checkpoint to {save_path} with tag {tag}') zero_sd = {'optimizer_state_dict': self.optimizer.state_dict()} torch.save(zero_sd, zero_checkpoint_name) logging.info('zero checkpoint saved {}'.format(zero_checkpoint_name))
40.363971
184
0.624442
32741969ce0760cbc251d20eaf24499d22b6b2e6
27,649
py
Python
tests/unit/modules/test_systemd_service.py
Noah-Huppert/salt
998c382f5f2c3b4cbf7d96aa6913ada6993909b3
[ "Apache-2.0" ]
2
2020-11-02T22:08:26.000Z
2020-11-14T13:44:46.000Z
tests/unit/modules/test_systemd_service.py
Noah-Huppert/salt
998c382f5f2c3b4cbf7d96aa6913ada6993909b3
[ "Apache-2.0" ]
4
2021-02-06T14:30:48.000Z
2021-12-13T20:50:10.000Z
tests/unit/modules/test_systemd_service.py
Noah-Huppert/salt
998c382f5f2c3b4cbf7d96aa6913ada6993909b3
[ "Apache-2.0" ]
2
2020-11-04T06:32:02.000Z
2020-11-06T11:01:18.000Z
# -*- coding: utf-8 -*- """ :codeauthor: Rahul Handay <[email protected]> """ # Import Python libs from __future__ import absolute_import, print_function, unicode_literals import os import pytest # Import Salt Libs import salt.modules.systemd_service as systemd import salt.utils.systemd from salt.exceptions import CommandExecutionError from tests.support.mixins import LoaderModuleMockMixin from tests.support.mock import MagicMock, patch # Import Salt Testing Libs from tests.support.unit import TestCase _SYSTEMCTL_STATUS = { "sshd.service": { "stdout": """\ * sshd.service - OpenSSH Daemon Loaded: loaded (/usr/lib/systemd/system/sshd.service; disabled; vendor preset: disabled) Active: inactive (dead)""", "stderr": "", "retcode": 3, "pid": 12345, }, "foo.service": { "stdout": """\ * foo.service Loaded: not-found (Reason: No such file or directory) Active: inactive (dead)""", "stderr": "", "retcode": 3, "pid": 12345, }, } # This reflects systemd >= 231 behavior _SYSTEMCTL_STATUS_GTE_231 = { "bar.service": { "stdout": "Unit bar.service could not be found.", "stderr": "", "retcode": 4, "pid": 12345, }, } _LIST_UNIT_FILES = """\ service1.service enabled service2.service disabled service3.service static timer1.timer enabled timer2.timer disabled timer3.timer static""" class SystemdTestCase(TestCase, LoaderModuleMockMixin): """ Test case for salt.modules.systemd """ def setup_loader_modules(self): return {systemd: {}} def test_systemctl_reload(self): """ Test to Reloads systemctl """ mock = MagicMock( side_effect=[ {"stdout": "Who knows why?", "stderr": "", "retcode": 1, "pid": 12345}, {"stdout": "", "stderr": "", "retcode": 0, "pid": 54321}, ] ) with patch.dict(systemd.__salt__, {"cmd.run_all": mock}): self.assertRaisesRegex( CommandExecutionError, "Problem performing systemctl daemon-reload: Who knows why?", systemd.systemctl_reload, ) self.assertTrue(systemd.systemctl_reload()) def test_get_enabled(self): """ Test to return a list of all enabled services """ cmd_mock = MagicMock(return_value=_LIST_UNIT_FILES) listdir_mock = MagicMock(return_value=["foo", "bar", "baz", "README"]) sd_mock = MagicMock( return_value=set([x.replace(".service", "") for x in _SYSTEMCTL_STATUS]) ) access_mock = MagicMock( side_effect=lambda x, y: x != os.path.join(systemd.INITSCRIPT_PATH, "README") ) sysv_enabled_mock = MagicMock(side_effect=lambda x, _: x == "baz") with patch.dict(systemd.__salt__, {"cmd.run": cmd_mock}): with patch.object(os, "listdir", listdir_mock): with patch.object(systemd, "_get_systemd_services", sd_mock): with patch.object(os, "access", side_effect=access_mock): with patch.object(systemd, "_sysv_enabled", sysv_enabled_mock): self.assertListEqual( systemd.get_enabled(), ["baz", "service1", "timer1.timer"], ) def test_get_disabled(self): """ Test to return a list of all disabled services """ cmd_mock = MagicMock(return_value=_LIST_UNIT_FILES) # 'foo' should collide with the systemd services (as returned by # sd_mock) and thus not be returned by _get_sysv_services(). It doesn't # matter that it's not part of the _LIST_UNIT_FILES output, we just # want to ensure that 'foo' isn't identified as a disabled initscript # even though below we are mocking it to show as not enabled (since # only 'baz' will be considered an enabled sysv service). listdir_mock = MagicMock(return_value=["foo", "bar", "baz", "README"]) sd_mock = MagicMock( return_value=set([x.replace(".service", "") for x in _SYSTEMCTL_STATUS]) ) access_mock = MagicMock( side_effect=lambda x, y: x != os.path.join(systemd.INITSCRIPT_PATH, "README") ) sysv_enabled_mock = MagicMock(side_effect=lambda x, _: x == "baz") with patch.dict(systemd.__salt__, {"cmd.run": cmd_mock}): with patch.object(os, "listdir", listdir_mock): with patch.object(systemd, "_get_systemd_services", sd_mock): with patch.object(os, "access", side_effect=access_mock): with patch.object(systemd, "_sysv_enabled", sysv_enabled_mock): self.assertListEqual( systemd.get_disabled(), ["bar", "service2", "timer2.timer"], ) def test_get_all(self): """ Test to return a list of all available services """ listdir_mock = MagicMock( side_effect=[ ["foo.service", "multi-user.target.wants", "mytimer.timer"], [], ["foo.service", "multi-user.target.wants", "bar.service"], ["mysql", "nginx", "README"], ] ) access_mock = MagicMock( side_effect=lambda x, y: x != os.path.join(systemd.INITSCRIPT_PATH, "README") ) with patch.object(os, "listdir", listdir_mock): with patch.object(os, "access", side_effect=access_mock): self.assertListEqual( systemd.get_all(), ["bar", "foo", "mysql", "mytimer.timer", "nginx"] ) def test_available(self): """ Test to check that the given service is available """ mock = MagicMock(side_effect=lambda x: _SYSTEMCTL_STATUS[x]) # systemd < 231 with patch.dict(systemd.__context__, {"salt.utils.systemd.version": 230}): with patch.object(systemd, "_systemctl_status", mock): self.assertTrue(systemd.available("sshd.service")) self.assertFalse(systemd.available("foo.service")) # systemd >= 231 with patch.dict(systemd.__context__, {"salt.utils.systemd.version": 231}): with patch.dict(_SYSTEMCTL_STATUS, _SYSTEMCTL_STATUS_GTE_231): with patch.object(systemd, "_systemctl_status", mock): self.assertTrue(systemd.available("sshd.service")) self.assertFalse(systemd.available("bar.service")) # systemd < 231 with retcode/output changes backported (e.g. RHEL 7.3) with patch.dict(systemd.__context__, {"salt.utils.systemd.version": 219}): with patch.dict(_SYSTEMCTL_STATUS, _SYSTEMCTL_STATUS_GTE_231): with patch.object(systemd, "_systemctl_status", mock): self.assertTrue(systemd.available("sshd.service")) self.assertFalse(systemd.available("bar.service")) def test_missing(self): """ Test to the inverse of service.available. """ mock = MagicMock(side_effect=lambda x: _SYSTEMCTL_STATUS[x]) # systemd < 231 with patch.dict(systemd.__context__, {"salt.utils.systemd.version": 230}): with patch.object(systemd, "_systemctl_status", mock): self.assertFalse(systemd.missing("sshd.service")) self.assertTrue(systemd.missing("foo.service")) # systemd >= 231 with patch.dict(systemd.__context__, {"salt.utils.systemd.version": 231}): with patch.dict(_SYSTEMCTL_STATUS, _SYSTEMCTL_STATUS_GTE_231): with patch.object(systemd, "_systemctl_status", mock): self.assertFalse(systemd.missing("sshd.service")) self.assertTrue(systemd.missing("bar.service")) # systemd < 231 with retcode/output changes backported (e.g. RHEL 7.3) with patch.dict(systemd.__context__, {"salt.utils.systemd.version": 219}): with patch.dict(_SYSTEMCTL_STATUS, _SYSTEMCTL_STATUS_GTE_231): with patch.object(systemd, "_systemctl_status", mock): self.assertFalse(systemd.missing("sshd.service")) self.assertTrue(systemd.missing("bar.service")) def test_show(self): """ Test to show properties of one or more units/jobs or the manager """ show_output = "a=b\nc=d\ne={ f=g ; h=i }\nWants=foo.service bar.service\n" mock = MagicMock(return_value=show_output) with patch.dict(systemd.__salt__, {"cmd.run": mock}): self.assertDictEqual( systemd.show("sshd"), { "a": "b", "c": "d", "e": {"f": "g", "h": "i"}, "Wants": ["foo.service", "bar.service"], }, ) def test_execs(self): """ Test to return a list of all files specified as ``ExecStart`` for all services """ mock = MagicMock(return_value=["a", "b"]) with patch.object(systemd, "get_all", mock): mock = MagicMock(return_value={"ExecStart": {"path": "c"}}) with patch.object(systemd, "show", mock): self.assertDictEqual(systemd.execs(), {"a": "c", "b": "c"}) class SystemdScopeTestCase(TestCase, LoaderModuleMockMixin): """ Test case for salt.modules.systemd, for functions which use systemd scopes """ def setup_loader_modules(self): return {systemd: {}} unit_name = "foo" mock_none = MagicMock(return_value=None) mock_success = MagicMock(return_value=0) mock_failure = MagicMock(return_value=1) mock_true = MagicMock(return_value=True) mock_false = MagicMock(return_value=False) mock_empty_list = MagicMock(return_value=[]) mock_run_all_success = MagicMock( return_value={"retcode": 0, "stdout": "", "stderr": "", "pid": 12345} ) mock_run_all_failure = MagicMock( return_value={"retcode": 1, "stdout": "", "stderr": "", "pid": 12345} ) def _change_state(self, action, no_block=False): """ Common code for start/stop/restart/reload/force_reload tests """ # We want the traceback if the function name can't be found in the # systemd execution module. func = getattr(systemd, action) # Remove trailing _ in "reload_" action = action.rstrip("_").replace("_", "-") systemctl_command = ["systemctl"] if no_block: systemctl_command.append("--no-block") systemctl_command.extend([action, self.unit_name + ".service"]) scope_prefix = ["systemd-run", "--scope"] assert_kwargs = {"python_shell": False} if action in ("enable", "disable"): assert_kwargs["ignore_retcode"] = True with patch.object(systemd, "_check_for_unit_changes", self.mock_none): with patch.object(systemd, "_unit_file_changed", self.mock_none): with patch.object(systemd, "_check_unmask", self.mock_none): with patch.object( systemd, "_get_sysv_services", self.mock_empty_list ): # Has scopes available with patch.object( salt.utils.systemd, "has_scope", self.mock_true ): # Scope enabled, successful with patch.dict( systemd.__salt__, { "config.get": self.mock_true, "cmd.run_all": self.mock_run_all_success, }, ): ret = func(self.unit_name, no_block=no_block) self.assertTrue(ret) self.mock_run_all_success.assert_called_with( scope_prefix + systemctl_command, **assert_kwargs ) # Scope enabled, failed with patch.dict( systemd.__salt__, { "config.get": self.mock_true, "cmd.run_all": self.mock_run_all_failure, }, ): if action in ("stop", "disable"): ret = func(self.unit_name, no_block=no_block) self.assertFalse(ret) else: self.assertRaises( CommandExecutionError, func, self.unit_name, no_block=no_block, ) self.mock_run_all_failure.assert_called_with( scope_prefix + systemctl_command, **assert_kwargs ) # Scope disabled, successful with patch.dict( systemd.__salt__, { "config.get": self.mock_false, "cmd.run_all": self.mock_run_all_success, }, ): ret = func(self.unit_name, no_block=no_block) self.assertTrue(ret) self.mock_run_all_success.assert_called_with( systemctl_command, **assert_kwargs ) # Scope disabled, failed with patch.dict( systemd.__salt__, { "config.get": self.mock_false, "cmd.run_all": self.mock_run_all_failure, }, ): if action in ("stop", "disable"): ret = func(self.unit_name, no_block=no_block) self.assertFalse(ret) else: self.assertRaises( CommandExecutionError, func, self.unit_name, no_block=no_block, ) self.mock_run_all_failure.assert_called_with( systemctl_command, **assert_kwargs ) # Does not have scopes available with patch.object( salt.utils.systemd, "has_scope", self.mock_false ): # The results should be the same irrespective of # whether or not scope is enabled, since scope is not # available, so we repeat the below tests with it both # enabled and disabled. for scope_mock in (self.mock_true, self.mock_false): # Successful with patch.dict( systemd.__salt__, { "config.get": scope_mock, "cmd.run_all": self.mock_run_all_success, }, ): ret = func(self.unit_name, no_block=no_block) self.assertTrue(ret) self.mock_run_all_success.assert_called_with( systemctl_command, **assert_kwargs ) # Failed with patch.dict( systemd.__salt__, { "config.get": scope_mock, "cmd.run_all": self.mock_run_all_failure, }, ): if action in ("stop", "disable"): ret = func(self.unit_name, no_block=no_block) self.assertFalse(ret) else: self.assertRaises( CommandExecutionError, func, self.unit_name, no_block=no_block, ) self.mock_run_all_failure.assert_called_with( systemctl_command, **assert_kwargs ) def _mask_unmask(self, action, runtime): """ Common code for mask/unmask tests """ # We want the traceback if the function name can't be found in the # systemd execution module, so don't provide a fallback value for the # call to getattr() here. func = getattr(systemd, action) # Remove trailing _ in "unmask_" action = action.rstrip("_").replace("_", "-") systemctl_command = ["systemctl", action] if runtime: systemctl_command.append("--runtime") systemctl_command.append(self.unit_name + ".service") scope_prefix = ["systemd-run", "--scope"] args = [self.unit_name, runtime] masked_mock = self.mock_true if action == "unmask" else self.mock_false with patch.object(systemd, "_check_for_unit_changes", self.mock_none): if action == "unmask": mock_not_run = MagicMock( return_value={ "retcode": 0, "stdout": "", "stderr": "", "pid": 12345, } ) with patch.dict(systemd.__salt__, {"cmd.run_all": mock_not_run}): with patch.object(systemd, "masked", self.mock_false): # Test not masked (should take no action and return True) self.assertTrue(systemd.unmask_(self.unit_name)) # Also should not have called cmd.run_all self.assertTrue(mock_not_run.call_count == 0) with patch.object(systemd, "masked", masked_mock): # Has scopes available with patch.object(salt.utils.systemd, "has_scope", self.mock_true): # Scope enabled, successful with patch.dict( systemd.__salt__, { "config.get": self.mock_true, "cmd.run_all": self.mock_run_all_success, }, ): ret = func(*args) self.assertTrue(ret) self.mock_run_all_success.assert_called_with( scope_prefix + systemctl_command, python_shell=False, redirect_stderr=True, ) # Scope enabled, failed with patch.dict( systemd.__salt__, { "config.get": self.mock_true, "cmd.run_all": self.mock_run_all_failure, }, ): self.assertRaises(CommandExecutionError, func, *args) self.mock_run_all_failure.assert_called_with( scope_prefix + systemctl_command, python_shell=False, redirect_stderr=True, ) # Scope disabled, successful with patch.dict( systemd.__salt__, { "config.get": self.mock_false, "cmd.run_all": self.mock_run_all_success, }, ): ret = func(*args) self.assertTrue(ret) self.mock_run_all_success.assert_called_with( systemctl_command, python_shell=False, redirect_stderr=True ) # Scope disabled, failed with patch.dict( systemd.__salt__, { "config.get": self.mock_false, "cmd.run_all": self.mock_run_all_failure, }, ): self.assertRaises(CommandExecutionError, func, *args) self.mock_run_all_failure.assert_called_with( systemctl_command, python_shell=False, redirect_stderr=True ) # Does not have scopes available with patch.object(salt.utils.systemd, "has_scope", self.mock_false): # The results should be the same irrespective of # whether or not scope is enabled, since scope is not # available, so we repeat the below tests with it both # enabled and disabled. for scope_mock in (self.mock_true, self.mock_false): # Successful with patch.dict( systemd.__salt__, { "config.get": scope_mock, "cmd.run_all": self.mock_run_all_success, }, ): ret = func(*args) self.assertTrue(ret) self.mock_run_all_success.assert_called_with( systemctl_command, python_shell=False, redirect_stderr=True, ) # Failed with patch.dict( systemd.__salt__, { "config.get": scope_mock, "cmd.run_all": self.mock_run_all_failure, }, ): self.assertRaises(CommandExecutionError, func, *args) self.mock_run_all_failure.assert_called_with( systemctl_command, python_shell=False, redirect_stderr=True, ) def test_start(self): self._change_state("start", no_block=False) self._change_state("start", no_block=True) def test_stop(self): self._change_state("stop", no_block=False) self._change_state("stop", no_block=True) def test_restart(self): self._change_state("restart", no_block=False) self._change_state("restart", no_block=True) def test_reload(self): self._change_state("reload_", no_block=False) self._change_state("reload_", no_block=True) def test_force_reload(self): self._change_state("force_reload", no_block=False) self._change_state("force_reload", no_block=True) def test_enable(self): self._change_state("enable", no_block=False) self._change_state("enable", no_block=True) def test_disable(self): self._change_state("disable", no_block=False) self._change_state("disable", no_block=True) def test_mask(self): self._mask_unmask("mask", False) def test_mask_runtime(self): self._mask_unmask("mask", True) def test_unmask(self): self._mask_unmask("unmask_", False) def test_unmask_runtime(self): self._mask_unmask("unmask_", True) def test_firstboot(self): """ Test service.firstboot without parameters """ result = {"retcode": 0, "stdout": "stdout"} salt_mock = { "cmd.run_all": MagicMock(return_value=result), } with patch.dict(systemd.__salt__, salt_mock): assert systemd.firstboot() salt_mock["cmd.run_all"].assert_called_with(["systemd-firstboot"]) def test_firstboot_params(self): """ Test service.firstboot with parameters """ result = {"retcode": 0, "stdout": "stdout"} salt_mock = { "cmd.run_all": MagicMock(return_value=result), } with patch.dict(systemd.__salt__, salt_mock): assert systemd.firstboot( locale="en_US.UTF-8", locale_message="en_US.UTF-8", keymap="jp", timezone="Europe/Berlin", hostname="node-001", machine_id="1234567890abcdef", root="/mnt", ) salt_mock["cmd.run_all"].assert_called_with( [ "systemd-firstboot", "--locale", "en_US.UTF-8", "--locale-message", "en_US.UTF-8", "--keymap", "jp", "--timezone", "Europe/Berlin", "--hostname", "node-001", "--machine-ID", "1234567890abcdef", "--root", "/mnt", ] ) def test_firstboot_error(self): """ Test service.firstboot error """ result = {"retcode": 1, "stderr": "error"} salt_mock = { "cmd.run_all": MagicMock(return_value=result), } with patch.dict(systemd.__salt__, salt_mock): with pytest.raises(CommandExecutionError): assert systemd.firstboot()
41.765861
91
0.475135
0982274b543e0613035ab9aa92a67dad0c57154e
180
py
Python
cas/config.py
jcmcken/cas
46933cf6320f6ebd8199459c0bbbf1ebfcb9863d
[ "BSD-3-Clause" ]
null
null
null
cas/config.py
jcmcken/cas
46933cf6320f6ebd8199459c0bbbf1ebfcb9863d
[ "BSD-3-Clause" ]
1
2015-04-20T03:28:17.000Z
2015-04-23T01:53:29.000Z
cas/config.py
jcmcken/cas
46933cf6320f6ebd8199459c0bbbf1ebfcb9863d
[ "BSD-3-Clause" ]
null
null
null
import os DEBUG = os.environ.get('CAS_DEBUG', 'false') == 'true' CAS_ROOT = os.environ.get('CAS_ROOT', None) CAS_PLUGIN_DIR = os.path.join(os.path.dirname(__file__), 'plugins')
22.5
67
0.705556
585e53b61c628fe378d69de2d763d0b9517b0ea9
1,422
py
Python
cohesity_management_sdk/models/periodicity_extended_retention_policy_enum.py
nick6655/management-sdk-python
88e792cb83e5c24a22af495b220c145d0c45841d
[ "Apache-2.0" ]
18
2019-09-24T17:35:53.000Z
2022-03-25T08:08:47.000Z
cohesity_management_sdk/models/periodicity_extended_retention_policy_enum.py
nick6655/management-sdk-python
88e792cb83e5c24a22af495b220c145d0c45841d
[ "Apache-2.0" ]
18
2019-03-29T19:32:29.000Z
2022-01-03T23:16:45.000Z
cohesity_management_sdk/models/periodicity_extended_retention_policy_enum.py
nick6655/management-sdk-python
88e792cb83e5c24a22af495b220c145d0c45841d
[ "Apache-2.0" ]
16
2019-02-27T06:54:12.000Z
2021-11-16T18:10:24.000Z
# -*- coding: utf-8 -*- # Copyright 2021 Cohesity Inc. class PeriodicityExtendedRetentionPolicyEnum(object): """Implementation of the 'Periodicity_ExtendedRetentionPolicy' enum. Specifies the frequency that Snapshots should be copied to the specified target. Used in combination with multiplier. 'kEvery' means that the Snapshot copy occurs after the number of Job Runs equals the number specified in the multiplier. 'kHour' means that the Snapshot copy occurs hourly at the frequency set in the multiplier, for example if multiplier is 2, the copy occurs every 2 hours. 'kDay' means that the Snapshot copy occurs daily at the frequency set in the multiplier. 'kWeek' means that the Snapshot copy occurs weekly at the frequency set in the multiplier. 'kMonth' means that the Snapshot copy occurs monthly at the frequency set in the multiplier. 'kYear' means that the Snapshot copy occurs yearly at the frequency set in the multiplier. Attributes: KEVERY: TODO: type description here. KHOUR: TODO: type description here. KDAY: TODO: type description here. KWEEK: TODO: type description here. KMONTH: TODO: type description here. KYEAR: TODO: type description here. """ KEVERY = 'kEvery' KHOUR = 'kHour' KDAY = 'kDay' KWEEK = 'kWeek' KMONTH = 'kMonth' KYEAR = 'kYear'
30.913043
74
0.698312
4d22afe6a4e7e07b27a5f79f35fa59321a37eacc
9,389
py
Python
simple_redirect.py
0xC0ncord/TURRPG2
43a5ad00ae38070a5c23b813e793de2ac5e7cd72
[ "OML" ]
1
2020-09-22T14:15:21.000Z
2020-09-22T14:15:21.000Z
simple_redirect.py
0xC0ncord/TURRPG2
43a5ad00ae38070a5c23b813e793de2ac5e7cd72
[ "OML" ]
22
2021-12-12T22:24:47.000Z
2022-01-13T22:48:21.000Z
simple_redirect.py
0xC0ncord/TURRPG2
43a5ad00ae38070a5c23b813e793de2ac5e7cd72
[ "OML" ]
null
null
null
#!/usr/bin/env python3 import http.server, socketserver import urllib.parse import os import signal PORT = 8000 ALLOWED_EXTENSIONS = ('ukx', 'ut2', 'uax', 'usx', 'u', 'utx') ASSET_DIRS = ('Animations', 'Maps', 'Sounds', 'StaticMeshes', 'System', 'Textures') USE_COMPRESSION = True TEMP_COMPRESSED_DIR = ".redirect" import subprocess #TODO get rid of this when we use zlib UCC_PATH = "System/ucc.exe" #COMPRESS_OBJ = None PROCESSING_FILES = [] class UT2K4RedirectHandler(http.server.SimpleHTTPRequestHandler): # Compress a file, 1Gb at a time def compress_file(self, infilepath: str, outfilepath: str) -> None: global PROCESSING_FILES print("Compressing file {} to {}".format(infilepath, outfilepath)) # Append this file to files that we are currently compressing # This makes any further requests for it wait until it is complete PROCESSING_FILES.append(infilepath) # FIXME temporary workaround for zlib not cooperating subprocess.run(["wine", UCC_PATH, "compress", "../{}".format(infilepath).replace("/", "\\")], stdout=subprocess.PIPE, stderr=subprocess.PIPE) subprocess.run(["mv", "{}.uz2".format(infilepath), outfilepath], stdout=subprocess.PIPE, stderr=subprocess.PIPE) # TODO # Open this file #infile = open(infilepath, 'rb') # Open the output file #outfile = open(outfilepath, 'wb+') # Get input file's total size #infile.seek(0, 2) #size_total = infile.tell() # Seek back to beginning #infile.seek(0) # Start compressing and writing data, 1Gb at a time #data = bytes() #read = 0 #size = 1073741824 # 1Gb #while read < size_total: # outfile.write(COMPRESS_OBJ.compress(infile.read(size))) # read = read + size #outfile.write(COMPRESS_OBJ.flush()) # Close handles #infile.close() #outfile.close() # Remove this file from the processing list PROCESSING_FILES.remove(infilepath) def do_GET(self) -> None: # Parse query data to find out what was requested parsedParams = urllib.parse.urlparse(self.path) # Only respond if the requested file ends with an allowed file extension if not parsedParams.path.endswith(ALLOWED_EXTENSIONS) and not parsedParams.path.endswith('uz2'): print("Request did not end with an allowed file extension; sending 404 response.") self.send_response(404) self.end_headers() return # Only respond to the 'Unreal' user-agent if self.headers.get('User-Agent') != "Unreal": print("Request did not contain 'User-Agent: Unreal' header; sending 404 response.") self.send_response(404) self.end_headers() return # Only respond if the client sends a 'Connection: close' if self.headers.get('Connection') != "close": print("Request did not contain 'Connection: close' header; sending 404 response.") self.send_response(404) self.end_headers() return # Unquote the requested path before looking in the filesystem filepath = urllib.parse.unquote(parsedParams.path) if (filepath.endswith('.uz2') and not USE_COMPRESSION) or (not filepath.endswith('.uz2') and USE_COMPRESSION): # Can't do it print("Request for compressed/uncompressed file did not match configured mode.") self.send_response(404) self.end_headers() return if not USE_COMPRESSION: # See if the file requested exists if os.access('.' + os.sep + filepath, os.R_OK): # File exists, serve it up http.server.SimpleHTTPRequestHandler.do_GET(self); else: # Try to find out where this file lives foundIt = False for asset_dir in ASSET_DIRS: if os.access('.' + os.sep + asset_dir + os.sep + filepath, os.R_OK): foundIt = True self.send_response(200) self.end_headers() # Found it, serve it up with open('.' + os.sep + asset_dir + os.sep + filepath, 'rb') as fp: self.copyfile(fp, self.wfile) break if not foundIt: # Didn't find it self.send_response(404) self.end_headers() else: # Check our temporary directory for the file in its compressed form if it exists if os.access(TEMP_COMPRESSED_DIR + os.sep + filepath, os.R_OK): self.send_response(200) self.end_headers() # Serve it up with open(TEMP_COMPRESSED_DIR + os.sep + filepath, 'rb') as fp: self.copyfile(fp, self.wfile) else: # Need to find the uncompressed file first uncomp_filepath = filepath[:-len('.uz2')] # See if this file is already being compressed at this time if filepath in PROCESSING_FILES: # Wait for it and then serve it up while filepath in PROCESSING_FILES: time.sleep(1) # It's done self.send_response(200) self.end_headers() # Serve it up try: with open(TEMP_COMPRESSED_DIR + os.sep + filepath, 'rb') as fp: self.copyfile(fp, self.wfile) finally: return foundIt = False for asset_dir in ASSET_DIRS: if os.access('.' + os.sep + asset_dir + os.sep + uncomp_filepath, os.R_OK): foundIt = True # Found it, so let's compress it self.compress_file('.' + os.sep + asset_dir + os.sep + uncomp_filepath, TEMP_COMPRESSED_DIR + os.sep + filepath) self.send_response(200) self.end_headers() # Serve it up try: with open(TEMP_COMPRESSED_DIR + os.sep + filepath, 'rb') as fp: self.copyfile(fp, self.wfile) finally: return if not foundIt: # Didn't find it self.send_response(404) self.end_headers() # Ready, set, go! def run() -> None: global USE_COMPRESSION global TEMP_COMPRESSED_DIR #global COMPRESS_OBJ def clean_up() -> None: httpd.shutdown() if USE_COMPRESSION: shutil.rmtree(TEMP_COMPRESSED_DIR) signal.signal(signal.SIGTERM, clean_up) signal.signal(signal.SIGPIPE, signal.SIG_DFL) try: # Setup and bind Handler = UT2K4RedirectHandler httpd = socketserver.TCPServer(("", PORT), Handler) except OSError: return try: # Set up things needed for compression if enabled if USE_COMPRESSION: try: if not os.path.exists(TEMP_COMPRESSED_DIR): # Make our temporary holding area for compressed files os.mkdir(TEMP_COMPRESSED_DIR) # TODO # Import zlib and get ourselves a compression object for working with them #import zlib #COMPRESS_OBJ = zlib.compressobj() # time is needed to sleep while waiting for compressed files import time # shutil needed to remove the temporary directory tree containing compressed files on cleanup import shutil except (OSError, ImportError): # Whatever, just disable compression USE_COMPRESSION = False # Start httpd.serve_forever() except: # Clean up clean_up() # Main if __name__ == "__main__": import argparse # Setup arguments parser = argparse.ArgumentParser(description="A simple UT2004 redirect server.") parser.add_argument('-d', action='store', dest='serve_dir', help="Set the base directory to serve files.") parser.add_argument('-c', action='store_true', dest='compression', help="Compress files to '.uz2' before serving.") parser.add_argument('--no-daemonize', '-n', action='store_true', dest='no_daemonize', help="Run in the foreground.") args = parser.parse_args() # If running in foreground, go ahead if args.no_daemonize: if args.serve_dir is not None: os.chdir(args.serve_dir + os.sep) USE_COMPRESSION = args.compression run() # Else fork ourselves running in the background else: import subprocess cmd = ['python3', __file__] if args.serve_dir is not None: cmd += ['-d', args.serve_dir] if args.compression: cmd += ['-c'] cmd += ['-n'] proc = subprocess.Popen(cmd) # Return the PID print(proc.pid)
36.964567
149
0.562467
aae01310da3b24b9a1a6b3e2fb5fcb78ba37387d
573
py
Python
src/174. Dungeon Game.py
xiaonanln/myleetcode-python
95d282f21a257f937cd22ef20c3590a69919e307
[ "Apache-2.0" ]
null
null
null
src/174. Dungeon Game.py
xiaonanln/myleetcode-python
95d282f21a257f937cd22ef20c3590a69919e307
[ "Apache-2.0" ]
null
null
null
src/174. Dungeon Game.py
xiaonanln/myleetcode-python
95d282f21a257f937cd22ef20c3590a69919e307
[ "Apache-2.0" ]
null
null
null
class Solution(object): def calculateMinimumHP(self, dungeon): """ :type dungeon: List[List[int]] :rtype: int """ R = len(dungeon) C = len(dungeon[0]) minBlood = [None] * C for r in xrange(R-1, -1, -1): for c in xrange(C-1, -1, -1): d = dungeon[r][c] if r < R-1 and c < C-1: minBlood[c] = min(max(1, minBlood[c] - d), max(1, minBlood[c+1] - d)) elif r < R-1: minBlood[c] = max(1, minBlood[c] - d) elif c < C-1: minBlood[c] = max(1, minBlood[c+1] - d) else: minBlood[c] = 1-d if d<0 else 1 return minBlood[0]
24.913043
74
0.542757
43820a6915219b7cbb53d66c4496d1745a6a7f09
16,560
py
Python
pysteps/visualization/precipfields.py
Fangyh09/pysteps
9eb7f4ead0a946d98b7504d1bd66b18dc405ed51
[ "BSD-3-Clause" ]
6
2019-01-06T07:42:55.000Z
2021-02-03T13:59:50.000Z
pysteps/visualization/precipfields.py
Fangyh09/pysteps
9eb7f4ead0a946d98b7504d1bd66b18dc405ed51
[ "BSD-3-Clause" ]
5
2018-12-23T15:10:27.000Z
2021-01-06T15:03:03.000Z
pysteps/visualization/precipfields.py
Fangyh09/pysteps
9eb7f4ead0a946d98b7504d1bd66b18dc405ed51
[ "BSD-3-Clause" ]
2
2019-08-06T14:16:43.000Z
2019-08-13T00:36:31.000Z
""" pysteps.visualization.precipfields ================================== Methods for plotting precipitation fields. .. autosummary:: :toctree: ../generated/ plot_precip_field get_colormap """ import matplotlib.pylab as plt from matplotlib import cm, colors, gridspec import numpy as np from pysteps.exceptions import UnsupportedSomercProjection from . import basemaps from . import utils def plot_precip_field(R, type="intensity", map=None, geodata=None, units='mm/h', colorscale='pysteps', probthr=None, title=None, colorbar=True, drawlonlatlines=False, lw=0.5, axis="on", cax=None, **kwargs): """ Function to plot a precipitation intensity or probability field with a colorbar. .. _Axes: https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes .. _SubplotSpec: https://matplotlib.org/api/_as_gen/matplotlib.gridspec.SubplotSpec.html .. _cartopy: https://scitools.org.uk/cartopy/docs/latest .. _mpl_toolkits.basemap: https://matplotlib.org/basemap Parameters ---------- R : array-like Two-dimensional array containing the input precipitation field or an exceedance probability map. type : {'intensity', 'depth', 'prob'}, optional Type of the map to plot: 'intensity' = precipitation intensity field, 'depth' = precipitation depth (accumulation) field, 'prob' = exceedance probability field. map : {'basemap', 'cartopy'}, optional Optional method for plotting a map: 'basemap' or 'cartopy'. The former uses `mpl_toolkits.basemap`_, while the latter uses cartopy_. geodata : dictionary, optional Optional dictionary containing geographical information about the field. If geodata is not None, it must contain the following key-value pairs: .. tabularcolumns:: |p{1.5cm}|L| +-----------------+----------------------------------------------------+ | Key | Value | +=================+====================================================+ | projection | PROJ.4-compatible projection definition | +-----------------+----------------------------------------------------+ | x1 | x-coordinate of the lower-left corner of the data | | | raster (meters) | +-----------------+----------------------------------------------------+ | y1 | y-coordinate of the lower-left corner of the data | | | raster (meters) | +-----------------+----------------------------------------------------+ | x2 | x-coordinate of the upper-right corner of the data | | | raster (meters) | +-----------------+----------------------------------------------------+ | y2 | y-coordinate of the upper-right corner of the data | | | raster (meters) | +-----------------+----------------------------------------------------+ | yorigin | a string specifying the location of the first | | | element in the data raster w.r.t. y-axis: | | | 'upper' = upper border, 'lower' = lower border | +-----------------+----------------------------------------------------+ units : {'mm/h', 'mm', 'dBZ'}, optional Units of the input array. If type is 'prob', this specifies the unit of the intensity threshold. colorscale : {'pysteps', 'STEPS-BE', 'BOM-RF3'}, optional Which colorscale to use. Applicable if units is 'mm/h', 'mm' or 'dBZ'. probthr : float, optional Intensity threshold to show in the color bar of the exceedance probability map. Required if type is "prob" and colorbar is True. title : str, optional If not None, print the title on top of the plot. colorbar : bool, optional If set to True, add a colorbar on the right side of the plot. drawlonlatlines : bool, optional If set to True, draw longitude and latitude lines. Applicable if map is 'basemap' or 'cartopy'. lw: float, optional Linewidth of the map (administrative boundaries and coastlines). axis : {'off','on'}, optional Whether to turn off or on the x and y axis. cax : Axes_ object, optional Axes into which the colorbar will be drawn. If no axes is provided the colorbar axes are created next to the plot. Other parameters ---------------- Optional parameters are contained in **kwargs. See basemaps.plot_geography. Returns ------- ax : fig Axes_ Figure axes. Needed if one wants to add e.g. text inside the plot. """ if type not in ["intensity", "depth", "prob"]: raise ValueError("invalid type '%s', must be 'intensity', 'depth' or 'prob'" % type) if units not in ["mm/h", "mm", "dBZ"]: raise ValueError("invalid units '%s', must be 'mm/h', 'mm' or 'dBZ'" % units) if type == "prob" and colorbar and probthr is None: raise ValueError("type='prob' but probthr not specified") if map is not None and geodata is None: raise ValueError("map!=None but geodata=None") if len(R.shape) != 2: raise ValueError("the input is not two-dimensional array") # get colormap and color levels cmap, norm, clevs, clevsStr = get_colormap(type, units, colorscale) # extract extent and origin if geodata is not None: extent = (geodata['x1'],geodata['x2'], geodata['y1'],geodata['y2']) origin = geodata["yorigin"] else: extent = (0, R.shape[1]-1, 0, R.shape[0]-1) origin = "upper" # plot geography if map is not None: try: ax = basemaps.plot_geography(map, geodata["projection"], extent, R.shape, lw, drawlonlatlines, **kwargs) regular_grid = True except UnsupportedSomercProjection: # Define default fall-back projection for Swiss data(EPSG:3035) # This will work reasonably well for Europe only. t_proj4str = "+proj=laea +lat_0=52 +lon_0=10 +x_0=4321000 +y_0=3210000 +ellps=GRS80 +units=m +no_defs" geodata = utils.reproject_geodata(geodata, t_proj4str, return_grid="quadmesh") extent = (geodata['x1'], geodata['x2'], geodata['y1'], geodata['y2']) X, Y = geodata["X_grid"], geodata["Y_grid"] regular_grid = geodata["regular_grid"] ax = basemaps.plot_geography(map, geodata["projection"], extent, R.shape, lw, drawlonlatlines, **kwargs) else: regular_grid = True ax = plt.gca() # plot rainfield if regular_grid: im = _plot_field(R, ax, type, units, colorscale, extent=extent, origin=origin) else: if origin == "upper": Y = np.flipud(Y) im = _plot_field_pcolormesh(X, Y, R, ax, type, units, colorscale) # plot radar domain mask mask = np.ones(R.shape) mask[~np.isnan(R)] = np.nan # Fully transparent within the radar domain ax.imshow(mask, cmap=colors.ListedColormap(['gray']), alpha=0.5, zorder=1e6, extent=extent, origin=origin) # ax.pcolormesh(X, Y, np.flipud(mask), cmap=colors.ListedColormap(['gray']), # alpha=0.5, zorder=1e6) # TODO: pcolormesh doesn't work properly with the alpha parameter if title is not None: plt.title(title) # add colorbar if colorbar: cbar = plt.colorbar(im, ticks=clevs, spacing='uniform', norm=norm, extend="max" if type in ["intensity", "depth"] else "neither", shrink=0.8, cax=cax) if clevsStr != None: cbar.ax.set_yticklabels(clevsStr) if type == "intensity": cbar.ax.set_title(units, fontsize=10) cbar.set_label("Precipitation intensity") elif type == "depth": cbar.ax.set_title(units, fontsize=10) cbar.set_label("Precipitation depth") else: cbar.set_label("P(R > %.1f %s)" % (probthr, units)) if geodata is None or axis == "off": axes = plt.gca() axes.xaxis.set_ticks([]) axes.xaxis.set_ticklabels([]) axes.yaxis.set_ticks([]) axes.yaxis.set_ticklabels([]) return plt.gca() def _plot_field(R, ax, type, units, colorscale, extent, origin=None): R = R.copy() # Get colormap and color levels cmap, norm, clevs, clevsStr = get_colormap(type, units, colorscale) # Plot precipitation field # transparent where no precipitation or the probability is zero if type in ["intensity", "depth"]: if units in ['mm/h', 'mm']: R[R < 0.1] = np.nan elif units == 'dBZ': R[R < 10] = np.nan else: R[R < 1e-3] = np.nan vmin,vmax = [None, None] if type in ["intensity", "depth"] else [0.0, 1.0] im = ax.imshow(R, cmap=cmap, norm=norm, extent=extent, interpolation='nearest', vmin=vmin, vmax=vmax, origin=origin, zorder=1) return im def _plot_field_pcolormesh(X, Y, R, ax, type, units, colorscale): R = R.copy() # Get colormap and color levels cmap, norm, clevs, clevsStr = get_colormap(type, units, colorscale) # Plot precipitation field # transparent where no precipitation or the probability is zero if type in ["intensity", "depth"]: if units in ['mm/h', 'mm']: R[R < 0.1] = np.nan elif units == 'dBZ': R[R < 10] = np.nan else: R[R < 1e-3] = np.nan vmin,vmax = [None, None] if type in ["intensity", "depth"] else [0.0, 1.0] im = ax.pcolormesh(X, Y, R, cmap=cmap, norm=norm, vmin=vmin, vmax=vmax, zorder=1) return im def get_colormap(type, units='mm/h', colorscale='pysteps'): """Function to generate a colormap (cmap) and norm. Parameters ---------- type : {'intensity', 'depth', 'prob'}, optional Type of the map to plot: 'intensity' = precipitation intensity field, 'depth' = precipitation depth (accumulation) field, 'prob' = exceedance probability field. units : {'mm/h', 'mm', 'dBZ'}, optional Units of the input array. If type is 'prob', this specifies the unit of the intensity threshold. colorscale : {'pysteps', 'STEPS-BE', 'BOM-RF3'}, optional Which colorscale to use. Applicable if units is 'mm/h', 'mm' or 'dBZ'. Returns ------- cmap : Colormap instance colormap norm : colors.Normalize object Colors norm clevs: list(float) List of precipitation values defining the color limits. clevsStr: list(str) List of precipitation values defining the color limits (with correct number of decimals). """ if type in ["intensity", "depth"]: # Get list of colors color_list,clevs,clevsStr = _get_colorlist(units, colorscale) cmap = colors.LinearSegmentedColormap.from_list("cmap", color_list, len(clevs)-1) if colorscale == 'BOM-RF3': cmap.set_over('black',1) if colorscale == 'pysteps': cmap.set_over('darkred',1) if colorscale == 'STEPS-BE': cmap.set_over('black',1) norm = colors.BoundaryNorm(clevs, cmap.N) return cmap, norm, clevs, clevsStr elif type == "prob": cmap = plt.get_cmap("OrRd", 10) return cmap, colors.Normalize(vmin=0, vmax=1), None, None else: return cm.jet, colors.Normalize(), None, None def _get_colorlist(units='mm/h', colorscale='pysteps'): """ Function to get a list of colors to generate the colormap. Parameters ---------- units : str Units of the input array (mm/h, mm or dBZ) colorscale : str Which colorscale to use (BOM-RF3, pysteps, STEPS-BE) Returns ------- color_list : list(str) List of color strings. clevs : list(float) List of precipitation values defining the color limits. clevsStr : list(str) List of precipitation values defining the color limits (with correct number of decimals). """ if colorscale == "BOM-RF3": color_list = np.array([(255, 255, 255), # 0.0 (245, 245, 255), # 0.2 (180, 180, 255), # 0.5 (120, 120, 255), # 1.5 (20, 20, 255), # 2.5 (0, 216, 195), # 4.0 (0, 150, 144), # 6.0 (0, 102, 102), # 10 (255, 255, 0), # 15 (255, 200, 0), # 20 (255, 150, 0), # 30 (255, 100, 0), # 40 (255, 0, 0), # 50 (200, 0, 0), # 60 (120, 0, 0), # 75 (40, 0, 0)]) # > 100 color_list = color_list/255. if units == 'mm/h': clevs = [0.,0.2, 0.5, 1.5, 2.5, 4, 6, 10, 15, 20, 30, 40, 50, 60, 75, 100, 150] elif units == "mm": clevs = [0.,0.2, 0.5, 1.5, 2.5, 4, 5, 7, 10, 15, 20, 25, 30, 35, 40, 45, 50] else: raise ValueError('Wrong units in get_colorlist: %s' % units) elif colorscale == 'pysteps': pinkHex = '#%02x%02x%02x' % (232, 215, 242) redgreyHex = '#%02x%02x%02x' % (156, 126, 148) color_list = [redgreyHex, "#640064","#AF00AF","#DC00DC","#3232C8","#0064FF","#009696","#00C832", "#64FF00","#96FF00","#C8FF00","#FFFF00","#FFC800","#FFA000","#FF7D00","#E11900"] if units in ['mm/h', 'mm']: clevs= [0.08,0.16,0.25,0.40,0.63,1,1.6,2.5,4,6.3,10,16,25,40,63,100,160] elif units == 'dBZ': clevs = np.arange(10,65,5) else: raise ValueError('Wrong units in get_colorlist: %s' % units) elif colorscale == 'STEPS-BE': color_list = ['cyan','deepskyblue','dodgerblue','blue','chartreuse','limegreen','green','darkgreen','yellow','gold','orange','red','magenta','darkmagenta'] if units in ['mm/h', 'mm']: clevs = [0.1,0.25,0.4,0.63,1,1.6,2.5,4,6.3,10,16,25,40,63,100] elif units == 'dBZ': clevs = np.arange(10,65,5) else: raise ValueError('Wrong units in get_colorlist: %s' % units) else: print('Invalid colorscale', colorscale) raise ValueError("Invalid colorscale " + colorscale) # Generate color level strings with correct amount of decimal places clevsStr = [] clevsStr = _dynamic_formatting_floats(clevs, ) return color_list, clevs, clevsStr def _dynamic_formatting_floats(floatArray, colorscale='pysteps'): """ Function to format the floats defining the class limits of the colorbar. """ floatArray = np.array(floatArray, dtype=float) labels = [] for label in floatArray: if label >= 0.1 and label < 1: if colorscale == 'pysteps': formatting = ',.2f' else: formatting = ',.1f' elif label >= 0.01 and label < 0.1: formatting = ',.2f' elif label >= 0.001 and label < 0.01: formatting = ',.3f' elif label >= 0.0001 and label < 0.001: formatting = ',.4f' elif label >= 1 and label.is_integer(): formatting = 'i' else: formatting = ',.1f' if formatting != 'i': labels.append(format(label, formatting)) else: labels.append(str(int(label))) return labels
40.788177
164
0.521316
344df2dff22922dc53e8a801b6bd0658cb94f3e0
7,548
py
Python
src/snowflake/connector/json_result.py
666Chao666/snowflake-connector-python
81a10e522fcf19d45580c79bc066b7a4eab25485
[ "Apache-2.0" ]
null
null
null
src/snowflake/connector/json_result.py
666Chao666/snowflake-connector-python
81a10e522fcf19d45580c79bc066b7a4eab25485
[ "Apache-2.0" ]
14
2021-01-26T06:53:10.000Z
2022-03-14T11:16:54.000Z
src/snowflake/connector/json_result.py
666Chao666/snowflake-connector-python
81a10e522fcf19d45580c79bc066b7a4eab25485
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (c) 2012-2021 Snowflake Computing Inc. All right reserved. # from logging import getLogger from .constants import FIELD_ID_TO_NAME from .errorcode import ER_FAILED_TO_CONVERT_ROW_TO_PYTHON_TYPE from .errors import Error, InterfaceError from .telemetry import TelemetryField from .time_util import get_time_millis logger = getLogger(__name__) class JsonResult: def __init__(self, raw_response, cursor): self._reset() self._cursor = cursor self._connection = cursor.connection self._init_from_meta(raw_response) def _init_from_meta(self, data): self._total_row_index = -1 # last fetched number of rows self._chunk_index = 0 self._chunk_count = 0 self._current_chunk_row = iter(data.get('rowset')) self._current_chunk_row_count = len(data.get('rowset')) self._column_converter = [] self._column_idx_to_name = {} for idx, column in enumerate(data['rowtype']): self._column_idx_to_name[idx] = column['name'] self._column_converter.append( self._connection.converter.to_python_method( column['type'].upper(), column)) if 'chunks' in data: chunks = data['chunks'] self._chunk_count = len(chunks) logger.debug('chunk size=%s', self._chunk_count) # prepare the downloader for further fetch qrmk = data['qrmk'] if 'qrmk' in data else None chunk_headers = None if 'chunkHeaders' in data: chunk_headers = {} for header_key, header_value in data[ 'chunkHeaders'].items(): chunk_headers[header_key] = header_value logger.debug( 'added chunk header: key=%s, value=%s', header_key, header_value) logger.debug('qrmk=%s', qrmk) self._chunk_downloader = self._connection._chunk_downloader_class( chunks, self._connection, self._cursor, qrmk, chunk_headers, query_result_format='json', prefetch_threads=self._connection.client_prefetch_threads) def __iter__(self): return self def next(self): return self.__next__() def __next__(self): is_done = False try: row = None self.total_row_index += 1 try: row = next(self._current_chunk_row) except StopIteration: if self._chunk_index < self._chunk_count: logger.debug( "chunk index: %s, chunk_count: %s", self._chunk_index, self._chunk_count) next_chunk = self._chunk_downloader.next_chunk() self._current_chunk_row_count = next_chunk.row_count self._current_chunk_row = next_chunk.result_data self._chunk_index += 1 try: row = next(self._current_chunk_row) except StopIteration: is_done = True raise IndexError else: if self._chunk_count > 0 and \ self._chunk_downloader is not None: self._chunk_downloader.terminate() self._cursor._log_telemetry_job_data( TelemetryField.TIME_DOWNLOADING_CHUNKS, self._chunk_downloader._total_millis_downloading_chunks) self._cursor._log_telemetry_job_data( TelemetryField.TIME_PARSING_CHUNKS, self._chunk_downloader._total_millis_parsing_chunks) self._chunk_downloader = None self._chunk_count = 0 self._current_chunk_row = iter(()) is_done = True if is_done: raise StopIteration return self._row_to_python(row) if row is not None else None except IndexError: # returns None if the iteration is completed so that iter() stops return None finally: if is_done and self._cursor._first_chunk_time: logger.info("fetching data done") time_consume_last_result = get_time_millis() - self._cursor._first_chunk_time self._cursor._log_telemetry_job_data( TelemetryField.TIME_CONSUME_LAST_RESULT, time_consume_last_result) def _row_to_python(self, row): """Converts data in row if required. NOTE: surprisingly using idx+1 is faster than enumerate here. Also removing generator improved performance even better. """ idx = 0 for col in row: conv = self._column_converter[idx] try: row[idx] = col if conv is None or col is None else conv(col) except Exception as e: col_desc = self._cursor.description[idx] msg = 'Failed to convert: ' \ 'field {name}: {type}::{value}, Error: ' \ '{error}'.format( name=col_desc[0], type=FIELD_ID_TO_NAME[col_desc[1]], value=col, error=e) logger.exception(msg) Error.errorhandler_wrapper( self._connection, self._cursor, InterfaceError, { 'msg': msg, 'errno': ER_FAILED_TO_CONVERT_ROW_TO_PYTHON_TYPE, }) idx += 1 return tuple(row) def _reset(self): self.total_row_index = -1 # last fetched number of rows self._current_chunk_row_count = 0 self._current_chunk_row = iter(()) self._chunk_index = 0 if hasattr(self, '_chunk_count') and self._chunk_count > 0 and \ self._chunk_downloader is not None: self._chunk_downloader.terminate() self._chunk_count = 0 self._chunk_downloader = None class DictJsonResult(JsonResult): def __init__(self, raw_response, cursor): JsonResult.__init__(self, raw_response, cursor) def _row_to_python(self, row): # see the base class res = {} idx = 0 for col in row: col_name = self._column_idx_to_name[idx] conv = self._column_converter[idx] try: res[col_name] = col if conv is None or col is None else conv(col) except Exception as e: col_desc = self._cursor.description[idx] msg = 'Failed to convert: ' \ 'field {name}: {type}::{value}, Error: ' \ '{error}'.format( name=col_desc[0], type=FIELD_ID_TO_NAME[col_desc[1]], value=col, error=e ) logger.exception(msg) Error.errorhandler_wrapper( self._connection, self._cursor, InterfaceError, { 'msg': msg, 'errno': ER_FAILED_TO_CONVERT_ROW_TO_PYTHON_TYPE, }) idx += 1 return res
38.314721
93
0.54213
4cad8d1390c13b0df7f0e741490ef75a752939cc
22,267
py
Python
salt/states/saltmod.py
minaguib/salt
2a1066eee18928d1d86a126f69c6d70a86b83cca
[ "Apache-2.0" ]
null
null
null
salt/states/saltmod.py
minaguib/salt
2a1066eee18928d1d86a126f69c6d70a86b83cca
[ "Apache-2.0" ]
null
null
null
salt/states/saltmod.py
minaguib/salt
2a1066eee18928d1d86a126f69c6d70a86b83cca
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- ''' Control the Salt command interface ================================== This state is intended for use from the Salt Master. It provides access to sending commands down to minions as well as access to executing master-side modules. These state functions wrap Salt's :ref:`Python API <python-api>`. .. versionadded: 2016.11.0 Support for masterless minions was added to the ``salt.state`` function, so they can run orchestration sls files. This is particularly useful when the rendering of a state is dependent on the execution of another state. Orchestration will render and execute each orchestration block independently, while honoring requisites to ensure the states are applied in the correct order. .. seealso:: More Orchestrate documentation * :ref:`Full Orchestrate Tutorial <orchestrate-runner>` * :py:func:`The Orchestrate runner <salt.runners.state.orchestrate>` ''' from __future__ import absolute_import # Import python libs import fnmatch import logging import time # Import salt libs import salt.syspaths import salt.utils import salt.utils.event import salt.ext.six as six from salt.ext.six import string_types log = logging.getLogger(__name__) # Define the module's virtual name __virtualname__ = 'salt' def __virtual__(): ''' Named salt ''' return __virtualname__ def _fire_args(tag_data): try: salt.utils.event.fire_args(__opts__, __orchestration_jid__, tag_data, 'run') except NameError: log.debug( 'Unable to fire args event due to missing __orchestration_jid__' ) def state(name, tgt, ssh=False, tgt_type='glob', expr_form=None, ret='', highstate=None, sls=None, top=None, saltenv=None, test=False, pillar=None, expect_minions=False, fail_minions=None, allow_fail=0, concurrent=False, timeout=None, batch=None, queue=False, orchestration_jid=None): ''' Invoke a state run on a given target name An arbitrary name used to track the state execution tgt The target specification for the state run. .. versionadded: 2016.11.0 Masterless support: When running on a masterless minion, the ``tgt`` is ignored and will always be the local minion. tgt_type The target type to resolve, defaults to ``glob`` expr_form .. deprecated:: Nitrogen Use tgt_type instead ret Optionally set a single or a list of returners to use highstate Defaults to None, if set to True the target systems will ignore any sls references specified in the sls option and call state.highstate on the targeted minions top Should be the name of a top file. If set state.top is called with this top file instead of state.sls. sls A group of sls files to execute. This can be defined as a single string containing a single sls file, or a list of sls files test Pass ``test=true`` through to the state function pillar Pass the ``pillar`` kwarg through to the state function saltenv The default salt environment to pull sls files from ssh Set to `True` to use the ssh client instead of the standard salt client roster In the event of using salt-ssh, a roster system can be set expect_minions An optional boolean for failing if some minions do not respond fail_minions An optional list of targeted minions where failure is an option allow_fail Pass in the number of minions to allow for failure before setting the result of the execution to False concurrent Allow multiple state runs to occur at once. WARNING: This flag is potentially dangerous. It is designed for use when multiple state runs can safely be run at the same Do not use this flag for performance optimization. queue Pass ``queue=true`` through to the state function batch Execute the command :ref:`in batches <targeting-batch>`. E.g.: ``10%``. .. versionadded:: 2016.3.0 Examples: Run a list of sls files via :py:func:`state.sls <salt.state.sls>` on target minions: .. code-block:: yaml webservers: salt.state: - tgt: 'web*' - sls: - apache - django - core - saltenv: prod Run a full :py:func:`state.highstate <salt.state.highstate>` on target mininons. .. code-block:: yaml databases: salt.state: - tgt: role:database - tgt_type: grain - highstate: True ''' cmd_kw = {'arg': [], 'kwarg': {}, 'ret': ret, 'timeout': timeout} state_ret = {'name': name, 'changes': {}, 'comment': '', 'result': True} try: allow_fail = int(allow_fail) except ValueError: state_ret['result'] = False state_ret['comment'] = 'Passed invalid value for \'allow_fail\', must be an int' return state_ret # remember to remove the expr_form argument from this function when # performing the cleanup on this deprecation. if expr_form is not None: salt.utils.warn_until( 'Fluorine', 'the target type should be passed using the \'tgt_type\' ' 'argument instead of \'expr_form\'. Support for using ' '\'expr_form\' will be removed in Salt Fluorine.' ) tgt_type = expr_form cmd_kw['tgt_type'] = tgt_type cmd_kw['ssh'] = ssh cmd_kw['expect_minions'] = expect_minions if highstate: fun = 'state.highstate' elif top: fun = 'state.top' cmd_kw['arg'].append(top) elif sls: fun = 'state.sls' if isinstance(sls, list): sls = ','.join(sls) cmd_kw['arg'].append(sls) else: state_ret['comment'] = 'No highstate or sls specified, no execution made' state_ret['result'] = False return state_ret if test or __opts__.get('test'): cmd_kw['kwarg']['test'] = True if pillar: cmd_kw['kwarg']['pillar'] = pillar cmd_kw['kwarg']['saltenv'] = __env__ cmd_kw['kwarg']['queue'] = queue if isinstance(concurrent, bool): cmd_kw['kwarg']['concurrent'] = concurrent else: state_ret['comment'] = ('Must pass in boolean for value of \'concurrent\'') state_ret['result'] = False return state_ret if batch is not None: cmd_kw['batch'] = str(batch) masterless = __opts__['__role'] == 'minion' and \ __opts__['file_client'] == 'local' if not masterless: _fire_args({'type': 'state', 'tgt': tgt, 'name': name, 'args': cmd_kw}) cmd_ret = __salt__['saltutil.cmd'](tgt, fun, **cmd_kw) else: if top: cmd_kw['topfn'] = ''.join(cmd_kw.pop('arg')) elif sls: cmd_kw['mods'] = cmd_kw.pop('arg') tmp_ret = __salt__[fun](**cmd_kw) cmd_ret = {__opts__['id']: { 'ret': tmp_ret, 'out': tmp_ret.get('out', 'highstate') if isinstance(tmp_ret, dict) else 'highstate' }} try: state_ret['__jid__'] = cmd_ret[next(iter(cmd_ret))]['jid'] except (StopIteration, KeyError): pass changes = {} fail = set() failures = {} no_change = set() if fail_minions is None: fail_minions = () elif isinstance(fail_minions, string_types): fail_minions = [minion.strip() for minion in fail_minions.split(',')] elif not isinstance(fail_minions, list): state_ret.setdefault('warnings', []).append( '\'fail_minions\' needs to be a list or a comma separated ' 'string. Ignored.' ) fail_minions = () for minion, mdata in six.iteritems(cmd_ret): if mdata.get('out', '') != 'highstate': log.warning('Output from salt state not highstate') m_ret = False if 'return' in mdata and 'ret' not in mdata: mdata['ret'] = mdata.pop('return') m_state = True if mdata.get('failed', False): m_state = False else: try: m_ret = mdata['ret'] except KeyError: m_state = False if m_state: m_state = salt.utils.check_state_result(m_ret) if not m_state: if minion not in fail_minions: fail.add(minion) failures[minion] = m_ret or 'Minion did not respond' continue try: for state_item in six.itervalues(m_ret): if 'changes' in state_item and state_item['changes']: changes[minion] = m_ret break else: no_change.add(minion) except AttributeError: log.error("m_ret did not have changes %s %s", type(m_ret), m_ret) no_change.add(minion) if changes: state_ret['changes'] = {'out': 'highstate', 'ret': changes} if len(fail) > allow_fail: state_ret['result'] = False state_ret['comment'] = 'Run failed on minions: {0}'.format(', '.join(fail)) else: state_ret['comment'] = 'States ran successfully.' if changes: state_ret['comment'] += ' Updating {0}.'.format(', '.join(changes)) if no_change: state_ret['comment'] += ' No changes made to {0}.'.format(', '.join(no_change)) if failures: state_ret['comment'] += '\nFailures:\n' for minion, failure in six.iteritems(failures): state_ret['comment'] += '\n'.join( (' ' * 4 + l) for l in salt.output.out_format( {minion: failure}, 'highstate', __opts__, ).splitlines() ) state_ret['comment'] += '\n' if test or __opts__.get('test'): if state_ret['changes'] and state_ret['result'] is True: # Test mode with changes is the only case where result should ever be none state_ret['result'] = None return state_ret def function( name, tgt, ssh=False, tgt_type='glob', expr_form=None, ret='', expect_minions=False, fail_minions=None, fail_function=None, arg=None, kwarg=None, timeout=None, batch=None): ''' Execute a single module function on a remote minion via salt or salt-ssh name The name of the function to run, aka cmd.run or pkg.install tgt The target specification, aka '*' for all minions tgt_type The target type, defaults to ``glob`` expr_form .. deprecated:: Nitrogen Use tgt_type instead arg The list of arguments to pass into the function kwarg The dict (not a list) of keyword arguments to pass into the function ret Optionally set a single or a list of returners to use expect_minions An optional boolean for failing if some minions do not respond fail_minions An optional list of targeted minions where failure is an option fail_function An optional string that points to a salt module that returns True or False based on the returned data dict for individual minions ssh Set to `True` to use the ssh client instead of the standard salt client ''' func_ret = {'name': name, 'changes': {}, 'comment': '', 'result': True} if kwarg is None: kwarg = {} if isinstance(arg, str): func_ret['warnings'] = ['Please specify \'arg\' as a list, not a string. ' 'Modifying in place, but please update SLS file ' 'to remove this warning.'] arg = arg.split() cmd_kw = {'arg': arg or [], 'kwarg': kwarg, 'ret': ret, 'timeout': timeout} # remember to remove the expr_form argument from this function when # performing the cleanup on this deprecation. if expr_form is not None: salt.utils.warn_until( 'Fluorine', 'the target type should be passed using the \'tgt_type\' ' 'argument instead of \'expr_form\'. Support for using ' '\'expr_form\' will be removed in Salt Fluorine.' ) tgt_type = expr_form if batch is not None: cmd_kw['batch'] = str(batch) cmd_kw['tgt_type'] = tgt_type cmd_kw['ssh'] = ssh cmd_kw['expect_minions'] = expect_minions cmd_kw['_cmd_meta'] = True fun = name if __opts__['test'] is True: func_ret['comment'] = ( 'Function {0} will be executed on target {1} as test={2}' ).format(fun, tgt, str(False)) func_ret['result'] = None return func_ret try: _fire_args({'type': 'function', 'tgt': tgt, 'name': name, 'args': cmd_kw}) cmd_ret = __salt__['saltutil.cmd'](tgt, fun, **cmd_kw) except Exception as exc: func_ret['result'] = False func_ret['comment'] = str(exc) return func_ret try: func_ret['__jid__'] = cmd_ret[next(iter(cmd_ret))]['jid'] except (StopIteration, KeyError): pass changes = {} fail = set() failures = {} if fail_minions is None: fail_minions = () elif isinstance(fail_minions, string_types): fail_minions = [minion.strip() for minion in fail_minions.split(',')] elif not isinstance(fail_minions, list): func_ret.setdefault('warnings', []).append( '\'fail_minions\' needs to be a list or a comma separated ' 'string. Ignored.' ) fail_minions = () for minion, mdata in six.iteritems(cmd_ret): m_ret = False if mdata.get('retcode'): func_ret['result'] = False fail.add(minion) if mdata.get('failed', False): m_func = False else: if 'return' in mdata and 'ret' not in mdata: mdata['ret'] = mdata.pop('return') m_ret = mdata['ret'] m_func = (not fail_function and True) or __salt__[fail_function](m_ret) if not m_func: if minion not in fail_minions: fail.add(minion) failures[minion] = m_ret and m_ret or 'Minion did not respond' continue changes[minion] = m_ret if not cmd_ret: func_ret['result'] = False func_ret['command'] = 'No minions responded' else: if changes: func_ret['changes'] = {'out': 'highstate', 'ret': changes} if fail: func_ret['result'] = False func_ret['comment'] = 'Running function {0} failed on minions: {1}'.format(name, ', '.join(fail)) else: func_ret['comment'] = 'Function ran successfully.' if changes: func_ret['comment'] += ' Function {0} ran on {1}.'.format(name, ', '.join(changes)) if failures: func_ret['comment'] += '\nFailures:\n' for minion, failure in six.iteritems(failures): func_ret['comment'] += '\n'.join( (' ' * 4 + l) for l in salt.output.out_format( {minion: failure}, 'highstate', __opts__, ).splitlines() ) func_ret['comment'] += '\n' return func_ret def wait_for_event( name, id_list, event_id='id', timeout=300, node='master'): ''' Watch Salt's event bus and block until a condition is met .. versionadded:: 2014.7.0 name An event tag to watch for; supports Reactor-style globbing. id_list A list of event identifiers to watch for -- usually the minion ID. Each time an event tag is matched the event data is inspected for ``event_id``, if found it is removed from ``id_list``. When ``id_list`` is empty this function returns success. event_id : id The name of a key in the event data. Default is ``id`` for the minion ID, another common value is ``name`` for use with orchestrating salt-cloud events. timeout : 300 The maximum time in seconds to wait before failing. The following example blocks until all the listed minions complete a restart and reconnect to the Salt master: .. code-block:: yaml reboot_all_minions: salt.function: - name: system.reboot - tgt: '*' wait_for_reboots: salt.wait_for_event: - name: salt/minion/*/start - id_list: - jerry - stuart - dave - phil - kevin - mike - require: - salt: reboot_all_minions ''' ret = {'name': name, 'changes': {}, 'comment': '', 'result': False} if __opts__.get('test'): ret['comment'] = \ 'Orchestration would wait for event \'{0}\''.format(name) ret['result'] = None return ret sevent = salt.utils.event.get_event( node, __opts__['sock_dir'], __opts__['transport'], opts=__opts__, listen=True) del_counter = 0 starttime = time.time() timelimit = starttime + timeout while True: event = sevent.get_event(full=True) is_timedout = time.time() > timelimit if event is None and not is_timedout: log.trace("wait_for_event: No event data; waiting.") continue elif event is None and is_timedout: ret['comment'] = 'Timeout value reached.' return ret if fnmatch.fnmatch(event['tag'], name): val = event['data'].get(event_id) if val is not None: try: val_idx = id_list.index(val) except ValueError: log.trace("wait_for_event: Event identifier '{0}' not in " "id_list; skipping.".format(event_id)) else: del id_list[val_idx] del_counter += 1 minions_seen = ret['changes'].setdefault('minions_seen', []) minions_seen.append(val) log.debug("wait_for_event: Event identifier '{0}' removed " "from id_list; {1} items remaining." .format(val, len(id_list))) else: log.trace("wait_for_event: Event identifier '{0}' not in event " "'{1}'; skipping.".format(event_id, event['tag'])) else: log.debug("wait_for_event: Skipping unmatched event '{0}'" .format(event['tag'])) if len(id_list) == 0: ret['result'] = True ret['comment'] = 'All events seen in {0} seconds.'.format( time.time() - starttime) return ret if is_timedout: ret['comment'] = 'Timeout value reached.' return ret def runner(name, **kwargs): ''' Execute a runner module on the master .. versionadded:: 2014.7.0 name The name of the function to run kwargs Any keyword arguments to pass to the runner function .. code-block:: yaml run-manage-up: salt.runner: - name: manage.up ''' try: jid = __orchestration_jid__ except NameError: log.debug( 'Unable to fire args event due to missing __orchestration_jid__' ) jid = None out = __salt__['saltutil.runner'](name, __orchestration_jid__=jid, __env__=__env__, **kwargs) runner_return = out.get('return') if 'success' in out and not out['success']: ret = { 'name': name, 'result': False, 'changes': {}, 'comment': runner_return if runner_return else "Runner function '{0}' failed without comment.".format(name) } else: ret = { 'name': name, 'result': True, 'changes': runner_return if runner_return else {}, 'comment': "Runner function '{0}' executed.".format(name) } ret['__orchestration__'] = True if 'jid' in out: ret['__jid__'] = out['jid'] return ret def wheel(name, **kwargs): ''' Execute a wheel module on the master .. versionadded:: 2014.7.0 name The name of the function to run kwargs Any keyword arguments to pass to the wheel function .. code-block:: yaml accept_minion_key: salt.wheel: - name: key.accept - match: frank ''' ret = {'name': name, 'result': False, 'changes': {}, 'comment': ''} try: jid = __orchestration_jid__ except NameError: log.debug( 'Unable to fire args event due to missing __orchestration_jid__' ) jid = None out = __salt__['saltutil.wheel'](name, __orchestration_jid__=jid, __env__=__env__, **kwargs) ret['result'] = True ret['comment'] = "Wheel function '{0}' executed.".format(name) ret['__orchestration__'] = True if 'jid' in out: ret['__jid__'] = out['jid'] runner_return = out.get('return') if runner_return: ret['changes'] = runner_return return ret
30.670799
119
0.555037
873ec0bad66391bafa20243995238752578b66fa
263
py
Python
aclark/db/migrations/0022_remove_project_user_hours.py
aclark4life/aclark-net-1
e256bfdd63ad4445bf0a75ef0b91f6e1fd2479ea
[ "MIT" ]
null
null
null
aclark/db/migrations/0022_remove_project_user_hours.py
aclark4life/aclark-net-1
e256bfdd63ad4445bf0a75ef0b91f6e1fd2479ea
[ "MIT" ]
null
null
null
aclark/db/migrations/0022_remove_project_user_hours.py
aclark4life/aclark-net-1
e256bfdd63ad4445bf0a75ef0b91f6e1fd2479ea
[ "MIT" ]
null
null
null
# Generated by Django 2.1.9 on 2019-07-02 20:57 from django.db import migrations class Migration(migrations.Migration): dependencies = [("db", "0021_project_user_hours")] operations = [migrations.RemoveField(model_name="project", name="user_hours")]
23.909091
82
0.737643
2b0bb60cb4296b4d430050b8022b60feb646ce0e
4,945
py
Python
project/target/node-modules/webjars/npm/node_modules/node-gyp/gyp/pylib/gyp/easy_xml.py
bet-gram/betgram-webapp-backend
c82824e2117a81e582a4b9707849e6b7f064be59
[ "Apache-2.0" ]
2,494
2015-02-11T04:34:13.000Z
2022-03-31T14:21:47.000Z
project/target/node-modules/webjars/npm/node_modules/node-gyp/gyp/pylib/gyp/easy_xml.py
bet-gram/betgram-webapp-backend
c82824e2117a81e582a4b9707849e6b7f064be59
[ "Apache-2.0" ]
1,432
2017-06-21T04:08:48.000Z
2020-08-25T16:21:15.000Z
project/target/node-modules/webjars/npm/node_modules/node-gyp/gyp/pylib/gyp/easy_xml.py
bet-gram/betgram-webapp-backend
c82824e2117a81e582a4b9707849e6b7f064be59
[ "Apache-2.0" ]
442
2015-02-12T13:45:46.000Z
2022-03-21T05:28:05.000Z
# Copyright (c) 2011 Google Inc. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import re import os def XmlToString(content, encoding='utf-8', pretty=False): """ Writes the XML content to disk, touching the file only if it has changed. Visual Studio files have a lot of pre-defined structures. This function makes it easy to represent these structures as Python data structures, instead of having to create a lot of function calls. Each XML element of the content is represented as a list composed of: 1. The name of the element, a string, 2. The attributes of the element, a dictionary (optional), and 3+. The content of the element, if any. Strings are simple text nodes and lists are child elements. Example 1: <test/> becomes ['test'] Example 2: <myelement a='value1' b='value2'> <childtype>This is</childtype> <childtype>it!</childtype> </myelement> becomes ['myelement', {'a':'value1', 'b':'value2'}, ['childtype', 'This is'], ['childtype', 'it!'], ] Args: content: The structured content to be converted. encoding: The encoding to report on the first XML line. pretty: True if we want pretty printing with indents and new lines. Returns: The XML content as a string. """ # We create a huge list of all the elements of the file. xml_parts = ['<?xml version="1.0" encoding="%s"?>' % encoding] if pretty: xml_parts.append('\n') _ConstructContentList(xml_parts, content, pretty) # Convert it to a string return ''.join(xml_parts) def _ConstructContentList(xml_parts, specification, pretty, level=0): """ Appends the XML parts corresponding to the specification. Args: xml_parts: A list of XML parts to be appended to. specification: The specification of the element. See EasyXml docs. pretty: True if we want pretty printing with indents and new lines. level: Indentation level. """ # The first item in a specification is the name of the element. if pretty: indentation = ' ' * level new_line = '\n' else: indentation = '' new_line = '' name = specification[0] if not isinstance(name, str): raise Exception('The first item of an EasyXml specification should be ' 'a string. Specification was ' + str(specification)) xml_parts.append(indentation + '<' + name) # Optionally in second position is a dictionary of the attributes. rest = specification[1:] if rest and isinstance(rest[0], dict): for at, val in sorted(rest[0].iteritems()): xml_parts.append(' %s="%s"' % (at, _XmlEscape(val, attr=True))) rest = rest[1:] if rest: xml_parts.append('>') all_strings = reduce(lambda x, y: x and isinstance(y, str), rest, True) multi_line = not all_strings if multi_line and new_line: xml_parts.append(new_line) for child_spec in rest: # If it's a string, append a text node. # Otherwise recurse over that child definition if isinstance(child_spec, str): xml_parts.append(_XmlEscape(child_spec)) else: _ConstructContentList(xml_parts, child_spec, pretty, level + 1) if multi_line and indentation: xml_parts.append(indentation) xml_parts.append('</%s>%s' % (name, new_line)) else: xml_parts.append('/>%s' % new_line) def WriteXmlIfChanged(content, path, encoding='utf-8', pretty=False, win32=False): """ Writes the XML content to disk, touching the file only if it has changed. Args: content: The structured content to be written. path: Location of the file. encoding: The encoding to report on the first line of the XML file. pretty: True if we want pretty printing with indents and new lines. """ xml_string = XmlToString(content, encoding, pretty) if win32 and os.linesep != '\r\n': xml_string = xml_string.replace('\n', '\r\n') try: xml_string = xml_string.encode(encoding) except Exception: xml_string = unicode(xml_string, 'latin-1').encode(encoding) # Get the old content try: f = open(path, 'r') existing = f.read() f.close() except: existing = None # It has changed, write it if existing != xml_string: f = open(path, 'w') f.write(xml_string) f.close() _xml_escape_map = { '"': '&quot;', "'": '&apos;', '<': '&lt;', '>': '&gt;', '&': '&amp;', '\n': '&#xA;', '\r': '&#xD;', } _xml_escape_re = re.compile( "(%s)" % "|".join(map(re.escape, _xml_escape_map.keys()))) def _XmlEscape(value, attr=False): """ Escape a string for inclusion in XML.""" def replace(match): m = match.string[match.start() : match.end()] # don't replace single quotes in attrs if attr and m == "'": return m return _xml_escape_map[m] return _xml_escape_re.sub(replace, value)
30.337423
80
0.651972
fcb0f94bed86d2a845dd6d243a355704e88a3577
3,745
py
Python
src/aegis/modules/interpreter.py
martinbagic/aegis-exercise
2bef0828dea456f2f66c9288daf095e4dceca40c
[ "MIT" ]
null
null
null
src/aegis/modules/interpreter.py
martinbagic/aegis-exercise
2bef0828dea456f2f66c9288daf095e4dceca40c
[ "MIT" ]
null
null
null
src/aegis/modules/interpreter.py
martinbagic/aegis-exercise
2bef0828dea456f2f66c9288daf095e4dceca40c
[ "MIT" ]
1
2021-08-24T15:31:30.000Z
2021-08-24T15:31:30.000Z
import numpy as np from aegis.panconfiguration import pan class Interpreter: """Interpreter of genomic loci Transforms bool array into an array of numbers. These numbers can be loosely understood as gene activity. """ exp_base = 0.5 # Important for _exp binary_exp_base = 0.98 # Important for _binary_exp def __init__(self, BITS_PER_LOCUS): # Parameters for the binary interpreter self.binary_weights = 2 ** np.arange(BITS_PER_LOCUS)[::-1] self.binary_max = self.binary_weights.sum() # Parameters for the binary switch interpreter self.binary_switch_weights = self.binary_weights.copy() self.binary_switch_weights[-1] = 0 # Switch bit does not add to locus value self.binary_switch_max = self.binary_switch_weights.sum() def __call__(self, loci, interpreter_kind): """Exposed method""" interpreter = getattr(self, f"_{interpreter_kind}") loci = self._diploid_to_haploid(loci) interpretome = interpreter(loci) return interpretome def _diploid_to_haploid(self, loci): """Merge two arrays encoding two chromatids into one array. The two chromatids contribute equally to bits, so that 1+1->1, 0+0->0 and 1+0->0.5 (as well as 0+1->0.5). Arguments: loci: A bool numpy array with shape (population size, ploidy, gstruc.length, BITS_PER_LOCUS) Returns: A bool numpy array with shape (population size, gstruc.length, BITS_PER_LOCUS) """ return loci.mean(1) def _binary(self, loci): """Interpret locus as a binary number and normalize. High resolution (can produce 2^bits_per_locus different numbers). Position-dependent. """ return loci.dot(self.binary_weights) / self.binary_max def _switch(self, loci): """Return 0 if all bits are 0; 1 if all bits are 1; 0 or 1 randomly otherwise. Low resolution (can produce 2 different numbers). Position-independent. """ sums = loci.mean(2) rand_values = pan.rng.random(loci.shape[:-1]) < 0.5 return np.select( [sums == 0, (sums > 0) & (sums < 1), sums == 1], [0, rand_values, 1] ) def _binary_switch(self, loci): """Interpret first n-1 bits as a binary number if the last bit is 1. High resolution (can produce 2^(bits_per_locus-1) different numbers). Position-dependent. """ where_on = loci[:, :, -1] == 1 # Loci which are turned on values = np.zeros(loci.shape[:-1], float) # Initialize output array with zeros values[where_on] = ( loci[where_on].dot(self.binary_switch_weights) / self.binary_switch_max ) # If the locus is turned on, make the value in the output array be the binary value return values def _uniform(self, loci): """Return normalized sum of bits. Medium resolution (can produce bits_per_locus+1 different numbers). Position-independent. """ return loci.sum(-1) / loci.shape[-1] def _exp(self, loci): """Return base^total_number_of_zeros. Medium resolution (can produce bits_per_locus+1 different numbers). Suitable for generating very small numbers. Position-independent. """ return self.exp_base ** np.sum(1 - loci, axis=2) def _binary_exp(self, loci): """Return base^binary_value_of_locus High resolution (can produce 2^bits_per_locus different numbers). Suitable for generating very small numbers. Position-dependent. """ binary = self._binary(loci) return self.binary_exp_base ** binary
35
113
0.640587
9e59441515791ed6639a8b7b763d6ed29bf93ff2
3,817
py
Python
eclipse-mosquitto/test/broker/04-retain-check-source-persist.py
HenriqueBuzin/mosquitto-eclipse-mqtt
00468923fcf70eefdf2c707b6ba9bdd4f859faf2
[ "Unlicense" ]
2
2021-04-20T14:28:59.000Z
2021-05-06T07:46:53.000Z
eclipse-mosquitto/test/broker/04-retain-check-source-persist.py
HenriqueBuzin/mosquitto-eclipse-mqtt
00468923fcf70eefdf2c707b6ba9bdd4f859faf2
[ "Unlicense" ]
null
null
null
eclipse-mosquitto/test/broker/04-retain-check-source-persist.py
HenriqueBuzin/mosquitto-eclipse-mqtt
00468923fcf70eefdf2c707b6ba9bdd4f859faf2
[ "Unlicense" ]
null
null
null
#!/usr/bin/env python3 # Test for CVE-2018-12546, with the broker being stopped to write the persistence file. from mosq_test_helper import * import signal def write_config(filename, port, per_listener): with open(filename, 'w') as f: f.write("per_listener_settings %s\n" % (per_listener)) f.write("check_retain_source true\n") f.write("port %d\n" % (port)) f.write("allow_anonymous true\n") f.write("acl_file %s\n" % (filename.replace('.conf', '.acl'))) f.write("persistence true\n") f.write("persistence_file %s\n" % (filename.replace('.conf', '.db'))) def write_acl_1(filename, username): with open(filename, 'w') as f: if username is not None: f.write('user %s\n' % (username)) f.write('topic readwrite test/topic\n') def write_acl_2(filename, username): with open(filename, 'w') as f: if username is not None: f.write('user %s\n' % (username)) f.write('topic read test/topic\n') def do_test(proto_ver, per_listener, username): conf_file = os.path.basename(__file__).replace('.py', '.conf') write_config(conf_file, port, per_listener) persistence_file = os.path.basename(__file__).replace('.py', '.db') try: os.remove(persistence_file) except OSError: pass acl_file = os.path.basename(__file__).replace('.py', '.acl') write_acl_1(acl_file, username) rc = 1 keepalive = 60 connect_packet = mosq_test.gen_connect("retain-check", keepalive=keepalive, username=username, proto_ver=proto_ver) connack_packet = mosq_test.gen_connack(rc=0, proto_ver=proto_ver) mid = 1 publish_packet = mosq_test.gen_publish("test/topic", qos=0, payload="retained message", retain=True, proto_ver=proto_ver) subscribe_packet = mosq_test.gen_subscribe(mid, "test/topic", 0, proto_ver=proto_ver) suback_packet = mosq_test.gen_suback(mid, 0, proto_ver=proto_ver) broker = mosq_test.start_broker(filename=os.path.basename(__file__), use_conf=True, port=port) try: sock = mosq_test.do_client_connect(connect_packet, connack_packet, port=port) sock.send(publish_packet) sock.close() sock = mosq_test.do_client_connect(connect_packet, connack_packet, port=port) mosq_test.do_send_receive(sock, subscribe_packet, suback_packet, "suback 1") mosq_test.expect_packet(sock, "publish", publish_packet) sock.close() # Remove "write" ability write_acl_2(acl_file, username) broker.terminate() broker.wait() broker = mosq_test.start_broker(filename=os.path.basename(__file__), use_conf=True, port=port) sock = mosq_test.do_client_connect(connect_packet, connack_packet, port=port) mosq_test.do_send_receive(sock, subscribe_packet, suback_packet, "suback 2") # If we receive the retained message here, it is a failure. mosq_test.do_ping(sock) rc = 0 sock.close() except mosq_test.TestError: pass finally: broker.terminate() broker.wait() os.remove(conf_file) os.remove(acl_file) os.remove(persistence_file) (stdo, stde) = broker.communicate() if rc: print(stde.decode('utf-8')) exit(rc) port = mosq_test.get_port() do_test(proto_ver=4, per_listener="true", username=None) do_test(proto_ver=4, per_listener="true", username="test") do_test(proto_ver=4, per_listener="false", username=None) do_test(proto_ver=4, per_listener="false", username="test") do_test(proto_ver=5, per_listener="true", username=None) do_test(proto_ver=5, per_listener="true", username="test") do_test(proto_ver=5, per_listener="false", username=None) do_test(proto_ver=5, per_listener="false", username="test")
36.009434
125
0.6754
76f99d00d0ec990c1786ff6e286fa3ee5f83a437
13,181
py
Python
tensorflow/python/saved_model/builder.py
jianbaishi/tensorflow-learn
59354802b773ca8e1be20cb1d04bf9abb03cf1ad
[ "Apache-2.0" ]
1
2017-03-24T12:08:25.000Z
2017-03-24T12:08:25.000Z
tensorflow/python/saved_model/builder.py
jianbaishi/tensorflow-learn
59354802b773ca8e1be20cb1d04bf9abb03cf1ad
[ "Apache-2.0" ]
null
null
null
tensorflow/python/saved_model/builder.py
jianbaishi/tensorflow-learn
59354802b773ca8e1be20cb1d04bf9abb03cf1ad
[ "Apache-2.0" ]
null
null
null
## Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """SavedModel builder. Builds a SavedModel that can be saved to storage, is language neutral, and enables systems to produce, consume, or transform TensorFlow Models. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from google.protobuf.any_pb2 import Any from tensorflow.core.protobuf import meta_graph_pb2 from tensorflow.core.protobuf import saved_model_pb2 from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.lib.io import file_io from tensorflow.python.ops import variables from tensorflow.python.platform import tf_logging from tensorflow.python.saved_model import constants from tensorflow.python.training import saver as tf_saver from tensorflow.python.util import compat class SavedModelBuilder(object): """Builds the `SavedModel` protocol buffer and saves variables and assets. The `SavedModelBuilder` class provides functionality to build a `SavedModel` protocol buffer. Specifically, this allows multiple meta graphs to be saved as part of a single language-neutral `SavedModel`, while sharing variables and assets. To build a SavedModel, the first meta graph must be saved with variables. Subsequent meta graphs will simply be saved with their graph definitions. If assets need to be saved and written or copied to disk, they must be provided as part of the first meta graph to be saved. Subsequent meta graphs can provide a subset of the initial assets to be added to the SavedModel definition. Each meta graph added to the SavedModel must be annotated with tags. The tags provide a means to identify the specific meta graph to load and restore, along with the shared set of variables and assets. Typical usage for the `SavedModelBuilder`: ```python ... builder = saved_model_builder.SavedModelBuilder(export_dir) with tf.Session(graph=tf.Graph()) as sess: ... builder.add_meta_graph_and_variables(sess, ["foo-tag"], signature_def_map=foo_signatures, asset_collection=foo_assets) ... with tf.Session(graph=tf.Graph()) as sess: ... builder.add_meta_graph(["bar-tag", "baz-tag"]) ... builder.save() ``` """ def __init__(self, export_dir): self._saved_model = saved_model_pb2.SavedModel() self._saved_model.saved_model_schema_version = ( constants.SAVED_MODEL_SCHEMA_VERSION) self._export_dir = export_dir if not file_io.file_exists(export_dir): file_io.recursive_create_dir(self._export_dir) # Boolean to track whether variables and assets corresponding to the # SavedModel have been saved. Specifically, the first meta graph to be added # MUST use the add_meta_graph_and_variables() API. Subsequent add operations # on the SavedModel MUST use the add_meta_graph() API which does not save # weights. self._has_saved_variables = False def _asset_path_from_tensor(self, path_tensor): """Returns the filepath value stored in constant `path_tensor`. Args: path_tensor: Tensor of a file-path. Returns: The string value i.e. path of the tensor, if valid. Raises: TypeError if tensor does not match expected op type, dtype or value. """ if not isinstance(path_tensor, ops.Tensor): raise TypeError("Asset path tensor must be a Tensor.") if path_tensor.op.type != "Const": raise TypeError("Asset path tensor must be of type constant.") if path_tensor.dtype != dtypes.string: raise TypeError("Asset path tensor must be of dtype string.") str_values = path_tensor.op.get_attr("value").string_val if len(str_values) != 1: raise TypeError("Asset path tensor must be a scalar.") return str_values[0] def _add_asset_to_collection(self, asset_filename, asset_tensor): """Builds an asset proto and adds it to the asset collection of the graph. Args: asset_filename: The filename of the asset to be added. asset_tensor: The asset tensor used to populate the tensor info of the asset proto. """ asset_proto = meta_graph_pb2.AssetFileDef() asset_proto.filename = asset_filename asset_proto.tensor_info.name = asset_tensor.name asset_any_proto = Any() asset_any_proto.Pack(asset_proto) ops.add_to_collection(constants.ASSETS_KEY, asset_any_proto) def _save_and_write_assets(self, assets_collection_to_add=None): """Saves asset to the meta graph and writes asset files to disk. Args: assets_collection_to_add: The collection where the asset paths are setup. """ asset_source_filepath_list = self._save_assets(assets_collection_to_add) # Return if there are no assets to write. if len(asset_source_filepath_list) is 0: tf_logging.info("No assets to write.") return assets_destination_dir = os.path.join( compat.as_bytes(self._export_dir), compat.as_bytes(constants.ASSETS_DIRECTORY)) if not file_io.file_exists(assets_destination_dir): file_io.recursive_create_dir(assets_destination_dir) # Copy each asset from source path to destination path. for asset_source_filepath in asset_source_filepath_list: asset_source_filename = os.path.basename(asset_source_filepath) asset_destination_filepath = os.path.join( compat.as_bytes(assets_destination_dir), compat.as_bytes(asset_source_filename)) file_io.copy( asset_source_filepath, asset_destination_filepath, overwrite=True) tf_logging.info("Assets written to: %s", assets_destination_dir) def _save_assets(self, assets_collection_to_add=None): """Saves assets to the meta graph. Args: assets_collection_to_add: The collection where the asset paths are setup. Returns: The list of filepaths to the assets in the assets collection. Raises: ValueError: Indicating an invalid filepath tensor. """ asset_source_filepath_list = [] if assets_collection_to_add is None: tf_logging.info("No assets to save.") return asset_source_filepath_list # Iterate over the supplied asset collection, build the `AssetFile` proto # and add them to the collection with key `constants.ASSETS_KEY`, in the # graph. for asset_tensor in assets_collection_to_add: asset_source_filepath = self._asset_path_from_tensor(asset_tensor) if not asset_source_filepath: raise ValueError("Invalid asset filepath tensor %s" % asset_tensor) asset_source_filename = os.path.basename(asset_source_filepath) # Build `AssetFile` proto and add it to the asset collection in the graph. self._add_asset_to_collection(asset_source_filename, asset_tensor) asset_source_filepath_list.append(asset_source_filepath) tf_logging.info("Assets added to graph.") return asset_source_filepath_list def _tag_and_add_meta_graph(self, meta_graph_def, tags, signature_def_map): """Tags the meta graph def and adds it to the SavedModel. Tags the meta graph def with the supplied tags, adds signature defs to it if provided and appends the meta graph def to the SavedModel proto. Args: meta_graph_def: The meta graph def to add to the SavedModel. tags: The set of tags to annotate the meta graph def with. signature_def_map: The map of signature defs to be added to the meta graph def. """ for tag in tags: meta_graph_def.meta_info_def.tags.append(tag) if signature_def_map is not None: for key in signature_def_map: meta_graph_def.signature_def[key].CopyFrom(signature_def_map[key]) proto_meta_graph_def = self._saved_model.meta_graphs.add() proto_meta_graph_def.CopyFrom(meta_graph_def) def add_meta_graph(self, tags, signature_def_map=None, assets_collection=None): """Adds the current meta graph to the SavedModel. Creates a Saver in the current scope and uses the Saver to export the meta graph def. Invoking this API requires the `add_meta_graph_and_variables()` API to have been invoked before. Args: tags: The set of tags to annotate the meta graph def with. signature_def_map: The map of signature defs to be added to the meta graph def. assets_collection: Assets collection to be saved with SavedModel. Note that this collection should be a subset of the assets saved as part of the first meta graph in the SavedModel. Raises: AssertionError: If the variables for the SavedModel have not been saved yet. """ if not self._has_saved_variables: raise AssertionError( "Variables and assets have not been saved yet. " "Please invoke `add_meta_graph_and_variables()` first.") # Save asset files, if any. self._save_assets(assets_collection) saver = tf_saver.Saver(variables.all_variables()) meta_graph_def = saver.export_meta_graph() # Tag the meta graph def and add it to the SavedModel. self._tag_and_add_meta_graph(meta_graph_def, tags, signature_def_map) def add_meta_graph_and_variables(self, sess, tags, signature_def_map=None, assets_collection=None): """Adds the current meta graph to the SavedModel and saves variables. Creates a Saver to save the variables from the provided session. Exports the corresponding meta graph def. This function assumes that the variables to be saved have been initialized. For a given `SavedModelBuilder`, this API must be called exactly once and for the first meta graph to save. For subsequent meta graph defs to be added, the `add_meta_graph()` API must be used. Args: sess: The TensorFlow session from which to save the meta graph and variables. tags: The set of tags with which to save the meta graph. signature_def_map: The map of signature def map to add to the meta graph def. assets_collection: Assets collection to be saved with SavedModel. """ if self._has_saved_variables: raise AssertionError("Variables and assets have already been saved. " "Please invoke `add_meta_graph()` instead.") # Save asset files and write them to disk, if any. self._save_and_write_assets(assets_collection) # Create the variables sub-directory, if it does not exist. variables_dir = os.path.join( compat.as_text(self._export_dir), compat.as_text(constants.VARIABLES_DIRECTORY)) if not file_io.file_exists(variables_dir): file_io.recursive_create_dir(variables_dir) variables_path = os.path.join( compat.as_text(variables_dir), compat.as_text(constants.VARIABLES_FILENAME)) # Save the variables and export meta graph def. saver = tf_saver.Saver(variables.all_variables()) saver.save(sess, variables_path, write_meta_graph=False) meta_graph_def = saver.export_meta_graph() # Tag the meta graph def and add it to the SavedModel. self._tag_and_add_meta_graph(meta_graph_def, tags, signature_def_map) # Mark this instance of SavedModel as having saved variables, such that # subsequent attempts to save variables will fail. self._has_saved_variables = True def save(self, as_text=False): """Writes a `SavedModel` protocol buffer to disk. The function writes the SavedModel protocol buffer to the export directory in serialized format. Args: as_text: Writes the SavedModel protocol buffer in text format to disk. Returns: The path to which the SavedModel protocol buffer was written. """ if not file_io.file_exists(self._export_dir): file_io.recursive_create_dir(self._export_dir) if as_text: path = os.path.join( compat.as_bytes(self._export_dir), compat.as_bytes(constants.SAVED_MODEL_FILENAME_PBTXT)) file_io.write_string_to_file(path, str(self._saved_model)) else: path = os.path.join( compat.as_bytes(self._export_dir), compat.as_bytes(constants.SAVED_MODEL_FILENAME_PB)) file_io.write_string_to_file(path, self._saved_model.SerializeToString()) tf_logging.info("SavedModel written to: %s", path) return path
38.767647
80
0.718534
cfc32e398bd430a29ed3a1e25457f822c9b39d7f
10,804
py
Python
coredis/nodemanager.py
dynalz/coredis
54c95a323897a9742bf30ceff67141d9a1cfc97a
[ "MIT" ]
null
null
null
coredis/nodemanager.py
dynalz/coredis
54c95a323897a9742bf30ceff67141d9a1cfc97a
[ "MIT" ]
null
null
null
coredis/nodemanager.py
dynalz/coredis
54c95a323897a9742bf30ceff67141d9a1cfc97a
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import random from coredis.exceptions import ConnectionError, RedisClusterException from coredis.utils import b, hash_slot class NodeManager: """ TODO: document """ RedisClusterHashSlots = 16384 def __init__( self, startup_nodes=None, reinitialize_steps=None, skip_full_coverage_check=False, nodemanager_follow_cluster=False, **connection_kwargs, ): """ :skip_full_coverage_check: Skips the check of cluster-require-full-coverage config, useful for clusters without the CONFIG command (like aws) :nodemanager_follow_cluster: The node manager will during initialization try the last set of nodes that it was operating on. This will allow the client to drift along side the cluster if the cluster nodes move around a slot. """ self.connection_kwargs = connection_kwargs self.nodes = {} self.slots = {} self.startup_nodes = [] if startup_nodes is None else startup_nodes self.orig_startup_nodes = self.startup_nodes[:] self.reinitialize_counter = 0 self.reinitialize_steps = reinitialize_steps or 25 self._skip_full_coverage_check = skip_full_coverage_check self.nodemanager_follow_cluster = nodemanager_follow_cluster if not self.startup_nodes: raise RedisClusterException("No startup nodes provided") def encode(self, value): """Returns a bytestring representation of the value""" if isinstance(value, bytes): return value elif isinstance(value, int): value = b(str(value)) elif isinstance(value, float): value = b(repr(value)) elif not isinstance(value, str): value = str(value) if isinstance(value, str): value = value.encode() return value def keyslot(self, key): """Calculates keyslot for a given key""" key = self.encode(key) return hash_slot(key) def node_from_slot(self, slot): for node in self.slots[slot]: if node["server_type"] == "master": return node def all_nodes(self): for node in self.nodes.values(): yield node def all_masters(self): for node in self.nodes.values(): if node["server_type"] == "master": yield node def random_startup_node(self): return random.choice(self.startup_nodes) def random_startup_node_iter(self): """A generator that returns a random startup nodes""" while True: yield random.choice(self.startup_nodes) def random_node(self): return random.choice(list(self.nodes.values())) def get_redis_link(self, host, port): from coredis.client import StrictRedis allowed_keys = ( "password", "stream_timeout", "connect_timeout", "retry_on_timeout", "ssl_context", "parser_class", "reader_read_size", "loop", ) connection_kwargs = { k: v for k, v in self.connection_kwargs.items() if k in allowed_keys } return StrictRedis( host=host, port=port, decode_responses=True, **connection_kwargs ) async def initialize(self): """ Initializes the slots cache by asking all startup nodes what the current cluster configuration is. TODO: Currently the last node will have the last say about how the configuration is setup. Maybe it should stop to try after it have correctly covered all slots or when one node is reached and it could execute CLUSTER SLOTS command. """ nodes_cache = {} tmp_slots = {} all_slots_covered = False disagreements = [] startup_nodes_reachable = False nodes = self.orig_startup_nodes # With this option the client will attempt to connect to any of the previous set of nodes # instead of the original set of nodes if self.nodemanager_follow_cluster: nodes = self.startup_nodes for node in nodes: try: r = self.get_redis_link(host=node["host"], port=node["port"]) cluster_slots = await r.cluster_slots() startup_nodes_reachable = True except ConnectionError: continue except Exception: raise RedisClusterException( f'ERROR sending "cluster slots" command to redis server: {node}' ) all_slots_covered = True # If there's only one server in the cluster, its ``host`` is '' # Fix it to the host in startup_nodes if len(cluster_slots) == 1 and len(self.startup_nodes) == 1: single_node_slots = cluster_slots.get( (0, self.RedisClusterHashSlots - 1) )[0] if len(single_node_slots["host"]) == 0: single_node_slots["host"] = self.startup_nodes[0]["host"] single_node_slots["server_type"] = "master" # No need to decode response because StrictRedis should handle that for us... for min_slot, max_slot in cluster_slots: nodes = cluster_slots.get((min_slot, max_slot)) master_node, slave_nodes = nodes[0], nodes[1:] if master_node["host"] == "": master_node["host"] = node["host"] self.set_node_name(master_node) nodes_cache[master_node["name"]] = master_node for i in range(min_slot, max_slot + 1): if i not in tmp_slots: tmp_slots[i] = [master_node] for slave_node in slave_nodes: self.set_node_name(slave_node) nodes_cache[slave_node["name"]] = slave_node tmp_slots[i].append(slave_node) else: # Validate that 2 nodes want to use the same slot cache setup if tmp_slots[i][0]["name"] != node["name"]: disagreements.append( "{0} vs {1} on slot: {2}".format( tmp_slots[i][0]["name"], node["name"], i ), ) if len(disagreements) > 5: raise RedisClusterException( ( "startup_nodes could not agree on a valid slots cache." f" {', '.join(disagreements)}" ) ) self.populate_startup_nodes() self.refresh_table_asap = False if self._skip_full_coverage_check: need_full_slots_coverage = False else: need_full_slots_coverage = await self.cluster_require_full_coverage( nodes_cache ) # Validate if all slots are covered or if we should try next startup node for i in range(0, self.RedisClusterHashSlots): if i not in tmp_slots and need_full_slots_coverage: all_slots_covered = False if all_slots_covered: # All slots are covered and application can continue to execute break if not startup_nodes_reachable: raise RedisClusterException( "Redis Cluster cannot be connected. " "Please provide at least one reachable node." ) if not all_slots_covered: raise RedisClusterException( "Not all slots are covered after query all startup_nodes. " "{0} of {1} covered...".format( len(tmp_slots), self.RedisClusterHashSlots ) ) # Set the tmp variables to the real variables self.slots = tmp_slots self.nodes = nodes_cache self.reinitialize_counter = 0 async def increment_reinitialize_counter(self, ct=1): for i in range(1, ct): self.reinitialize_counter += 1 if self.reinitialize_counter % self.reinitialize_steps == 0: await self.initialize() async def cluster_require_full_coverage(self, nodes_cache): """ If exists 'cluster-require-full-coverage no' config on redis servers, then even all slots are not covered, cluster still will be able to respond """ nodes = nodes_cache or self.nodes async def node_require_full_coverage(node): r_node = self.get_redis_link(host=node["host"], port=node["port"]) node_config = await r_node.config_get("cluster-require-full-coverage") return "yes" in node_config.values() # at least one node should have cluster-require-full-coverage yes for node in nodes.values(): if await node_require_full_coverage(node): return True return False def set_node_name(self, n): """ Formats the name for the given node object # TODO: This shold not be constructed this way. It should update the name of the node in the node cache dict """ if "name" not in n: n["name"] = "{0}:{1}".format(n["host"], n["port"]) def set_node(self, host, port, server_type=None): """Updates data for a node""" node_name = "{0}:{1}".format(host, port) node = { "host": host, "port": port, "name": node_name, "server_type": server_type, } self.nodes[node_name] = node return node def populate_startup_nodes(self): """ Do something with all startup nodes and filters out any duplicates """ for item in self.startup_nodes: self.set_node_name(item) for n in self.nodes.values(): if n not in self.startup_nodes: self.startup_nodes.append(n) # freeze it so we can set() it uniq = {frozenset(node.items()) for node in self.startup_nodes} # then thaw it back out into a list of dicts self.startup_nodes = [dict(node) for node in uniq] async def reset(self): """Drops all node data and start over from startup_nodes""" await self.initialize()
36.5
98
0.562662
ee62c91ad9698c740f5562519bb325b1b1e0c76b
11,343
py
Python
pandas/tests/indexing/test_ix.py
ajspera/pandas
f38020f33052ea9029b410d7fae79bc8f249c0ac
[ "BSD-3-Clause" ]
5
2019-07-26T15:22:41.000Z
2021-09-28T09:22:17.000Z
pandas/tests/indexing/test_ix.py
ajspera/pandas
f38020f33052ea9029b410d7fae79bc8f249c0ac
[ "BSD-3-Clause" ]
null
null
null
pandas/tests/indexing/test_ix.py
ajspera/pandas
f38020f33052ea9029b410d7fae79bc8f249c0ac
[ "BSD-3-Clause" ]
3
2019-07-26T10:47:23.000Z
2020-08-10T12:40:32.000Z
""" test indexing with ix """ from warnings import catch_warnings import numpy as np import pytest from pandas.core.dtypes.common import is_scalar import pandas as pd from pandas import DataFrame, Series, option_context from pandas.util import testing as tm def test_ix_deprecation(): # GH 15114 df = DataFrame({"A": [1, 2, 3]}) with tm.assert_produces_warning(FutureWarning, check_stacklevel=True): df.ix[1, "A"] @pytest.mark.filterwarnings("ignore:\\n.ix:FutureWarning") class TestIX: def test_ix_loc_setitem_consistency(self): # GH 5771 # loc with slice and series s = Series(0, index=[4, 5, 6]) s.loc[4:5] += 1 expected = Series([1, 1, 0], index=[4, 5, 6]) tm.assert_series_equal(s, expected) # GH 5928 # chained indexing assignment df = DataFrame({"a": [0, 1, 2]}) expected = df.copy() with catch_warnings(record=True): expected.ix[[0, 1, 2], "a"] = -expected.ix[[0, 1, 2], "a"] with catch_warnings(record=True): df["a"].ix[[0, 1, 2]] = -df["a"].ix[[0, 1, 2]] tm.assert_frame_equal(df, expected) df = DataFrame({"a": [0, 1, 2], "b": [0, 1, 2]}) with catch_warnings(record=True): df["a"].ix[[0, 1, 2]] = -df["a"].ix[[0, 1, 2]].astype("float64") + 0.5 expected = DataFrame({"a": [0.5, -0.5, -1.5], "b": [0, 1, 2]}) tm.assert_frame_equal(df, expected) # GH 8607 # ix setitem consistency df = DataFrame( { "delta": [1174, 904, 161], "elapsed": [7673, 9277, 1470], "timestamp": [1413840976, 1413842580, 1413760580], } ) expected = DataFrame( { "delta": [1174, 904, 161], "elapsed": [7673, 9277, 1470], "timestamp": pd.to_datetime( [1413840976, 1413842580, 1413760580], unit="s" ), } ) df2 = df.copy() df2["timestamp"] = pd.to_datetime(df["timestamp"], unit="s") tm.assert_frame_equal(df2, expected) df2 = df.copy() df2.loc[:, "timestamp"] = pd.to_datetime(df["timestamp"], unit="s") tm.assert_frame_equal(df2, expected) df2 = df.copy() with catch_warnings(record=True): df2.ix[:, 2] = pd.to_datetime(df["timestamp"], unit="s") tm.assert_frame_equal(df2, expected) def test_ix_loc_consistency(self): # GH 8613 # some edge cases where ix/loc should return the same # this is not an exhaustive case def compare(result, expected): if is_scalar(expected): assert result == expected else: assert expected.equals(result) # failure cases for .loc, but these work for .ix df = DataFrame(np.random.randn(5, 4), columns=list("ABCD")) for key in [ slice(1, 3), tuple([slice(0, 2), slice(0, 2)]), tuple([slice(0, 2), df.columns[0:2]]), ]: for index in [ tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeDateIndex, tm.makePeriodIndex, tm.makeTimedeltaIndex, ]: df.index = index(len(df.index)) with catch_warnings(record=True): df.ix[key] msg = ( r"cannot do slice indexing" r" on {klass} with these indexers \[(0|1)\] of" r" {kind}".format(klass=type(df.index), kind=str(int)) ) with pytest.raises(TypeError, match=msg): df.loc[key] df = DataFrame( np.random.randn(5, 4), columns=list("ABCD"), index=pd.date_range("2012-01-01", periods=5), ) for key in [ "2012-01-03", "2012-01-31", slice("2012-01-03", "2012-01-03"), slice("2012-01-03", "2012-01-04"), slice("2012-01-03", "2012-01-06", 2), slice("2012-01-03", "2012-01-31"), tuple([[True, True, True, False, True]]), ]: # getitem # if the expected raises, then compare the exceptions try: with catch_warnings(record=True): expected = df.ix[key] except KeyError: with pytest.raises(KeyError, match=r"^'2012-01-31'$"): df.loc[key] continue result = df.loc[key] compare(result, expected) # setitem df1 = df.copy() df2 = df.copy() with catch_warnings(record=True): df1.ix[key] = 10 df2.loc[key] = 10 compare(df2, df1) # edge cases s = Series([1, 2, 3, 4], index=list("abde")) result1 = s["a":"c"] with catch_warnings(record=True): result2 = s.ix["a":"c"] result3 = s.loc["a":"c"] tm.assert_series_equal(result1, result2) tm.assert_series_equal(result1, result3) # now work rather than raising KeyError s = Series(range(5), [-2, -1, 1, 2, 3]) with catch_warnings(record=True): result1 = s.ix[-10:3] result2 = s.loc[-10:3] tm.assert_series_equal(result1, result2) with catch_warnings(record=True): result1 = s.ix[0:3] result2 = s.loc[0:3] tm.assert_series_equal(result1, result2) def test_ix_weird_slicing(self): # http://stackoverflow.com/q/17056560/1240268 df = DataFrame({"one": [1, 2, 3, np.nan, np.nan], "two": [1, 2, 3, 4, 5]}) df.loc[df["one"] > 1, "two"] = -df["two"] expected = DataFrame( { "one": {0: 1.0, 1: 2.0, 2: 3.0, 3: np.nan, 4: np.nan}, "two": {0: 1, 1: -2, 2: -3, 3: 4, 4: 5}, } ) tm.assert_frame_equal(df, expected) def test_ix_assign_column_mixed(self, float_frame): # GH #1142 df = float_frame df["foo"] = "bar" orig = df.loc[:, "B"].copy() df.loc[:, "B"] = df.loc[:, "B"] + 1 tm.assert_series_equal(df.B, orig + 1) # GH 3668, mixed frame with series value df = DataFrame({"x": np.arange(10), "y": np.arange(10, 20), "z": "bar"}) expected = df.copy() for i in range(5): indexer = i * 2 v = 1000 + i * 200 expected.loc[indexer, "y"] = v assert expected.loc[indexer, "y"] == v df.loc[df.x % 2 == 0, "y"] = df.loc[df.x % 2 == 0, "y"] * 100 tm.assert_frame_equal(df, expected) # GH 4508, making sure consistency of assignments df = DataFrame({"a": [1, 2, 3], "b": [0, 1, 2]}) df.loc[[0, 2], "b"] = [100, -100] expected = DataFrame({"a": [1, 2, 3], "b": [100, 1, -100]}) tm.assert_frame_equal(df, expected) df = DataFrame({"a": list(range(4))}) df["b"] = np.nan df.loc[[1, 3], "b"] = [100, -100] expected = DataFrame({"a": [0, 1, 2, 3], "b": [np.nan, 100, np.nan, -100]}) tm.assert_frame_equal(df, expected) # ok, but chained assignments are dangerous # if we turn off chained assignment it will work with option_context("chained_assignment", None): df = DataFrame({"a": list(range(4))}) df["b"] = np.nan df["b"].loc[[1, 3]] = [100, -100] tm.assert_frame_equal(df, expected) def test_ix_get_set_consistency(self): # GH 4544 # ix/loc get/set not consistent when # a mixed int/string index df = DataFrame( np.arange(16).reshape((4, 4)), columns=["a", "b", 8, "c"], index=["e", 7, "f", "g"], ) with catch_warnings(record=True): assert df.ix["e", 8] == 2 assert df.loc["e", 8] == 2 with catch_warnings(record=True): df.ix["e", 8] = 42 assert df.ix["e", 8] == 42 assert df.loc["e", 8] == 42 df.loc["e", 8] = 45 with catch_warnings(record=True): assert df.ix["e", 8] == 45 assert df.loc["e", 8] == 45 def test_ix_slicing_strings(self): # see gh-3836 data = { "Classification": ["SA EQUITY CFD", "bbb", "SA EQUITY", "SA SSF", "aaa"], "Random": [1, 2, 3, 4, 5], "X": ["correct", "wrong", "correct", "correct", "wrong"], } df = DataFrame(data) x = df[~df.Classification.isin(["SA EQUITY CFD", "SA EQUITY", "SA SSF"])] with catch_warnings(record=True): df.ix[x.index, "X"] = df["Classification"] expected = DataFrame( { "Classification": { 0: "SA EQUITY CFD", 1: "bbb", 2: "SA EQUITY", 3: "SA SSF", 4: "aaa", }, "Random": {0: 1, 1: 2, 2: 3, 3: 4, 4: 5}, "X": {0: "correct", 1: "bbb", 2: "correct", 3: "correct", 4: "aaa"}, } ) # bug was 4: 'bbb' tm.assert_frame_equal(df, expected) def test_ix_setitem_out_of_bounds_axis_0(self): df = DataFrame( np.random.randn(2, 5), index=["row%s" % i for i in range(2)], columns=["col%s" % i for i in range(5)], ) with catch_warnings(record=True): msg = "cannot set by positional indexing with enlargement" with pytest.raises(ValueError, match=msg): df.ix[2, 0] = 100 def test_ix_setitem_out_of_bounds_axis_1(self): df = DataFrame( np.random.randn(5, 2), index=["row%s" % i for i in range(5)], columns=["col%s" % i for i in range(2)], ) with catch_warnings(record=True): msg = "cannot set by positional indexing with enlargement" with pytest.raises(ValueError, match=msg): df.ix[0, 2] = 100 def test_ix_empty_list_indexer_is_ok(self): with catch_warnings(record=True): from pandas.util.testing import makeCustomDataframe as mkdf df = mkdf(5, 2) # vertical empty tm.assert_frame_equal( df.ix[:, []], df.iloc[:, :0], check_index_type=True, check_column_type=True, ) # horizontal empty tm.assert_frame_equal( df.ix[[], :], df.iloc[:0, :], check_index_type=True, check_column_type=True, ) # horizontal empty tm.assert_frame_equal( df.ix[[]], df.iloc[:0, :], check_index_type=True, check_column_type=True ) def test_ix_duplicate_returns_series(self): df = DataFrame( np.random.randn(3, 3), index=[0.1, 0.2, 0.2], columns=list("abc") ) with catch_warnings(record=True): r = df.ix[0.2, "a"] e = df.loc[0.2, "a"] tm.assert_series_equal(r, e)
32.783237
88
0.489377
8795236df7220d002925835262768192f2c908f6
1,767
py
Python
script/github-buildstatus-notifier.py
ydemetriades/cfstep-github-buildstatus
42a9f8d09b0f8833a701be93aff376a0d6c173ae
[ "MIT" ]
null
null
null
script/github-buildstatus-notifier.py
ydemetriades/cfstep-github-buildstatus
42a9f8d09b0f8833a701be93aff376a0d6c173ae
[ "MIT" ]
5
2020-01-26T11:55:03.000Z
2020-02-01T20:48:51.000Z
script/github-buildstatus-notifier.py
ydemetriades/cfstep-github-buildstatus
42a9f8d09b0f8833a701be93aff376a0d6c173ae
[ "MIT" ]
1
2020-01-23T15:20:15.000Z
2020-01-23T15:20:15.000Z
#!/usr/bin/env python import os import requests gh_url = os.getenv('GH_BSN_URL', 'https://api.github.com') repo_owner = os.getenv('CF_REPO_OWNER') repo_name = os.getenv('CF_REPO_NAME') repo_auth_user = os.getenv('GH_BSN_REPO_AUTH_USER', repo_owner) repo_token = os.getenv('GH_BSN_REPO_AUTH_TOKEN') if repo_owner is None: print("Repository Owner Environment Variable [CF_REPO_OWNER] is not defined.") exit(2) if repo_name is None: print("Repository Owner Environment Variable [CF_REPO_OWNER] is not defined.") exit(2) if repo_token is None: print("Authentication User Token Environment Variable [GH_BSN_REPO_AUTH_TOKEN] is not defined.") exit(2) cf_build_id = os.getenv('CF_BUILD_ID') cf_status = os.getenv('CF_BUILD_STATUS', 'pending') # 'error', 'failure', 'pending', 'success' cf_revision = os.getenv('CF_REVISION') cf_build_url = os.getenv('CF_BUILD_URL') description = os.getenv('GH_BSN_BUILD_DESCRIPTION', 'Build [{}]'.format(cf_build_id)) context = os.getenv('GH_BSN_BUILD_CONTEXT', 'codefresh-ci') print('Will Attempt to update build status of commit [{}] to [{}] '.format(cf_revision, cf_status)) data = { 'state': cf_status, 'target_url': cf_build_url, 'description': description, 'context': context } # Construct URL api_url = ('%(url)s/repos/%(owner)s/%(name)s/statuses/%(revision)s' % {'url': gh_url, 'owner': repo_owner, 'name': repo_name, 'revision': cf_revision}) print('Sending request to:') print(api_url) print('with body') print(data) # Post build status to Github response = requests.post(api_url, auth=(repo_auth_user, repo_token), json=data) print('Response:') print(response) print(response.text) if response: exit(0) else: exit(1)
28.967213
100
0.703452
183f11b89009a4c3d8ea131a17a57373ccba0e8d
11,114
py
Python
tcex/threat_intelligence/mappings/indicator/indicator.py
kdeltared/tcex
818c0d09256764f871e42d9ca5916f92d941d882
[ "Apache-2.0" ]
null
null
null
tcex/threat_intelligence/mappings/indicator/indicator.py
kdeltared/tcex
818c0d09256764f871e42d9ca5916f92d941d882
[ "Apache-2.0" ]
null
null
null
tcex/threat_intelligence/mappings/indicator/indicator.py
kdeltared/tcex
818c0d09256764f871e42d9ca5916f92d941d882
[ "Apache-2.0" ]
null
null
null
"""ThreatConnect TI Indicator""" # standard library import json from urllib.parse import quote, unquote from ..mappings import Mappings # import local modules for dynamic reference module = __import__(__name__) def custom_indicator_class_factory( indicator_type, entity_type, branch_type, base_class, value_fields ): """Build dynamic Custom Indicator Class.""" @staticmethod def _metadata_map_1(): """Map field data.""" metadata_map = base_class._metadata_map() for value in value_fields: manipulated_value = value.lower().replace(' ', '_') if manipulated_value not in metadata_map.keys(): metadata_map[manipulated_value] = value return metadata_map def init(self, tcex, **kwargs): # pylint: disable=possibly-unused-variable """Init method for Custom Indicator Types with one value""" base_class.__init__( self, tcex, sub_type=indicator_type, api_entity=entity_type, api_branch=branch_type, **kwargs, ) res = {v: k for k, v in self._metadata_map().items()} values = [] for field in value_fields: value = kwargs.pop(res.get(field), kwargs.pop(field, '')) value = quote(self.fully_decode_uri(value), safe='') values.append(value) if len(values) == 1: self.unique_id = kwargs.get('unique_id', values[0]) elif len(values) == 2: self.unique_id = kwargs.get('unique_id', self.build_summary(values[0], values[1])) elif len(values) == 3: self.unique_id = kwargs.get( 'unique_id', self.build_summary(values[0], values[1], values[2]) ) def _set_unique_id(self, json_request): """Set the unique ID. Args: json_request (dict): The JSON data for the request. """ values = [] for field in value_fields: value = json_request.get(field, '') values.append(quote(self.fully_decode_uri(value), safe='')) if len(values) == 1: self.unique_id = values[0] elif len(values) == 2: self.unique_id = self.build_summary(values[0], values[1]) elif len(values) == 1: self.unique_id = self.build_summary(values[0], values[1], values[2]) def can_create(self): # pylint: disable=unused-argument,possibly-unused-variable """Determine if the required data that the API endpoint is expecting is present.""" valid_create = True for field in value_fields: if not field: valid_create = False return valid_create class_name = indicator_type.replace(' ', '') init_method = locals()['init'] set_unique_id_method = locals()['_set_unique_id'] can_create_method = locals()['can_create'] _metadata_map = locals()['_metadata_map_1'] new_class = type( str(class_name), (base_class,), { '__init__': init_method, '_set_unique_id': set_unique_id_method, 'can_create': can_create_method, '_metadata_map': _metadata_map, }, ) return new_class class Indicator(Mappings): """Unique API calls for Indicator API Endpoints""" def __init__(self, tcex, **kwargs): """Initialize Class Properties.""" super().__init__( tcex, 'Indicator', 'indicators', kwargs.pop('sub_type', None), kwargs.pop('api_entity', 'indicator'), kwargs.pop('api_branch', None), kwargs.pop('owner', None), ) for arg, value in kwargs.items(): self.add_key_value(arg, value) @property def as_entity(self): """Return the entity representation of the Indicator.""" return { 'type': self.api_sub_type, 'value': unquote(self.unique_id), 'id': self._data.get('id'), } @staticmethod def is_indicator(): """Return true if object type is an indicator.""" return True @property def owner(self): """Return the owner.""" return self._owner def can_create(self): """Overridden by other indicator classes.""" return True @staticmethod def _metadata_map(): """Map snake case fields to camel case fields.""" return { 'date_added': 'dateAdded', 'dns_active': 'dnsActive', 'last_modified': 'lastModified', 'private_flag': 'privateFlag', 'whois_active': 'whoisActive', 'key_name': 'Key Name', 'value_type': 'Value Type', 'value_name': 'Value Name', 'block': 'Block', 'mutex': 'Mutex', 'as_number': 'AS Number', 'hostname': 'hostName', } def add_key_value(self, key, value): """Convert the value and adds it as a data field. Args: key: value: """ key = self._metadata_map().get(key, key) if key in ['dateAdded', 'lastModified']: self._data[key] = self._utils.datetime.format_datetime( value, date_format='%Y-%m-%dT%H:%M:%SZ' ) elif key == 'confidence': self._data[key] = int(value) elif key == 'rating': self._data[key] = float(value) elif key == 'unique_id': self._unique_id = quote(self.fully_decode_uri(value), safe='') else: self._data[key] = value def status(self, status=None, cal_status=None): """Update the Indicators status Args: status: Valid values to set to active are ['active', '2', '1' ] while ['inactive', '-2', '-1', 0] will set it to inactive cal_status: Valid values to set to locked are ['locked', 'lock', '1' ] while ['unlock', 'unlocked', '0'] will set it to inactive Returns: """ if not self.can_update(): self._tcex.handle_error(910, [self.type]) if not status and not cal_status: return None request_data = {} if status: status = str(status) if status.lower() in ['active', '1']: request_data['active'] = 1 elif status.lower() in ['inactive', '0']: request_data['active'] = 0 if cal_status: cal_status = str(cal_status) if cal_status.lower() in ['locked', 'lock', '1']: request_data['activeLocked'] = 1 elif cal_status.lower() in ['unlock', 'unlocked', '0']: request_data['activeLocked'] = 0 return self.tc_requests.update( self.api_type, self.api_branch, self.unique_id, request_data, owner=self.owner ) def rating(self, value): """Update the Indicators rating Args: value: """ if not self.can_update(): self._tcex.handle_error(910, [self.type]) request_data = {'rating': value} return self.tc_requests.update( self.api_type, self.api_branch, self.unique_id, request_data, owner=self.owner ) def confidence(self, value): """Update the Indicators confidence Args: value: """ if not self.can_update(): self._tcex.handle_error(910, [self.type]) request_data = {'confidence': value} return self.tc_requests.update( self.api_type, self.api_branch, self.unique_id, request_data, owner=self.owner ) def owners(self): """Return owners""" if not self.can_update(): self._tcex.handle_error(910, [self.type]) return self.tc_requests.owners( self.api_type, self.api_branch, self.unique_id, owner=self.owner ) def add_observers(self, count, date_observed): """Add a Indicator Observation Args: count: date_observed: """ if not self.can_update(): self._tcex.handle_error(910, [self.type]) data = { 'count': count, 'dateObserved': self._utils.datetime.format_datetime( date_observed, date_format='%Y-%m-%dT%H:%M:%SZ' ), } return self.tc_requests.add_observations( self.api_type, self.api_branch, self.unique_id, data, owner=self.owner ) def observation_count(self): """Get the indicators observation count. Returns: """ if not self.can_update(): self._tcex.handle_error(910, [self.type]) return self.tc_requests.observation_count( self.api_type, self.api_branch, self.unique_id, owner=self.owner ) def add_false_positive(self): """Add a Indicator FalsePositive.""" if not self.can_update(): self._tcex.handle_error(910, [self.type]) return self.tc_requests.add_false_positive( self.api_type, self.api_branch, self.unique_id, owner=self.owner ) def observations(self): """Return indicator observation data. Returns: [type]: [description] """ if not self.can_update(): self._tcex.handle_error(910, [self.type]) return self.tc_requests.observations( self.api_type, self.api_branch, self.unique_id, owner=self.owner ) def deleted(self, deleted_since=None, filters=None, params=None): """Return deleted indicators from TC REST API. Args: deleted_since ([type]): [description] filters ([type], optional): [description]. Defaults to None. params ([type], optional): [description]. Defaults to None. Returns: [type]: [description] """ return self.tc_requests.deleted( self.api_type, self.api_branch, deleted_since=deleted_since, owner=self.owner, filters=filters, params=params, ) @staticmethod def build_summary(val1=None, val2=None, val3=None): """Construct an indicator summary given va1, va2, val3. Args: val1 (str, optional): Indicator value. Defaults to None. val2 (str, optional): Indicator value. Defaults to None. val3 (str, optional): Indicator value. Defaults to None. Returns: str: <space><colon><space> delimeted indicator summary. """ summary = [] if val1 is not None: summary.append(val1) if val2 is not None: summary.append(val2) if val3 is not None: summary.append(val3) if not summary: return None return ' : '.join(summary) def __str__(self): """Return string representation of object""" return json.dumps(self._data, indent=4)
32.402332
94
0.563703
a42ea6740457c18e314999da085523c6271f7e78
1,953
py
Python
5.0-clases-y-objetos/src/sobrecarga.py
zehemz/clases-python-101
633cb5f0cbc85e64e242514f0394754a5bed0513
[ "Apache-2.0" ]
null
null
null
5.0-clases-y-objetos/src/sobrecarga.py
zehemz/clases-python-101
633cb5f0cbc85e64e242514f0394754a5bed0513
[ "Apache-2.0" ]
null
null
null
5.0-clases-y-objetos/src/sobrecarga.py
zehemz/clases-python-101
633cb5f0cbc85e64e242514f0394754a5bed0513
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python3.5 # -*- coding: utf-8 -*- class Vehiculo(object): def tipo(self): print("Dos ruedas") class Material(object): def tipo(self): print("plástico") class Moto(Vehiculo, Material): def modelo(self): print("Modelo 1") super(Moto, self).tipo() super().tipo() Material.tipo(self) Vehiculo.tipo(self) class Bicicleta(Material, Vehiculo): def modelo(self): print("Modelo 2") super(Bicicleta, self).tipo() super().tipo() Material.tipo(self) Vehiculo.tipo(self) print("---------- Prioridad Clases ------------") print(Moto.__mro__) print(Bicicleta.__mro__) print("---------- para objeto 1 ------------") objeto1 = Moto() objeto1.modelo() objeto1.tipo() print("---------- para objeto 2 ------------") objeto2 = Bicicleta() objeto2.modelo() ''' Nota: En python 3, la sintaxis se simplifica de super(ClaseHija,self).__init__() a super().__init(). Nota: En python 3 podemos llamar al método de la case padre desde dentro de la clase hija, directamente indicando el nombre de la clase padre de la cual queremos heredar, y con notación de punto el nombre del método a utilizar: Ejemplo: Vehiculo.tipo(self) Mezclar ambos tipos de llamadas dentro de un código puede traer errores serios, sobre todo al trabajar con __init__, por lo que NO se debe mezclar las dos variantes dentro de un código. ''' ''' Ejemplo de mal uso: ''' # class Vehiculo(object): # def __init__(self): # print("Dos ruedas") # super(Vehiculo,self).__init__() # class Material(object): # def __init__(self): # print("plástico") # super(Material,self).__init__() # class Moto(Vehiculo, Material): # def __init__(self): # print("Modelo 1") # Vehiculo.__init__(self) # Material.__init__(self) # # objeto1 = Moto() ''' Se corrige llamando un unico constructor padre de moto. super().__init__() '''
26.753425
88
0.635945
68363f7c08f8dd8587fc5acdc00f52b4d9474d8a
155
py
Python
src/python/phonetics/__init__.py
riasat97/Countrynameproject
71720b452348b52110438155c5cad39539ed59c4
[ "MIT" ]
null
null
null
src/python/phonetics/__init__.py
riasat97/Countrynameproject
71720b452348b52110438155c5cad39539ed59c4
[ "MIT" ]
null
null
null
src/python/phonetics/__init__.py
riasat97/Countrynameproject
71720b452348b52110438155c5cad39539ed59c4
[ "MIT" ]
null
null
null
from .soundex import soundex # NOQA from .metaphone import metaphone # NOQA from .metaphone import dmetaphone # NOQA from .nysiis import nysiis # NOQA
31
41
0.767742
189c17e3f65d55e361da44bd479740b66f2ee490
1,166
py
Python
app/api/rest/modules/alphabet.py
dolfinus/cryptonite
b90c24d008f4af78f8ed00fc9a30fea4628a443a
[ "MIT" ]
null
null
null
app/api/rest/modules/alphabet.py
dolfinus/cryptonite
b90c24d008f4af78f8ed00fc9a30fea4628a443a
[ "MIT" ]
4
2020-03-18T12:04:12.000Z
2020-07-07T19:32:23.000Z
app/api/rest/modules/alphabet.py
dolfinus/cryptonite
b90c24d008f4af78f8ed00fc9a30fea4628a443a
[ "MIT" ]
null
null
null
class Alphabet: lang = None alphabet = None def __init__(self, lang): self.lang = lang self.digits = '0123456789' if lang == 'en': self.alphabet = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' if lang == 'en25': self.alphabet = 'ABCDEFGHIKLMNOPQRSTUVWXYZ' if lang == 'ru33': self.alphabet = 'АБВГДЕЁЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯ' if lang == 'ru': self.alphabet = 'АБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯ' self.lowercase = self.alphabet.lower() self.len = len(self.alphabet) def get_pos(self, char): if not char in self.alphabet: return -1 return self.alphabet.find(char) @staticmethod def mod(num, base): sign = 1 if num >= 0 else -1 num = num % base if sign < 0: num += base return num % base def mod_pos(self, pos): return self.mod(pos, len(self.alphabet)) def get_char(self, pos): return self.alphabet[self.mod_pos(pos)] def shift(self, char, shift): if not char in self.alphabet: return '' if str(shift) in self.alphabet: shift = self.get_pos(shift) result = self.get_char(self.get_pos(char) + int(shift)) return result
25.911111
59
0.629503
32582d251b2522f2adc4163d8d35feaef3ba5fdf
204
py
Python
automatewithpython/shutil/shutilco.py
Coalemus/Python-Projects
4b0e0c12a2fdcfbaf491df5715885c61f44bdb1c
[ "MIT" ]
null
null
null
automatewithpython/shutil/shutilco.py
Coalemus/Python-Projects
4b0e0c12a2fdcfbaf491df5715885c61f44bdb1c
[ "MIT" ]
null
null
null
automatewithpython/shutil/shutilco.py
Coalemus/Python-Projects
4b0e0c12a2fdcfbaf491df5715885c61f44bdb1c
[ "MIT" ]
null
null
null
#!/bin/zsh # Code will copy a single file. import shutil, os os.chdir("C:\\") shutil.copy("C:\\spam.txt", "C:\\delicious") # Source, Destination shutil.copy("eggst.txt", "C:\\delicious\\eggs2.txt")
17
67
0.647059
29bd17c812582c01062767e746eee501b5122c2a
467
py
Python
alipay/aop/api/response/AntMerchantExpandIndirectIsvModifyResponse.py
antopen/alipay-sdk-python-all
8e51c54409b9452f8d46c7bb10eea7c8f7e8d30c
[ "Apache-2.0" ]
213
2018-08-27T16:49:32.000Z
2021-12-29T04:34:12.000Z
alipay/aop/api/response/AntMerchantExpandIndirectIsvModifyResponse.py
antopen/alipay-sdk-python-all
8e51c54409b9452f8d46c7bb10eea7c8f7e8d30c
[ "Apache-2.0" ]
29
2018-09-29T06:43:00.000Z
2021-09-02T03:27:32.000Z
alipay/aop/api/response/AntMerchantExpandIndirectIsvModifyResponse.py
antopen/alipay-sdk-python-all
8e51c54409b9452f8d46c7bb10eea7c8f7e8d30c
[ "Apache-2.0" ]
59
2018-08-27T16:59:26.000Z
2022-03-25T10:08:15.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.response.AlipayResponse import AlipayResponse class AntMerchantExpandIndirectIsvModifyResponse(AlipayResponse): def __init__(self): super(AntMerchantExpandIndirectIsvModifyResponse, self).__init__() def parse_response_content(self, response_content): response = super(AntMerchantExpandIndirectIsvModifyResponse, self).parse_response_content(response_content)
29.1875
115
0.792291
7ff8c60e2cb5d8a50004cfffeccf66fdd5ea7565
26,565
py
Python
app/__init__.py
cds-snc/notification-admin
d4056798bf889ad29893667bbb67ead2f8e466e4
[ "MIT" ]
16
2019-11-05T21:35:49.000Z
2022-01-12T15:00:32.000Z
app/__init__.py
cds-snc/notification-admin
d4056798bf889ad29893667bbb67ead2f8e466e4
[ "MIT" ]
509
2019-07-11T22:03:19.000Z
2022-03-30T15:19:26.000Z
app/__init__.py
cds-snc/notification-admin
d4056798bf889ad29893667bbb67ead2f8e466e4
[ "MIT" ]
8
2020-02-21T20:19:29.000Z
2022-03-31T14:17:02.000Z
import itertools import os import re import urllib from datetime import datetime, timedelta, timezone from functools import partial from numbers import Number from time import monotonic from urllib.parse import urljoin import timeago from flask import ( Markup, current_app, flash, g, make_response, render_template, request, session, url_for, ) from flask._compat import string_types from flask.globals import _lookup_req_object, _request_ctx_stack # type: ignore from flask_babel import Babel, _ from flask_login import LoginManager, current_user from flask_wtf import CSRFProtect from flask_wtf.csrf import CSRFError from itsdangerous import BadSignature from notifications_python_client.errors import HTTPError from notifications_utils import formatters, logging, request_helper from notifications_utils.formatters import formatted_list from notifications_utils.recipients import ( InvalidPhoneError, format_phone_number_human_readable, validate_phone_number, ) from notifications_utils.sanitise_text import SanitiseASCII from notifications_utils.timezones import utc_string_to_aware_gmt_datetime from werkzeug.exceptions import HTTPException as WerkzeugHTTPException from werkzeug.exceptions import abort from werkzeug.local import LocalProxy from app import proxy_fix from app.asset_fingerprinter import asset_fingerprinter from app.commands import setup_commands from app.config import configs from app.extensions import ( antivirus_client, cache, redis_client, statsd_client, zendesk_client, ) from app.models.organisation import Organisation from app.models.service import Service from app.models.user import AnonymousUser, User from app.navigation import ( AdminNavigation, HeaderNavigation, MainNavigation, OrgNavigation, ) from app.notify_client.api_key_api_client import api_key_api_client from app.notify_client.billing_api_client import billing_api_client from app.notify_client.complaint_api_client import complaint_api_client from app.notify_client.email_branding_client import email_branding_client from app.notify_client.events_api_client import events_api_client from app.notify_client.inbound_number_client import inbound_number_client from app.notify_client.invite_api_client import invite_api_client from app.notify_client.job_api_client import job_api_client from app.notify_client.letter_branding_client import letter_branding_client from app.notify_client.letter_jobs_client import letter_jobs_client from app.notify_client.notification_api_client import notification_api_client from app.notify_client.org_invite_api_client import org_invite_api_client from app.notify_client.organisations_api_client import organisations_client from app.notify_client.platform_stats_api_client import platform_stats_api_client from app.notify_client.provider_client import provider_client from app.notify_client.service_api_client import service_api_client from app.notify_client.status_api_client import status_api_client from app.notify_client.template_api_prefill_client import template_api_prefill_client from app.notify_client.template_folder_api_client import template_folder_api_client from app.notify_client.template_statistics_api_client import template_statistics_client from app.notify_client.user_api_client import user_api_client from app.utils import documentation_url, id_safe login_manager = LoginManager() csrf = CSRFProtect() # The current service attached to the request stack. def _get_current_service(): return _lookup_req_object("service") current_service = LocalProxy(_get_current_service) # The current organisation attached to the request stack. current_organisation = LocalProxy(partial(_lookup_req_object, "organisation")) navigation = { "header_navigation": HeaderNavigation(), "admin_navigation": AdminNavigation(), "org_navigation": OrgNavigation(), "main_navigation": MainNavigation(), } def get_current_locale(application): requestLang = request.accept_languages.best_match(application.config["LANGUAGES"]) if requestLang is None: requestLang = "en" if request.args.get("lang") and request.args.get("lang") in ["en", "fr"]: lang = request.args.get("lang") else: lang = session.get("userlang", requestLang) session["userlang"] = lang return lang def create_app(application): setup_commands(application) notify_environment = os.environ["NOTIFY_ENVIRONMENT"] application.config.from_object(configs[notify_environment]) asset_fingerprinter._cdn_domain = application.config["ASSET_DOMAIN"] asset_fingerprinter._asset_root = urljoin(application.config["ADMIN_BASE_URL"], application.config["ASSET_PATH"]) application.config["BABEL_DEFAULT_LOCALE"] = "en" babel = Babel(application) @babel.localeselector def get_locale(): return get_current_locale(application) init_app(application) for client in ( # Gubbins csrf, login_manager, proxy_fix, request_helper, cache, # API clients api_key_api_client, billing_api_client, complaint_api_client, email_branding_client, events_api_client, inbound_number_client, invite_api_client, job_api_client, letter_branding_client, letter_jobs_client, notification_api_client, org_invite_api_client, organisations_client, platform_stats_api_client, provider_client, service_api_client, status_api_client, template_folder_api_client, template_statistics_client, template_api_prefill_client, user_api_client, # External API clients antivirus_client, statsd_client, zendesk_client, redis_client, ): client.init_app(application) logging.init_app(application, statsd_client) # Log a warning message if Redis is not enabled if not application.config["REDIS_ENABLED"]: application.logger.warning( "Redis is not enabled. Some features may not be supported. " "If you want to enable Redis, look at REDIS_* config variables." ) login_manager.login_view = "main.sign_in" login_manager.login_message_category = "default" login_manager.session_protection = None login_manager.anonymous_user = AnonymousUser # make sure we handle unicode correctly redis_client.redis_store.decode_responses = True from app.main import main as main_blueprint application.register_blueprint(main_blueprint) from .status import status as status_blueprint application.register_blueprint(status_blueprint) add_template_filters(application) register_errorhandlers(application) setup_event_handlers() def init_app(application): application.after_request(useful_headers_after_request) application.after_request(save_service_or_org_after_request) application.before_request(load_service_before_request) application.before_request(load_organisation_before_request) application.before_request(request_helper.check_proxy_header_before_request) @application.before_request def make_session_permanent(): # this is dumb. You'd think, given that there's `config['PERMANENT_SESSION_LIFETIME']`, that you'd enable # permanent sessions in the config too - but no, you have to declare it for each request. # https://stackoverflow.com/questions/34118093/flask-permanent-session-where-to-define-them # session.permanent is also, helpfully, a way of saying that the session isn't permanent - in that, it will # expire on its own, as opposed to being controlled by the browser's session. Because session is a proxy, it's # only accessible from within a request context, so we need to set this before every request :rolls_eyes: session.permanent = True @application.context_processor def _attach_current_service(): return {"current_service": current_service} @application.context_processor def _attach_current_organisation(): return {"current_org": current_organisation} @application.context_processor def _attach_current_user(): return {"current_user": current_user} @application.context_processor def _nav_selected(): return navigation @application.before_request def record_start_time(): g.start = monotonic() g.endpoint = request.endpoint @application.context_processor def inject_global_template_variables(): return { "header_colour": application.config["HEADER_COLOUR"], "asset_url": asset_fingerprinter.get_url, "asset_s3_url": asset_fingerprinter.get_s3_url, "current_lang": get_current_locale(application), "admin_base_url": application.config["ADMIN_BASE_URL"], "sending_domain": application.config["SENDING_DOMAIN"], "documentation_url": documentation_url, } def convert_to_boolean(value): if isinstance(value, string_types): if value.lower() in ["t", "true", "on", "yes", "1"]: return True elif value.lower() in ["f", "false", "off", "no", "0"]: return False return value def linkable_name(value): return urllib.parse.quote_plus(value) def format_number(number): lang = get_current_locale(current_app) if lang == "fr": # Spaces as separators return "{:,}".format(number).replace(",", "\xa0") # \xa0: nbsp return "{:,}".format(number) # Commas as separators def format_datetime(date): return "{} at {}".format(format_date(date), format_time(date)) def format_datetime_24h(date): return "{} at {}".format( format_date(date), format_time_24h(date), ) def format_datetime_normal(date): return "{} at {}".format(format_date_normal(date), format_time(date)) def format_datetime_short(date): return "{} at {}".format(format_date_short(date), format_time(date)) def format_datetime_relative(date): return "{} at {}".format(get_human_day(date), format_time(date)) def format_datetime_numeric(date): return "{} {}".format( format_date_numeric(date), format_time_24h(date), ) def format_date_numeric(date): return utc_string_to_aware_gmt_datetime(date).strftime("%Y-%m-%d") def format_time_24h(date): return utc_string_to_aware_gmt_datetime(date).strftime("%H:%M") def get_human_day(time): # Add 1 minute to transform 00:00 into ‘midnight today’ instead of ‘midnight tomorrow’ date = (utc_string_to_aware_gmt_datetime(time) - timedelta(minutes=1)).date() if date == (datetime.utcnow() + timedelta(days=1)).date(): return "tomorrow" if date == datetime.utcnow().date(): return "today" if date == (datetime.utcnow() - timedelta(days=1)).date(): return "yesterday" return _format_datetime_short(date) def format_time(date): return ( {"12:00AM": "Midnight", "12:00PM": "Midday"} .get( utc_string_to_aware_gmt_datetime(date).strftime("%-I:%M%p"), utc_string_to_aware_gmt_datetime(date).strftime("%-I:%M%p"), ) .lower() ) def format_date(date): return utc_string_to_aware_gmt_datetime(date).strftime("%A %d %B %Y") def format_date_normal(date): return utc_string_to_aware_gmt_datetime(date).strftime("%d %B %Y").lstrip("0") def format_date_short(date): return _format_datetime_short(utc_string_to_aware_gmt_datetime(date)) def _format_datetime_short(datetime): return datetime.strftime("%d %B").lstrip("0") def format_delta(_date): lang = get_current_locale(current_app) date = utc_string_to_aware_gmt_datetime(_date) now = datetime.now(timezone.utc) return timeago.format(date, now, lang) def translate_preview_template(_template_str): def translate_brackets(x): match, word = x.group(0), x.group(1) return { "From": _("From"), "To": _("To"), "Subject": _("Subject"), "Reply to": _("Reply to"), "From:": _("From:"), "To:": _("To:"), "phone number": _("phone number"), "email address": _("email address"), "hidden": _("hidden"), }.get(word, match) # This regex finds words inside [] template_str = re.sub(r"\[([^]]*)\]", translate_brackets, _template_str) return Markup(template_str) def format_thousands(value): if isinstance(value, Number): return "{:,.0f}".format(float(value)) if value is None: return "" return value def valid_phone_number(phone_number): try: validate_phone_number(phone_number) return True except InvalidPhoneError: return False def format_notification_type(notification_type): return {"email": "Email", "sms": "SMS", "letter": "Letter"}[notification_type] def format_notification_status(status, template_type, provider_response=None): if provider_response: return _(provider_response) return { "email": { "failed": _("Failed"), "technical-failure": _("Technical failure"), "temporary-failure": _("Inbox not accepting messages right now"), "permanent-failure": _("Email address does not exist"), "delivered": _("Delivered"), "sending": _("Sending"), "created": _("Sending"), "sent": _("Delivered"), }, "sms": { "failed": _("Failed"), "technical-failure": _("Technical failure"), "temporary-failure": _("Phone number not accepting messages right now"), "permanent-failure": _("Phone number does not exist"), "delivered": _("Delivered"), "sending": _("Sending"), "created": _("Sending"), "pending": _("Sending"), "sent": _("Sent"), }, "letter": { "failed": "", "technical-failure": "Technical failure", "temporary-failure": "", "permanent-failure": "", "delivered": "", "received": "", "accepted": "", "sending": "", "created": "", "sent": "", "pending-virus-check": "", "virus-scan-failed": "Virus detected", "returned-letter": "", "cancelled": "", "validation-failed": "Validation failed", }, }[template_type].get(status, status) def format_notification_status_as_time(status, created, updated): return dict.fromkeys( {"created", "pending", "sending"}, " " + _("since") + ' <span class="local-datetime-short">{}</span>'.format(created), ).get(status, '<span class="local-datetime-short">{}</span>'.format(updated)) def format_notification_status_as_field_status(status, notification_type): return ( { "letter": { "failed": "error", "technical-failure": "error", "temporary-failure": "error", "permanent-failure": "error", "delivered": None, "sent": None, "sending": None, "created": None, "accepted": None, "pending-virus-check": None, "virus-scan-failed": "error", "returned-letter": None, "cancelled": "error", } } .get( notification_type, { "failed": "error", "technical-failure": "error", "temporary-failure": "error", "permanent-failure": "error", "delivered": None, "sent": None, "sending": "default", "created": "default", "pending": "default", }, ) .get(status, "error") ) def format_notification_status_as_url(status, notification_type): url = partial(url_for, "main.messages_status") if status not in { "technical-failure", "temporary-failure", "permanent-failure", }: return None return { "email": url(_anchor="email-statuses"), "sms": url(_anchor="sms-statuses"), }.get(notification_type) def get_and_n_more_text(number_of_addresses): "number_of_addresses could be email addresses or sms sending numbers" number_of_hidden_addresses = number_of_addresses - 1 if number_of_hidden_addresses < 1: # This should never happen - this function is not # called in this case. return _("…and 0 more") if number_of_hidden_addresses == 1: return _("…and 1 more") if number_of_hidden_addresses > 1: return _("…and {} more").format(number_of_hidden_addresses) def nl2br(value): return formatters.nl2br(value) if value else "" @login_manager.user_loader def load_user(user_id): return User.from_id(user_id) def load_service_before_request(): if "/static/" in request.url: _request_ctx_stack.top.service = None _request_ctx_stack.top.organisation = None # added to init None to ensure request context has None or something return if _request_ctx_stack.top is not None: _request_ctx_stack.top.service = None _request_ctx_stack.top.organisation = None # added to init None to ensure request context has None or something if request.view_args: service_id = request.view_args.get("service_id", session.get("service_id")) else: service_id = session.get("service_id") if service_id: try: _request_ctx_stack.top.service = Service(service_api_client.get_service(service_id)["data"]) except HTTPError as exc: # if service id isn't real, then 404 rather than 500ing later because we expect service to be set if exc.status_code == 404: abort(404) else: raise def load_organisation_before_request(): if "/static/" in request.url: _request_ctx_stack.top.organisation = None return if _request_ctx_stack.top is not None: _request_ctx_stack.top.organisation = None if request.view_args: org_id = request.view_args.get("org_id") if org_id: try: _request_ctx_stack.top.organisation = Organisation.from_id(org_id) except HTTPError as exc: # if org id isn't real, then 404 rather than 500ing later because we expect org to be set if exc.status_code == 404: abort(404) else: raise def save_service_or_org_after_request(response): # Only save the current session if the request is 200 service_id = request.view_args.get("service_id", None) if request.view_args else None organisation_id = request.view_args.get("org_id", None) if request.view_args else None if response.status_code == 200: if service_id: session["service_id"] = service_id session["organisation_id"] = None elif organisation_id: session["service_id"] = None session["organisation_id"] = organisation_id return response # https://www.owasp.org/index.php/List_of_useful_HTTP_headers def useful_headers_after_request(response): response.headers.add("X-Frame-Options", "deny") response.headers.add("X-Content-Type-Options", "nosniff") response.headers.add("X-XSS-Protection", "1; mode=block") response.headers.add("Permissions-Policy", "interest-cohort=()") response.headers.add( "Content-Security-Policy", ( "default-src 'self' {asset_domain} 'unsafe-inline';" "script-src 'self' {asset_domain} *.google-analytics.com *.googletagmanager.com 'unsafe-inline' 'unsafe-eval' data:;" "connect-src 'self' *.google-analytics.com;" "object-src 'self';" "style-src 'self' *.googleapis.com 'unsafe-inline';" "font-src 'self' {asset_domain} *.googleapis.com *.gstatic.com data:;" "img-src 'self' {asset_domain} *.google-analytics.com *.notifications.service.gov.uk data:;" # noqa: E501 "frame-src 'self' www.youtube.com;".format( asset_domain=current_app.config["ASSET_DOMAIN"], ) ), ) if "Cache-Control" in response.headers: del response.headers["Cache-Control"] # Cache static assets (CSS, JS, images) for a long time # as they have unique hashes thanks to the asset # fingerprinter if asset_fingerprinter.is_static_asset(request.url): response.headers.add("Cache-Control", "public, max-age=31536000, immutable") else: response.headers.add("Cache-Control", "no-store, no-cache, private, must-revalidate") for key, value in response.headers: response.headers[key] = SanitiseASCII.encode(value) return response def register_errorhandlers(application): # noqa (C901 too complex) def _error_response(error_code): resp = make_response(render_template("error/{0}.html".format(error_code)), error_code) return useful_headers_after_request(resp) @application.errorhandler(HTTPError) def render_http_error(error): application.logger.warning( "API {} failed with status {} message {}".format( error.response.url if error.response else "unknown", error.status_code, error.message, ) ) error_code = error.status_code if error_code == 400: # all incoming 400 errors from the API are wrapped for translation # Need to make sure all of them have translations in the csv files if isinstance(error.message, str): msg = [_(error.message)] else: msg = list(itertools.chain(_(error.message[x]) for x in error.message.keys())) resp = make_response(render_template("error/400.html", message=msg)) return useful_headers_after_request(resp) elif error_code not in [401, 404, 403, 410]: # probably a 500 or 503 application.logger.exception( "API {} failed with status {} message {}".format( error.response.url if error.response else "unknown", error.status_code, error.message, ) ) error_code = 500 return _error_response(error_code) @application.errorhandler(400) def handle_400(error): return _error_response(400) @application.errorhandler(410) def handle_gone(error): return _error_response(410) @application.errorhandler(413) def handle_payload_too_large(error): return _error_response(413) @application.errorhandler(404) def handle_not_found(error): return _error_response(404) @application.errorhandler(403) def handle_not_authorized(error): return _error_response(403) @application.errorhandler(401) def handle_no_permissions(error): return _error_response(401) @application.errorhandler(BadSignature) def handle_bad_token(error): # if someone has a malformed token flash(_("There’s something wrong with the link you’ve used.")) return _error_response(404) @application.errorhandler(CSRFError) def handle_csrf(reason): application.logger.warning("csrf.error_message: {}".format(reason)) if "user_id" not in session: application.logger.warning("csrf.session_expired: Redirecting user to log in page") return application.login_manager.unauthorized() application.logger.warning( "csrf.invalid_token: Aborting request, user_id: {user_id}", extra={"user_id": session["user_id"]}, ) resp = make_response( render_template( "error/400.html", message=["Something went wrong, please go back and try again."], ), 400, ) return useful_headers_after_request(resp) @application.errorhandler(405) def handle_405(error): resp = make_response( render_template( "error/400.html", message=["Something went wrong, please go back and try again."], ), 405, ) return useful_headers_after_request(resp) @application.errorhandler(WerkzeugHTTPException) def handle_http_error(error): if error.code == 301: # PermanentRedirect exception return error return _error_response(error.code) @application.errorhandler(500) @application.errorhandler(Exception) def handle_bad_request(error): current_app.logger.exception(error) # We want the Flask in browser stacktrace if current_app.config.get("DEBUG", None): raise error if "Detected newline in header value" in str(error): return _error_response(400) else: return _error_response(500) def setup_event_handlers(): from flask_login import user_logged_in from app.event_handlers import on_user_logged_in user_logged_in.connect(on_user_logged_in) def add_template_filters(application): for fn in [ format_number, format_datetime, format_datetime_24h, format_datetime_normal, format_datetime_short, format_time, valid_phone_number, linkable_name, format_date, format_date_normal, format_date_short, format_datetime_relative, format_delta, translate_preview_template, format_notification_status, format_notification_type, format_notification_status_as_time, format_notification_status_as_field_status, format_notification_status_as_url, formatted_list, get_and_n_more_text, nl2br, format_phone_number_human_readable, format_thousands, id_safe, ]: application.add_template_filter(fn)
33.626582
129
0.662451
c706e60049968d64ab4b96bcd3ba89000ff0b580
6,042
py
Python
chainer/functions/math/tensordot.py
dydo0316/test2
a9982a8b426dd07eb1ec4e7695a7bc546ecc6063
[ "MIT" ]
null
null
null
chainer/functions/math/tensordot.py
dydo0316/test2
a9982a8b426dd07eb1ec4e7695a7bc546ecc6063
[ "MIT" ]
null
null
null
chainer/functions/math/tensordot.py
dydo0316/test2
a9982a8b426dd07eb1ec4e7695a7bc546ecc6063
[ "MIT" ]
null
null
null
import numpy import six from chainer.backends import cuda from chainer import function_node from chainer import utils from chainer.utils import collections_abc from chainer.utils import type_check def _tensordot(a, b, a_axes, b_axes, c_axes=None): a_col_ndim = len(a_axes[1]) b_row_ndim = len(b_axes[0]) if a_col_ndim != b_row_ndim: raise ValueError('axes count mismatch') if a.ndim < a_col_ndim or b.ndim < b_row_ndim: raise ValueError('dimension of input tensors must be ' 'greater equal to dot-axes count ({})' .format(a_col_ndim)) for a_axis, b_axis in zip(a_axes[1], b_axes[0]): if a.shape[a_axis] != b.shape[b_axis]: raise ValueError('shape mismatch') xp = cuda.get_array_module(a) y = xp.tensordot(a, b, axes=(tuple(a_axes[1]), tuple(b_axes[0]))) if c_axes is not None: a_row_ndim = len(a_axes[0]) b_col_ndim = len(b_axes[1]) c_row_ndim = len(c_axes[0]) c_col_ndim = len(c_axes[1]) if a_row_ndim != c_row_ndim: raise ValueError('axes count mismatch') if b_col_ndim != c_col_ndim: raise ValueError('axes count mismatch') trans = [None for i in six.moves.range(y.ndim)] table_a = [1 if i in a_axes[0] else 0 for i in six.moves.range(a.ndim)] table_a = numpy.cumsum(table_a) - 1 for i, c_axis in enumerate(c_axes[0]): trans[c_axis] = table_a[a_axes[0][i]] table_b = [1 if i in b_axes[1] else 0 for i in six.moves.range(b.ndim)] table_b = numpy.cumsum(table_b) - 1 for i, c_axis in enumerate(c_axes[1]): trans[c_axis] = table_b[b_axes[1][i]] + len(a_axes[0]) for i, c_axis in enumerate(trans): if i != c_axis: y = xp.transpose(y, trans) break return y class TensorDot(function_node.FunctionNode): def __init__(self, axes=2, a_axes=None, b_axes=None, c_axes=None, dtype=None): self.axes = axes self.a_axes = a_axes self.b_axes = b_axes self.c_axes = c_axes self.dtype = dtype if isinstance(axes, collections_abc.Sequence): if len(axes) != 2: raise ValueError('axes must be a pair of sequence of integers ' 'when it is a list or tuple.') elif isinstance(axes, int): pass else: raise TypeError('axes must be a pair of sequence of integers or ' 'an integer') def check_type_forward(self, in_types): type_check.argname(in_types, ('a', 'b')) a_type, b_type = in_types type_check.expect( a_type.dtype.kind == 'f', b_type.dtype.kind == 'f', ) def forward(self, inputs): self.retain_inputs((0, 1)) a, b = inputs if self.a_axes is None or self.b_axes is None: a_axes = [[], []] # 0:row axes, 1:col axes b_axes = [[], []] # 0:row axes, 1:col axes axes = self.axes if isinstance(axes, collections_abc.Sequence): a_axes[1], b_axes[0] = axes if numpy.isscalar(a_axes[1]): a_axes[1] = a_axes[1], if numpy.isscalar(b_axes[0]): b_axes[0] = b_axes[0], else: a_axes[1] = six.moves.range(a.ndim - axes, a.ndim) b_axes[0] = six.moves.range(axes) a_range = six.moves.range(a.ndim) a_axes[0] = [i for i in a_range if i not in a_axes[1]] b_range = six.moves.range(b.ndim) b_axes[1] = [i for i in b_range if i not in b_axes[0]] self.a_axes = a_axes self.b_axes = b_axes c = _tensordot(a, b, self.a_axes, self.b_axes, self.c_axes) if self.c_axes is None: c_axes = [[], []] # 0:row axes, 1:col axes c_row_ndim = len(self.a_axes[0]) c_col_ndim = len(self.b_axes[1]) c_axes[0] = six.moves.range(c_row_ndim) c_axes[1] = six.moves.range(c_row_ndim, c_row_ndim + c_col_ndim) self.c_axes = c_axes return utils.force_array(c, self.dtype), def backward(self, indexes, grad_outputs): a, b = self.get_retained_inputs() gc, = grad_outputs ga = None if 0 in indexes: ga, = TensorDot(a_axes=self.c_axes, b_axes=[self.b_axes[1], self.b_axes[0]], c_axes=self.a_axes, dtype=a.dtype).apply((gc, b)) gb = None if 1 in indexes: gb, = TensorDot(a_axes=[self.a_axes[1], self.a_axes[0]], b_axes=self.c_axes, c_axes=self.b_axes, dtype=b.dtype).apply((a, gc)) return ga, gb def tensordot(a, b, axes=2): """Returns the tensor dot product of two arrays along specified axes. This is equivalent to compute dot product along the specified axes which are treated as one axis by reshaping. Args: a (Variable): The first argument. b (Variable): The second argument. axes: - If it is an integer, then ``axes`` axes at the last of ``a`` and the first of ``b`` are used. - If it is a pair of sequences of integers, then these two sequences specify the list of axes for ``a`` and ``b``. The corresponding axes are paired for sum-product. Returns: ~chainer.Variable: The tensor dot product of ``a`` and ``b`` along the axes specified by ``axes``. .. admonition:: Example >>> a = np.random.rand(5, 3, 2) >>> b = np.random.rand(3, 2, 4) >>> c = F.tensordot(a, b, axes=2) >>> c.shape (5, 4) .. seealso:: :func:`numpy.tensordot` """ return TensorDot(axes=axes).apply((a, b))[0]
35.127907
79
0.547501
7087471a4d256da42baaccebac4d0e173667d875
4,613
py
Python
tests/thumbnail_tests/utils.py
Resmin/sorl-thumbnail
caea1969ecdd0d7de2456b8dbdcdfca60412358f
[ "BSD-3-Clause" ]
null
null
null
tests/thumbnail_tests/utils.py
Resmin/sorl-thumbnail
caea1969ecdd0d7de2456b8dbdcdfca60412358f
[ "BSD-3-Clause" ]
null
null
null
tests/thumbnail_tests/utils.py
Resmin/sorl-thumbnail
caea1969ecdd0d7de2456b8dbdcdfca60412358f
[ "BSD-3-Clause" ]
null
null
null
# coding: utf-8 from __future__ import unicode_literals import os import shutil import unittest import logging from contextlib import contextmanager from subprocess import check_output from PIL import Image from django.test.signals import setting_changed from django.conf import UserSettingsHolder from sorl.thumbnail.conf import settings from sorl.thumbnail.helpers import get_module_class from sorl.thumbnail.images import ImageFile from sorl.thumbnail.log import ThumbnailLogHandler from .models import Item from .storage import MockLoggingHandler DATA_DIR = os.path.join(settings.MEDIA_ROOT, 'data') handler = ThumbnailLogHandler() handler.setLevel(logging.ERROR) logging.getLogger('sorl.thumbnail').addHandler(handler) @contextmanager def same_open_fd_count(testcase): num_opened_fd_before = get_open_fds_count() yield num_opened_fd_after = get_open_fds_count() testcase.assertEqual( num_opened_fd_before, num_opened_fd_after, 'Open descriptors count changed, was %s, now %s' % (num_opened_fd_before, num_opened_fd_after) ) def get_open_fds_count(): """Return the number of open file descriptors for current process .. warning: will only work on UNIX-like os-es. """ pid = os.getpid() procs = check_output(["lsof", '-w', '-Ff', "-p", str(pid)]) nprocs = len( [s for s in procs.decode('utf-8').split('\n') if s and s[0] == 'f' and s[1:].isdigit()] ) return nprocs class override_custom_settings(object): """ settings overrider context manager. https://github.com/django/django/blob/1.6.2/django/test/utils.py#L209-L268 """ def __init__(self, settings_obj, **kwargs): self.settings = settings_obj self.options = kwargs def __enter__(self): self.enable() def __exit__(self, exc_type, exc_value, traceback): self.disable() def enable(self): override = UserSettingsHolder(self.settings._wrapped) for key, new_value in self.options.items(): setattr(override, key, new_value) self.wrapped = self.settings._wrapped self.settings._wrapped = override for key, new_value in self.options.items(): setting_changed.send(sender=self.settings._wrapped.__class__, setting=key, value=new_value, enter=True) def disable(self): self.settings._wrapped = self.wrapped del self.wrapped for key in self.options: new_value = getattr(self.settings, key, None) setting_changed.send(sender=self.settings._wrapped.__class__, setting=key, value=new_value, enter=False) class FakeFile(object): """ Used to test the _get_format method. """ def __init__(self, name): self.name = name class BaseTestCase(unittest.TestCase): IMAGE_DIMENSIONS = [(500, 500), (100, 100), (200, 100), ] BACKEND = None ENGINE = None KVSTORE = None def create_image(self, name, dim): """ Creates an image and prepends the MEDIA ROOT path. :param name: e.g. 500x500.jpg :param dim: a dimension tuple e.g. (500, 500) """ filename = os.path.join(settings.MEDIA_ROOT, name) im = Image.new('L', dim) im.save(filename) return Item.objects.get_or_create(image=name) def setUp(self): self.BACKEND = get_module_class(settings.THUMBNAIL_BACKEND)() self.ENGINE = get_module_class(settings.THUMBNAIL_ENGINE)() self.KVSTORE = get_module_class(settings.THUMBNAIL_KVSTORE)() if not os.path.exists(settings.MEDIA_ROOT): os.makedirs(settings.MEDIA_ROOT) shutil.copytree(settings.DATA_ROOT, DATA_DIR) for dimension in self.IMAGE_DIMENSIONS: name = '%sx%s.jpg' % dimension self.create_image(name, dimension) def tearDown(self): shutil.rmtree(settings.MEDIA_ROOT) class BaseStorageTestCase(unittest.TestCase): image = None name = None def setUp(self): os.makedirs(settings.MEDIA_ROOT) filename = os.path.join(settings.MEDIA_ROOT, self.name) Image.new('L', (100, 100)).save(filename) self.image = ImageFile(self.name) logger = logging.getLogger('slog') logger.setLevel(logging.DEBUG) handler = MockLoggingHandler(level=logging.DEBUG) logger.addHandler(handler) self.log = handler.messages['debug'] def tearDown(self): shutil.rmtree(settings.MEDIA_ROOT)
30.959732
95
0.660525
704b2657023bb17bb56383a04c7d84d4532bc5e1
253
py
Python
configs/faster_rcnn_hpc/faster_rcnn_r50_fpn_1x_tct_moco_lr10.py
zhaoyang97/mmdetection
93ce0e7b735ad1ed2e7d856ef80e3aa598cb47e5
[ "Apache-2.0" ]
null
null
null
configs/faster_rcnn_hpc/faster_rcnn_r50_fpn_1x_tct_moco_lr10.py
zhaoyang97/mmdetection
93ce0e7b735ad1ed2e7d856ef80e3aa598cb47e5
[ "Apache-2.0" ]
null
null
null
configs/faster_rcnn_hpc/faster_rcnn_r50_fpn_1x_tct_moco_lr10.py
zhaoyang97/mmdetection
93ce0e7b735ad1ed2e7d856ef80e3aa598cb47e5
[ "Apache-2.0" ]
null
null
null
_base_ = ['./faster_rcnn_r50_fpn_1x_tct.py'] model = dict( # pretrained='open-mmlab://detectron2/resnet50_caffe', pretrained='icode/moco_v2_800ep_pretrain_rename.pth') optimizer = dict(type='SGD', lr=0.02/20, momentum=0.9, weight_decay=0.0001)
36.142857
75
0.73913
f992c5f8589e66c70d1436359403fd910b66b1f9
1,800
py
Python
meraki/api/mx_inbound_firewall.py
fsandberg/dashboard-api-python
c01ff038643a39bd12660d2719375eeb05c7ba24
[ "MIT" ]
null
null
null
meraki/api/mx_inbound_firewall.py
fsandberg/dashboard-api-python
c01ff038643a39bd12660d2719375eeb05c7ba24
[ "MIT" ]
null
null
null
meraki/api/mx_inbound_firewall.py
fsandberg/dashboard-api-python
c01ff038643a39bd12660d2719375eeb05c7ba24
[ "MIT" ]
null
null
null
class MXInboundFirewall(object): def __init__(self, session): super(MXInboundFirewall, self).__init__() self._session = session def getNetworkApplianceFirewallInboundFirewallRules(self, networkId: str): """ **Return the inbound firewall rules for an MX network** https://developer.cisco.com/docs/meraki-api-v0/#!get-network-appliance-firewall-inbound-firewall-rules - networkId (string) """ metadata = { 'tags': ['MX inbound firewall'], 'operation': 'getNetworkApplianceFirewallInboundFirewallRules', } resource = f'/networks/{networkId}/appliance/firewall/inboundFirewallRules' return self._session.get(metadata, resource) def updateNetworkApplianceFirewallInboundFirewallRules(self, networkId: str, **kwargs): """ **Update the inbound firewall rules of an MX network** https://developer.cisco.com/docs/meraki-api-v0/#!update-network-appliance-firewall-inbound-firewall-rules - networkId (string) - rules (array): An ordered array of the firewall rules (not including the default rule) - syslogDefaultRule (boolean): Log the special default rule (boolean value - enable only if you've configured a syslog server) (optional) """ kwargs.update(locals()) metadata = { 'tags': ['MX inbound firewall'], 'operation': 'updateNetworkApplianceFirewallInboundFirewallRules', } resource = f'/networks/{networkId}/appliance/firewall/inboundFirewallRules' body_params = ['rules', 'syslogDefaultRule'] payload = {k: v for (k, v) in kwargs.items() if k in body_params} return self._session.put(metadata, resource, payload)
40
145
0.655556
fb61b7491608973267199175e119b9307878510c
1,843
py
Python
aldryn_newsblog/tests/test_i18n.py
compoundpartners/js-articles
2b48ed805f44c77fee9fdc6eae0b711147d9b77c
[ "BSD-3-Clause" ]
null
null
null
aldryn_newsblog/tests/test_i18n.py
compoundpartners/js-articles
2b48ed805f44c77fee9fdc6eae0b711147d9b77c
[ "BSD-3-Clause" ]
null
null
null
aldryn_newsblog/tests/test_i18n.py
compoundpartners/js-articles
2b48ed805f44c77fee9fdc6eae0b711147d9b77c
[ "BSD-3-Clause" ]
1
2018-12-10T10:42:42.000Z
2018-12-10T10:42:42.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals try: from django.core.urlresolvers import NoReverseMatch except ImportError: # Django 2.0 from django.urls import NoReverseMatch from django.utils.translation import override from . import NewsBlogTestCase class TestI18N(NewsBlogTestCase): def test_absolute_url_fallback(self): # Create an EN article with override('en'): article = self.create_article( title='God Save the Queen!', slug='god-save-queen') # Add a DE translation article.create_translation('de', title='Einigkeit und Recht und Freiheit!', slug='einigkeit-und-recht-und-freiheit') # Reload for good measure article = self.reload(article) self.assertEquals(article.get_absolute_url(language='en'), '/en/page/god-save-queen/') # Test that we can request the other defined language too self.assertEquals(article.get_absolute_url(language='de'), '/de/page/einigkeit-und-recht-und-freiheit/') # Now, let's request a language that article has not yet been translated # to, but has fallbacks defined, we should get EN self.assertEquals(article.get_absolute_url(language='fr'), '/en/page/god-save-queen/') # With settings changed to 'redirect_on_fallback': False, test again. with self.settings(CMS_LANGUAGES=self.NO_REDIRECT_CMS_SETTINGS): self.assertEquals(article.get_absolute_url(language='fr'), '/fr/page/god-save-queen/') # Now, let's request a language that has a fallback defined, but it is # not available either (should raise NoReverseMatch) with self.assertRaises(NoReverseMatch): article.get_absolute_url(language='it')
36.86
80
0.66522
6843ff0221dffea4ddf8da8ad5b728662f2c5caa
961
py
Python
server/src/tests/samples/annotatedVar5.py
adafruit/pyright
cdb883014bbb7392c04c4d4c65aa1c95aa7fa7ab
[ "MIT" ]
1
2019-09-14T06:02:16.000Z
2019-09-14T06:02:16.000Z
server/src/tests/samples/annotatedVar5.py
adafruit/pyright
cdb883014bbb7392c04c4d4c65aa1c95aa7fa7ab
[ "MIT" ]
4
2021-03-11T07:03:36.000Z
2021-10-06T22:27:25.000Z
server/src/tests/samples/annotatedVar5.py
acidburn0zzz/pyright
e41cc1bd7634ebfb25e8c71d5f065236581e0bff
[ "MIT" ]
null
null
null
# This sample tests type annotations for instance variables. class ClassC(object): def __init__(self): # This should generate an error. self.inst_var1 = 3 @property def prop1(self): return 1 @prop1.setter def prop1(self, val): pass def foo(self): # This should generate an error because the assigned # type doesn't match the declared type. self.inst_var1 = 3 # type: str self.inst_var1: str = 'hello' # This should generate an error because the declared # type doesn't match the previously declared type. self.inst_var1: int = 'hello' # This should generate an error because the declared # type doesn't match the previously declared type. self.inst_var1 = 'hello' # type: int self.prop1 = 3 class ClassE(ClassC): def __init__(self): # This should generate an error. self.inst_var1 = 3
24.025
60
0.620187
7876cfa0064f3bb140057dabe013d817a85c7372
2,225
py
Python
tests/test_s_dual_thrust.py
terencehk/rqalpha
349e6a0a8e45449646acd6063cdec06df3bc1171
[ "Apache-2.0" ]
5,263
2016-07-20T10:41:10.000Z
2022-03-29T08:24:34.000Z
tests/test_s_dual_thrust.py
terencehk/rqalpha
349e6a0a8e45449646acd6063cdec06df3bc1171
[ "Apache-2.0" ]
572
2016-07-28T07:51:02.000Z
2022-02-09T15:28:03.000Z
tests/test_s_dual_thrust.py
terencehk/rqalpha
349e6a0a8e45449646acd6063cdec06df3bc1171
[ "Apache-2.0" ]
1,769
2016-07-20T11:11:55.000Z
2022-03-31T10:11:38.000Z
def init(context): context.s1 = '000905.XSHG' subscribe(context.s1) def handle_bar(context, bar_dict): # stocknum = 50 his = history_bars(context.s1, 10, '1d', 'close') # print(his) if his[9] / his[8] < 0.97: if len(context.portfolio.positions) > 0: for stock in context.portfolio.positions.keys(): order_target_percent(stock, 0) return # 分配资金 # if len(context.portfolio.positions) < stocknum: # Num = stocknum - len(context.portfolio.positions) # Cash = context.portfolio.cash/Num # else: # Cash = context.portfolio.cash # Buy # 求出持有该股票的仓位,买入没有持仓并符合条件股票 position = context.portfolio.positions[context.s1].quantity # print(position) if position < 100: High = history_bars(context.s1, 3, '1d', 'high') Low = history_bars(context.s1, 3, '1d', 'low') Close = history_bars(context.s1, 3, '1d', 'close') Open = history_bars(context.s1, 3, '1d', 'open') # logger.info(High) HH = max(High[:2]) LC = min(Close[:2]) HC = max(Close[:2]) LL = min(Low[:2]) Openprice = Open[2] # logger.info(HH) # print(LC) # print(HC) # print(LL) # print(Openprice) # 使用第n-1日的收盘价作为当前价 current_price = Close[2] Range = max((HH - LC), (HC - LL)) K1 = 0.9 BuyLine = Openprice + K1 * Range # print(BuyLine,'buyline') if current_price > BuyLine: order_target_percent(context.s1, 1) hist = history_bars(context.s1, 3, '1d', 'close') case1 = (1 - hist[2] / hist[0]) >= 0.06 case2 = hist[1] / hist[0] <= 0.92 if case1 or case2: order_target_percent(context.s1, 0) __config__ = { "base": { "start_date": "2013-01-01", "end_date": "2015-12-29", "frequency": "1d", "matching_type": "current_bar", "benchmark": "000300.XSHG", "accounts": { "stock": 1000000 } }, "extra": { "log_level": "error", }, "mod": { "sys_progress": { "enabled": True, "show": True, }, }, }
25.872093
63
0.523146
4505630e0e0b0ce502fbd89137f7e1d39494681c
12,133
py
Python
stacker/actions/build.py
GoodRx/stacker
0cf1df67b4ae5aeda5845442c84905909101c238
[ "BSD-2-Clause" ]
1
2021-11-06T17:01:01.000Z
2021-11-06T17:01:01.000Z
stacker/actions/build.py
GoodRx/stacker
0cf1df67b4ae5aeda5845442c84905909101c238
[ "BSD-2-Clause" ]
null
null
null
stacker/actions/build.py
GoodRx/stacker
0cf1df67b4ae5aeda5845442c84905909101c238
[ "BSD-2-Clause" ]
1
2021-11-06T17:00:53.000Z
2021-11-06T17:00:53.000Z
import logging from .base import BaseAction from .. import exceptions, util from ..exceptions import StackDidNotChange from ..plan import Plan from ..status import ( NotSubmittedStatus, NotUpdatedStatus, DidNotChangeStatus, SubmittedStatus, CompleteStatus, SUBMITTED ) logger = logging.getLogger(__name__) def should_update(stack): """Tests whether a stack should be submitted for updates to CF. Args: stack (:class:`stacker.stack.Stack`): The stack object to check. Returns: bool: If the stack should be updated, return True. """ if stack.locked: if not stack.force: logger.debug("Stack %s locked and not in --force list. " "Refusing to update.", stack.name) return False else: logger.debug("Stack %s locked, but is in --force " "list.", stack.name) return True def should_submit(stack): """Tests whether a stack should be submitted to CF for update/create Args: stack (:class:`stacker.stack.Stack`): The stack object to check. Returns: bool: If the stack should be submitted, return True. """ if stack.enabled: return True logger.debug("Stack %s is not enabled. Skipping.", stack.name) return False def resolve_parameters(parameters, blueprint, context, provider): """Resolves parameters for a given blueprint. Given a list of parameters, first discard any parameters that the blueprint does not use. Then, if a parameter is a list of outputs in the format of <stack_name>::<output_name>,... pull those output(s) from the foreign stack(s). Args: parameters (dict): A dictionary of parameters provided by the stack definition blueprint (:class:`stacker.blueprint.base.Blueprint`): A Blueprint object that is having the parameters applied to it. context (:class:`stacker.context.Context`): The context object used to get the FQN of stacks. provider (:class:`stacker.providers.base.BaseProvider`): The provider used for looking up stacks & their outputs. Returns: dict: The resolved parameters. """ params = {} blueprint_params = blueprint.parameters for k, v in parameters.items(): if k not in blueprint_params: logger.debug("Template %s does not use parameter %s.", blueprint.name, k) continue value = v if isinstance(value, basestring) and "::" in value: # Get from the Output(s) of another stack(s) in the stack_map v_list = [] values = value.split(",") for v in values: v = v.strip() stack_name, output = v.split("::") stack_fqn = context.get_fqn(stack_name) try: v_list.append( provider.get_output(stack_fqn, output)) except KeyError: raise exceptions.OutputDoesNotExist(stack_fqn, v) value = ",".join(v_list) if value is None: logger.debug("Got None value for parameter %s, not submitting it " "to cloudformation, default value should be used.", k) continue if isinstance(value, bool): logger.debug("Converting parameter %s boolean \"%s\" to string.", k, value) value = str(value).lower() params[k] = value return params class Action(BaseAction): """Responsible for building & coordinating CloudFormation stacks. Generates the build plan based on stack dependencies (these dependencies are determined automatically based on references to output values from other stacks). The plan can then either be printed out as an outline or executed. If executed, each stack will get launched in order which entails: - Pushing the generated CloudFormation template to S3 if it has changed - Submitting either a build or update of the given stack to the `Provider`. - Stores the stack outputs for reference by other stacks. """ def _resolve_parameters(self, parameters, blueprint): """Resolves parameters for a given blueprint. Given a list of parameters, first discard any parameters that the blueprint does not use. Then, if a parameter is a list of outputs in the format of <stack_name>::<output_name>,... pull those output(s) from the foreign stack(s). Args: parameters (dict): A dictionary of parameters provided by the stack definition blueprint (:class:`stacker.blueprint.base.Blueprint`): A Blueprint object that is having the parameters applied to it. Returns: dict: The resolved parameters. """ return resolve_parameters(parameters, blueprint, self.context, self.provider) def build_parameters(self, stack, provider_stack=None): """Builds the parameters for our stack Args: stack (:class:`cloudformation.stack`): A Cloudformation stack provider_stack (:class:`stacker.providers.base.Provider`): An optional Stacker provider object Returns: dict: The parameters for the given stack """ parameters = self._resolve_parameters(stack.cfn_parameters, stack.blueprint) required_params = [k for k, v in stack.blueprint.required_parameters] parameters = self._handle_missing_parameters(parameters, required_params, provider_stack) return [ {'ParameterKey': p[0], 'ParameterValue': str(p[1])} for p in parameters ] def _build_stack_tags(self, stack): """Builds a common set of tags to attach to a stack""" return [ {'Key': t[0], 'Value': t[1]} for t in self.context.tags.items()] def _launch_stack(self, stack, **kwargs): """Handles the creating or updating of a stack in CloudFormation. Also makes sure that we don't try to create or update a stack while it is already updating or creating. """ if not should_submit(stack): return NotSubmittedStatus() try: provider_stack = self.provider.get_stack(stack.fqn) except exceptions.StackDoesNotExist: provider_stack = None old_status = kwargs.get("status") if provider_stack and old_status == SUBMITTED: logger.debug( "Stack %s provider status: %s", stack.fqn, self.provider.get_stack_status(provider_stack), ) if self.provider.is_stack_completed(provider_stack): submit_reason = getattr(old_status, "reason", None) return CompleteStatus(submit_reason) elif self.provider.is_stack_in_progress(provider_stack): logger.debug("Stack %s in progress.", stack.fqn) return old_status logger.debug("Resolving stack %s variables", stack.fqn) stack.resolve_variables(self.context, self.provider) logger.debug("Launching stack %s now.", stack.fqn) template_url = self.s3_stack_push(stack.blueprint) tags = self._build_stack_tags(stack) parameters = self.build_parameters(stack, provider_stack) new_status = None if not provider_stack: new_status = SubmittedStatus("creating new stack") logger.debug("Creating new stack: %s", stack.fqn) self.provider.create_stack(stack.fqn, template_url, parameters, tags) else: if not should_update(stack): return NotUpdatedStatus() try: new_status = SubmittedStatus("updating existing stack") self.provider.update_stack(stack.fqn, template_url, parameters, tags) logger.debug("Updating existing stack: %s", stack.fqn) except StackDidNotChange: return DidNotChangeStatus() return new_status def _handle_missing_parameters(self, params, required_params, existing_stack=None): """Handles any missing parameters. If an existing_stack is provided, look up missing parameters there. Args: params (dict): key/value dictionary of stack definition parameters required_params (list): A list of required parameter names. existing_stack (dict): A dict representation of the stack. If provided, will be searched for any missing parameters. Returns: list of tuples: The final list of key/value pairs returned as a list of tuples. Raises: MissingParameterException: Raised if a required parameter is still missing. """ missing_params = list(set(required_params) - set(params.keys())) if existing_stack and 'Parameters' in existing_stack: stack_params = {p['ParameterKey']: p['ParameterValue'] for p in existing_stack['Parameters']} for p in missing_params: if p in stack_params: value = stack_params[p] logger.debug("Using parameter %s from existing stack: %s", p, value) params[p] = value final_missing = list(set(required_params) - set(params.keys())) if final_missing: raise exceptions.MissingParameterException(final_missing) return params.items() def _generate_plan(self, tail=False): plan_kwargs = {} if tail: plan_kwargs["watch_func"] = self.provider.tail_stack plan = Plan(description="Create/Update stacks", **plan_kwargs) stacks = self.context.get_stacks_dict() dependencies = self._get_dependencies() for stack_name in self.get_stack_execution_order(dependencies): plan.add( stacks[stack_name], run_func=self._launch_stack, requires=dependencies.get(stack_name), ) return plan def _get_dependencies(self): dependencies = {} for stack in self.context.get_stacks(): dependencies[stack.fqn] = stack.requires return dependencies def pre_run(self, outline=False, *args, **kwargs): """Any steps that need to be taken prior to running the action.""" pre_build = self.context.config.get("pre_build") if not outline and pre_build: util.handle_hooks("pre_build", pre_build, self.provider.region, self.context) def run(self, outline=False, tail=False, dump=False, *args, **kwargs): """Kicks off the build/update of the stacks in the stack_definitions. This is the main entry point for the Builder. """ plan = self._generate_plan(tail=tail) if not outline and not dump: plan.outline(logging.DEBUG) logger.debug("Launching stacks: %s", ", ".join(plan.keys())) plan.execute() else: if outline: plan.outline() if dump: plan.dump(dump) def post_run(self, outline=False, *args, **kwargs): """Any steps that need to be taken after running the action.""" post_build = self.context.config.get("post_build") if not outline and post_build: util.handle_hooks("post_build", post_build, self.provider.region, self.context)
37.447531
79
0.594742
11e82fd8a9fc588a77f9719d347e05d8719785a6
1,856
py
Python
examples/slack/slack_operator_mode.py
doru1004/rayvens
da89f405586a06b50cc8bb6273d8582400fbca9c
[ "Apache-2.0" ]
24
2021-06-18T21:38:04.000Z
2022-02-16T19:16:49.000Z
examples/slack/slack_operator_mode.py
doru1004/rayvens
da89f405586a06b50cc8bb6273d8582400fbca9c
[ "Apache-2.0" ]
11
2021-06-22T14:36:27.000Z
2021-12-09T16:33:15.000Z
examples/slack/slack_operator_mode.py
doru1004/rayvens
da89f405586a06b50cc8bb6273d8582400fbca9c
[ "Apache-2.0" ]
5
2021-06-18T22:03:55.000Z
2021-08-02T05:11:46.000Z
# # Copyright IBM Corporation 2021 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import ray import rayvens import sys # Send message to Slack sink using the kamel anywhere operator implementation. # Command line arguments and validation: if len(sys.argv) < 4: print(f'usage: {sys.argv[0]} <slack_channel> <slack_webhook> <run_mode>') sys.exit(1) slack_channel = sys.argv[1] slack_webhook = sys.argv[2] run_mode = sys.argv[3] if run_mode not in ['local', 'mixed', 'operator']: raise RuntimeError(f'Invalid run mode provided: {run_mode}') # Initialize ray either on the cluster or locally otherwise. if run_mode == 'operator': ray.init(address='auto') else: ray.init() # Start rayvens in operator mode. rayvens.init(mode=run_mode) # Create stream. stream = rayvens.Stream('slack') # Event sink config. sink_config = dict(kind='slack-sink', route='/toslack', channel=slack_channel, webhook_url=slack_webhook) # Add sink to stream. sink = stream.add_sink(sink_config) # Sends message to all sinks attached to this stream. stream << f'Sending message to Slack sink in run mode {run_mode}.' # Disconnect any sources or sinks attached to the stream 2 seconds after # the stream is idle (i.e. no events were propagated by the stream). stream.disconnect_all(after_idle_for=2)
30.933333
78
0.724138
fb3fcba2ed9cad66bcdb6583bfc0bb41d71613dc
6,625
py
Python
src/ccapi/model/model/metabolic/__init__.py
achillesrasquinha/CCPy
7a5b4fc008a9a0c90caee5d2d6a8c67393dcb822
[ "MIT" ]
3
2019-12-30T23:13:22.000Z
2020-03-11T11:03:39.000Z
src/ccapi/model/model/metabolic/__init__.py
achillesrasquinha/CCPy
7a5b4fc008a9a0c90caee5d2d6a8c67393dcb822
[ "MIT" ]
2
2019-12-20T20:01:01.000Z
2020-01-09T19:04:32.000Z
src/ccapi/model/model/metabolic/__init__.py
achillesrasquinha/CCPy
7a5b4fc008a9a0c90caee5d2d6a8c67393dcb822
[ "MIT" ]
1
2019-12-30T23:13:46.000Z
2019-12-30T23:13:46.000Z
# imports - standard imports from os.path import join # imports - module imports from ccapi.model.model.version import ModelVersion from ccapi.core.querylist import QueryList from ccapi.core.mixins import JupyterHTMLViewMixin from ccapi.template import render_template from bpyutils.util.string import ellipsis from bpyutils.util.system import makepath from bpyutils.util.request import download_file from ccapi.constant import CONSTRAINT_BASED_MODEL_EXPORT_TYPE from ccapi.core.config import Configuration # imports - constraint-based model imports from ccapi.model.model.metabolic.metabolite import Metabolite from ccapi.model.model.metabolic.gene import Gene from ccapi.model.model.metabolic.reaction import Reaction config = Configuration() class ConstraintBasedModel(ModelVersion, JupyterHTMLViewMixin): _REPR_ATTRIBUTES = [ dict({ "name": "number_of_metabolites", "title": "Number of Metabolites", "key": lambda x: len(x.metabolites) }) ] def __init__(self, *args, **kwargs): self.super = super(ConstraintBasedModel, self) self.super.__init__(*args, **kwargs) self._metabolites = QueryList() self._reactions = QueryList() def _repr_html_(self): repr_ = render_template(join("metabolic", "model.html"), context = dict({ "id": self.id, "version": self.version, "name": self.name, "memory_address": "0x0%x" % id(self), "number_of_metabolites": len(self.metabolites), "metabolites": ellipsis(", ".join([s.name for s in self.metabolites]), threshold = 500), "number_of_reactions": len(self.reactions), "reactions": ellipsis(", ".join([s.name for s in self.reactions]), threshold = 500) })) return repr_ @property def metabolites(self): metabolites = getattr(self, "_metabolites", QueryList()) return metabolites @metabolites.setter def metabolites(self, value): if self.metabolites == value: pass elif not isinstance(value, (list, tuple, QueryList)): raise TypeError("ID must be an integer.") else: self._metabolites = value if not isinstance(value, QueryList): raise TypeError("Components must be of type (list, tuple, QueryList).") else: for metabolite in value: if not isinstance(metabolite, Metabolite): raise TypeError("Element must be of type Metabolite.") self._metabolites = value def add_metabolite(self, metabolite): if not isinstance(metabolite, Metabolite): raise TypeError("Metabolite must be of type %s, found %s." % (Metabolite, type(metabolite)) ) else: if metabolite in self.metabolites: raise ValueError("Metabolite already exists.") else: self.metabolites.append(metabolite) def add_metabolites(self, *metabolites): for metabolite in metabolites: if not isinstance(metabolite, Metabolite): raise TypeError("Metabolite must be of type %s, found %s." % (Metabolite, type(Metabolite)) ) for metabolite in metabolites: self.add_metabolite(metabolite) @property def reactions(self): reactions = getattr(self, "_reactions", QueryList()) return reactions @reactions.setter def reactions(self, value): if self.reactions == value: pass elif not isinstance(value, (list, tuple, QueryList)): raise TypeError("ID must be an integer.") else: self._reactions = value if not isinstance(value, QueryList): raise TypeError("Components must be of type (list, tuple, QueryList).") else: for reaction in value: if not isinstance(reaction, Reaction): raise TypeError("Element must be of type Reaction.") self._reactions = value def add_reaction(self, reaction): if not isinstance(reaction, Reaction): raise TypeError("Reaction must be of type %s, found %s." % (Reaction, type(reaction)) ) else: if reaction in self.reactions: raise ValueError("Reaction already exists.") else: self.reactions.append(reaction) def add_reactions(self, *reactions): for reaction in reactions: if not isinstance(reaction, Reaction): raise TypeError("Reaction must be of type %s, found %s." % (Reaction, type(Reaction)) ) for reaction in reactions: self.add_reaction(reaction) def write(self, path = None, type = "sbml", **kwargs): type_ = CONSTRAINT_BASED_MODEL_EXPORT_TYPE[type]["value"] params = { "version": self.version, "type": type_ } response = self.client.request("GET", "api/model/%s/export" % self.id, params = params) if not path: header = response.headers["content-disposition"] name = re.findall("filename=(.+)", header)[0] path = abspath(name) nchunk = kwargs.get("nchunk", config.max_chunk_download_bytes) makepath(path) path = download_file(response, path, chunk_size = nchunk) return path def to_json(self): data = self.super.to_json() data["id"] = str(self.version) data["metabolites"] = [ ] for metabolite in self.metabolites: json = metabolite.to_json() data["metabolites"].append(json) data["reactions"] = [ ] for reaction in self.reactions: json = reaction.to_json() data["reactions"].append(json) data["genes"] = [ ] return data def analyse(self, type_ = "fba"): model = self.to_json() data = dict(type = "metabolic", model = model, analysis = type_) response = self.client.post("api/model/analyse", json = data) content = response.json() return content
35.427807
110
0.571774
3fbd629dbe7fc993bfaa03b9b0bfd2edf7245826
272
py
Python
checker/rfid/read.py
Rami87/Door-lock-raspbarrypi
181fed07e577c81a20450d5a32f147c9f7c8cd6f
[ "MIT" ]
null
null
null
checker/rfid/read.py
Rami87/Door-lock-raspbarrypi
181fed07e577c81a20450d5a32f147c9f7c8cd6f
[ "MIT" ]
null
null
null
checker/rfid/read.py
Rami87/Door-lock-raspbarrypi
181fed07e577c81a20450d5a32f147c9f7c8cd6f
[ "MIT" ]
null
null
null
#!/usr/bin/env python import RPi.GPIO as GPIO import SimpleMFRC522 import time reader = SimpleMFRC522.SimpleMFRC522() while(True): try: id, text = reader.read() print(id) print(text) time.sleep(1) finally: GPIO.cleanup()
16
38
0.613971
57a80709df834486c76f7b9cbc73dbe1e3308cd0
1,628
py
Python
tests/basics/with1.py
learnforpractice/micropython-cpp
004bc8382f74899e7b876cc29bfa6a9cc976ba10
[ "MIT" ]
13,648
2015-01-01T01:34:51.000Z
2022-03-31T16:19:53.000Z
tests/basics/with1.py
learnforpractice/micropython-cpp
004bc8382f74899e7b876cc29bfa6a9cc976ba10
[ "MIT" ]
7,092
2015-01-01T07:59:11.000Z
2022-03-31T23:52:18.000Z
tests/basics/with1.py
learnforpractice/micropython-cpp
004bc8382f74899e7b876cc29bfa6a9cc976ba10
[ "MIT" ]
4,942
2015-01-02T11:48:50.000Z
2022-03-31T19:57:10.000Z
class CtxMgr: def __enter__(self): print("__enter__") return self def __exit__(self, a, b, c): print("__exit__", repr(a), repr(b)) with CtxMgr() as a: print(isinstance(a, CtxMgr)) try: with CtxMgr() as a: raise ValueError except ValueError: print("ValueError") class CtxMgr2: def __enter__(self): print("__enter__") return self def __exit__(self, a, b, c): print("__exit__", repr(a), repr(b)) return True try: with CtxMgr2() as a: raise ValueError print("No ValueError2") except ValueError: print("ValueError2") # These recursive try-finally tests are attempt to get some interpretation # of last phrase in http://docs.python.org/3.4/library/dis.html#opcode-WITH_CLEANUP # "If the stack represents an exception, and the function call returns a 'true' # value, this information is "zapped" and replaced with a single WHY_SILENCED # to prevent END_FINALLY from re-raising the exception. (But non-local gotos # will still be resumed.)" print("===") with CtxMgr2() as a: try: try: raise ValueError print("No ValueError3") finally: print("finally1") finally: print("finally2") print("===") try: try: with CtxMgr2() as a: try: try: raise ValueError print("No ValueError3") finally: print("finally1") finally: print("finally2") finally: print("finally3") finally: print("finally4")
22.611111
83
0.580467
b6ecee56b03f118d4bc483b9c92853ab507def17
1,077
py
Python
networking_vpp/db/migration/alembic_migrations/versions/ocata/expand/51f8d5ee1a46_l3_plugin_for_vpp.py
fepan/networking-vpp
3032013dc78893ec1bf41537026649f4e934020c
[ "Apache-2.0" ]
1
2021-07-17T07:50:03.000Z
2021-07-17T07:50:03.000Z
networking_vpp/db/migration/alembic_migrations/versions/ocata/expand/51f8d5ee1a46_l3_plugin_for_vpp.py
fepan/networking-vpp
3032013dc78893ec1bf41537026649f4e934020c
[ "Apache-2.0" ]
null
null
null
networking_vpp/db/migration/alembic_migrations/versions/ocata/expand/51f8d5ee1a46_l3_plugin_for_vpp.py
fepan/networking-vpp
3032013dc78893ec1bf41537026649f4e934020c
[ "Apache-2.0" ]
null
null
null
# Copyright 2017 Cisco Systems Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # """L3 plugin for VPP Revision ID: 51f8d5ee1a46 Revises: 6a909ba3748c Create Date: 2016-10-17 16:39:11.037544 """ # revision identifiers, used by Alembic. revision = '51f8d5ee1a46' down_revision = '6a909ba3748c' from alembic import op import sqlalchemy as sa def upgrade(): op.create_table('vpp_router_vrfs', sa.Column('router_id', sa.String(36), primary_key=True), sa.Column('vrf_id', sa.Integer, nullable=False))
29.916667
78
0.707521
f946b076e325451875dd09690194581d9267cab1
7,741
py
Python
env/Lib/site-packages/plotly/graph_objs/sunburst/marker/_line.py
andresgreen-byte/Laboratorio-1--Inversion-de-Capital
8a4707301d19c3826c31026c4077930bcd6a8182
[ "MIT" ]
7
2022-01-16T12:28:16.000Z
2022-03-04T15:31:45.000Z
env/Lib/site-packages/plotly/graph_objs/sunburst/marker/_line.py
andresgreen-byte/Laboratorio-1--Inversion-de-Capital
8a4707301d19c3826c31026c4077930bcd6a8182
[ "MIT" ]
14
2021-10-20T23:33:47.000Z
2021-12-21T04:50:37.000Z
env/Lib/site-packages/plotly/graph_objs/sunburst/marker/_line.py
andresgreen-byte/Laboratorio-1--Inversion-de-Capital
8a4707301d19c3826c31026c4077930bcd6a8182
[ "MIT" ]
1
2021-11-29T22:55:05.000Z
2021-11-29T22:55:05.000Z
from plotly.basedatatypes import BaseTraceHierarchyType as _BaseTraceHierarchyType import copy as _copy class Line(_BaseTraceHierarchyType): # class properties # -------------------- _parent_path_str = "sunburst.marker" _path_str = "sunburst.marker.line" _valid_props = {"color", "colorsrc", "width", "widthsrc"} # color # ----- @property def color(self): """ Sets the color of the line enclosing each sector. Defaults to the `paper_bgcolor` value. The 'color' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, rebeccapurple, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen - A list or array of any of the above Returns ------- str|numpy.ndarray """ return self["color"] @color.setter def color(self, val): self["color"] = val # colorsrc # -------- @property def colorsrc(self): """ Sets the source reference on Chart Studio Cloud for `color`. The 'colorsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["colorsrc"] @colorsrc.setter def colorsrc(self, val): self["colorsrc"] = val # width # ----- @property def width(self): """ Sets the width (in px) of the line enclosing each sector. The 'width' property is a number and may be specified as: - An int or float in the interval [0, inf] - A tuple, list, or one-dimensional numpy array of the above Returns ------- int|float|numpy.ndarray """ return self["width"] @width.setter def width(self, val): self["width"] = val # widthsrc # -------- @property def widthsrc(self): """ Sets the source reference on Chart Studio Cloud for `width`. The 'widthsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["widthsrc"] @widthsrc.setter def widthsrc(self, val): self["widthsrc"] = val # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ color Sets the color of the line enclosing each sector. Defaults to the `paper_bgcolor` value. colorsrc Sets the source reference on Chart Studio Cloud for `color`. width Sets the width (in px) of the line enclosing each sector. widthsrc Sets the source reference on Chart Studio Cloud for `width`. """ def __init__( self, arg=None, color=None, colorsrc=None, width=None, widthsrc=None, **kwargs ): """ Construct a new Line object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.sunburst.marker.Line` color Sets the color of the line enclosing each sector. Defaults to the `paper_bgcolor` value. colorsrc Sets the source reference on Chart Studio Cloud for `color`. width Sets the width (in px) of the line enclosing each sector. widthsrc Sets the source reference on Chart Studio Cloud for `width`. Returns ------- Line """ super(Line, self).__init__("line") if "_parent" in kwargs: self._parent = kwargs["_parent"] return # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.sunburst.marker.Line constructor must be a dict or an instance of :class:`plotly.graph_objs.sunburst.marker.Line`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) # Populate data dict with properties # ---------------------------------- _v = arg.pop("color", None) _v = color if color is not None else _v if _v is not None: self["color"] = _v _v = arg.pop("colorsrc", None) _v = colorsrc if colorsrc is not None else _v if _v is not None: self["colorsrc"] = _v _v = arg.pop("width", None) _v = width if width is not None else _v if _v is not None: self["width"] = _v _v = arg.pop("widthsrc", None) _v = widthsrc if widthsrc is not None else _v if _v is not None: self["widthsrc"] = _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False
32.800847
86
0.547733
0bada741fe05670f463d850df05c157ef508172d
1,526
py
Python
gallery/models.py
szsu-ryerson/ImageUpload
163cc99aaf309fd46084384d47b0bfe34e1b5c2d
[ "MIT" ]
null
null
null
gallery/models.py
szsu-ryerson/ImageUpload
163cc99aaf309fd46084384d47b0bfe34e1b5c2d
[ "MIT" ]
null
null
null
gallery/models.py
szsu-ryerson/ImageUpload
163cc99aaf309fd46084384d47b0bfe34e1b5c2d
[ "MIT" ]
2
2019-06-23T00:27:58.000Z
2019-06-23T02:21:57.000Z
from gallery import app, db from flask_login import UserMixin from werkzeug.security import generate_password_hash, check_password_hash db.create_all() class LoginUser(db.Model, UserMixin): __tablename__ = 'user' email = db.Column(db.String, primary_key=True) authenticated = db.Column(db.Boolean, default=False) pw_hash = db.Column(db.String) def is_active(self): return True def get_id(self): return self.email def is_authenticated(self): return self.authenticated def is_anonymous(self): return False def set_password(self, password): self.pw_hash = generate_password_hash(password) def check_password(self, password): return check_password_hash(self.pw_hash, password) class Appuser(db.Model): id = db.Column(db.Integer, primary_key=True) username = db.Column(db.String(80), unique=True, nullable=False) email = db.Column(db.String(120), unique=True, nullable=False) images = db.relationship("Appimage", backref="appuser", lazy=True) def __repr__(self): return '<Appuser %r>' % self.email def get_id(self): return self.id class Appimage(db.Model): id = db.Column(db.Integer, primary_key=True) URL = db.Column(db.String(120), unique=True, nullable=False) appuser_id = db.Column(db.Integer, db.ForeignKey('appuser.id')) def __repr__(self): return '<Appimage %r: %s>' % (self.URL,self.appuser.email)
28.259259
73
0.663827
071fe37426022baeee5d74540fb0a90e6dd31178
382
py
Python
miamm/recipes/forms.py
kimond/miamm
b351ea22c1d48e1ff7012099dda1474e4658a617
[ "BSD-3-Clause" ]
2
2015-01-27T15:03:58.000Z
2015-01-27T16:29:56.000Z
miamm/recipes/forms.py
kimond/miamm
b351ea22c1d48e1ff7012099dda1474e4658a617
[ "BSD-3-Clause" ]
null
null
null
miamm/recipes/forms.py
kimond/miamm
b351ea22c1d48e1ff7012099dda1474e4658a617
[ "BSD-3-Clause" ]
null
null
null
from django import forms from recipes.models import * class RecipeIngredientForm(forms.ModelForm): class Meta: model = RecipeIngredient fields = '__all__' class StepForm(forms.ModelForm): class Meta: model = Step fields = '__all__' class RecipeForm(forms.ModelForm): class Meta: model = Recipe fields = '__all__'
18.190476
44
0.643979
1a599615125892d97bbbac367a462d63ce00a44c
7,342
py
Python
src/BPL_hotspots/src/find_bpl_hotspots.py
space-isa/get-connected-2.0
b5487ab97689e347dd30caefd01885095f8e8dff
[ "MIT" ]
null
null
null
src/BPL_hotspots/src/find_bpl_hotspots.py
space-isa/get-connected-2.0
b5487ab97689e347dd30caefd01885095f8e8dff
[ "MIT" ]
null
null
null
src/BPL_hotspots/src/find_bpl_hotspots.py
space-isa/get-connected-2.0
b5487ab97689e347dd30caefd01885095f8e8dff
[ "MIT" ]
null
null
null
#!/usr/bin/python3 # Tested with Python 3.8.6 #------------------------------------------------------------------------------ # find_bpl_hotspots.py #------------------------------------------------------------------------------ # Author: Isabel J. Rodriguez # 2021.01.23 #------------------------------------------------------------------------------ """ Scrape data from the Bklyn Reach website and generate a csv file containing relevant information from participating libraries in the BPL system. INPUTS ------ NONE Uses the existing Bklyn Reach url: https://www.bklynlibrary.org/reach/ OUTPUTS ------- Output file: "bpl_wifi.csv" Data included: LIBRARY ADDRESS WI-FI PROGRAM AVAILABILITY LIBRARY WEBSITE """ # Standard Python library imports import csv import sys import time # Companion scripts from write_to_csv import write_to_csv from exception_handler import exception_handler from soupify_webpage import parse_html # Geolocator from geopy.geocoders import Nominatim def pull_wifi_data(): # fetch html bpl_reach_url= 'https://www.bklynlibrary.org/reach/' webpage_soup = parse_html(bpl_reach_url) # parse html content containers = webpage_soup.findAll("div", {"class" : "panel-body"}) # containers[0] has all active participating libraries # containers[1] libraries listed as having a program 'coming soon' list_active = containers[0].ul.findAll("li") return list_active def geolocate_coordinates(street_address=None): if street_address is not None: try: geolocator = Nominatim(user_agent="bpl_wifi") location = geolocator.geocode(street_address) print(location.address) latitude = str(location.latitude) longitude = str(location.longitude) except AttributeError: latitude = 'NaN' longitude = 'NaN' return latitude, longitude def pull_address_data(url=None): """ Libraries with active extended wi-fi programs have their websites listed. Access websites and pull street address and zip code. If an street address intersection is given e.g., "16 Brighton First Rd. at Brighton Beach Ave." remove the intersection and return e.g., "16 Brighton First Rd." """ if url is not None: webpage_soup = parse_html(url) street_container = webpage_soup.findAll("div", {"class":"street-block"}) zip_container = webpage_soup.findAll("div", {"class":"addressfield-container-inline locality-block country-US"}) street_address = street_container[0].div.text zip_code = zip_container[0].findAll("span", {"class":"postal-code"})[0].text # clean address data split_address = street_address.split() stopwords = ['at', '(near', '(Near', '(at', '(@'] # remove street intersection for stopword in stopwords: if stopword in split_address: street_address = split_address[:split_address.index(stopword)] street_address = ' '.join(street_address) else: pass # addresses with street numbers spelled out decreases accuracy # replace with number (e.g., first --> 1st) # this is done on a case-by-case basis but could be generalized if 'First' in street_address: street_address = street_address.replace("First", "1st") else: pass if 'Fourth' in street_address: street_address = street_address.replace("Fourth", "4th") # grab geolocation data latitude, longitude = geolocate_coordinates(street_address=street_address + ', Brooklyn') return street_address, zip_code, latitude, longitude def store_data(list_active): """ Create a dictionary to store information for Brooklyn Public Libraries participating in the Bklyn Reach extended wi-fi program. """ # Bklyn Reach service details wifi_range = '300 feet' wifi_availability = '24/7' wifi_program = 'Bklyn Reach' city = 'Brooklyn' state = 'New York' # create a storage container for BPL data bp_libraries = {list_active[i].text: {'STREET ADDRESS' : '', 'CITY' : city, 'STATE' : state, 'ZIP CODE' : '', 'LATITUDE' : '', 'LONGITUDE' : '', 'WI-FI PROGRAM': wifi_program, 'AVAILABILITY': wifi_availability, 'WI-FI RANGE' : wifi_range, 'LIBRARY WEBSITE': '' } for i in range(len(list_active))} print("Compiling data...") for i in range (len(list_active)): nested_dict = bp_libraries[list_active[i].text] street_address, zip_code, latitude, longitude = pull_address_data(list_active[i].a["href"]) nested_dict['STREET ADDRESS'] = street_address nested_dict['ZIP CODE'] = zip_code nested_dict['LATITUDE'] = latitude nested_dict['LONGITUDE'] = longitude nested_dict['LIBRARY WEBSITE'] = list_active[i].a["href"] return bp_libraries def write_data_to_csv(bp_libraries, output_filename=None, output_folder=None): """ Pull data from storage dictionary into a list of lists, and write to csv. ARGUMENTS --------- bp_libraries : dict output_filename : str e.g., "bpl_wifi.csv" output_folder : str RETURNS ------- None """ output = [] # Order and sort data into output container for key, val in bp_libraries.items(): output.append([key, val['STREET ADDRESS'], val['CITY'], val['STATE'], val['ZIP CODE'], val['LATITUDE'], val['LONGITUDE'], val['WI-FI PROGRAM'], val['AVAILABILITY'], val['LIBRARY WEBSITE']]) output.sort(key=lambda header: header[0]) print("Compilation complete. Writing out to a csv file.") write_to_csv(output_filename=output_filename, output_folder=output_folder, output=output) @exception_handler def main(output_filename=None): """ Contains a pipeline that accepts an input csv file, and outputs processed and sorted data into an output csv file. ARGUMENTS --------- output_filename : str e.g., "wifi.csv" RETURNS ------- None """ list_active = pull_wifi_data() bp_libraries = store_data(list_active) write_data_to_csv(bp_libraries, output_filename=output_filename, output_folder=output_folder) if __name__ == "__main__": date = time.strftime("%m%d%Y") output_folder = "../output/" output_filename = "bpl_wifi_{}.csv".format(date) main(output_filename)
32.343612
120
0.565786
e366a72a0bf8b91fbe3d3e4ad9a1215a5a3614be
2,688
py
Python
sdk/python/pulumi_azure_nextgen/network/v20200301/get_virtual_network_gateway_advertised_routes.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
31
2020-09-21T09:41:01.000Z
2021-02-26T13:21:59.000Z
sdk/python/pulumi_azure_nextgen/network/v20200301/get_virtual_network_gateway_advertised_routes.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
231
2020-09-21T09:38:45.000Z
2021-03-01T11:16:03.000Z
sdk/python/pulumi_azure_nextgen/network/v20200301/get_virtual_network_gateway_advertised_routes.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
4
2020-09-29T14:14:59.000Z
2021-02-10T20:38:16.000Z
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables from . import outputs __all__ = [ 'GetVirtualNetworkGatewayAdvertisedRoutesResult', 'AwaitableGetVirtualNetworkGatewayAdvertisedRoutesResult', 'get_virtual_network_gateway_advertised_routes', ] @pulumi.output_type class GetVirtualNetworkGatewayAdvertisedRoutesResult: """ List of virtual network gateway routes. """ def __init__(__self__, value=None): if value and not isinstance(value, list): raise TypeError("Expected argument 'value' to be a list") pulumi.set(__self__, "value", value) @property @pulumi.getter def value(self) -> Optional[Sequence['outputs.GatewayRouteResponseResult']]: """ List of gateway routes. """ return pulumi.get(self, "value") class AwaitableGetVirtualNetworkGatewayAdvertisedRoutesResult(GetVirtualNetworkGatewayAdvertisedRoutesResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetVirtualNetworkGatewayAdvertisedRoutesResult( value=self.value) def get_virtual_network_gateway_advertised_routes(peer: Optional[str] = None, resource_group_name: Optional[str] = None, virtual_network_gateway_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetVirtualNetworkGatewayAdvertisedRoutesResult: """ List of virtual network gateway routes. :param str peer: The IP address of the peer. :param str resource_group_name: The name of the resource group. :param str virtual_network_gateway_name: The name of the virtual network gateway. """ __args__ = dict() __args__['peer'] = peer __args__['resourceGroupName'] = resource_group_name __args__['virtualNetworkGatewayName'] = virtual_network_gateway_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-nextgen:network/v20200301:getVirtualNetworkGatewayAdvertisedRoutes', __args__, opts=opts, typ=GetVirtualNetworkGatewayAdvertisedRoutesResult).value return AwaitableGetVirtualNetworkGatewayAdvertisedRoutesResult( value=__ret__.value)
38.4
190
0.697917
622e414483684a0ef56f738ba607a731e1428ae2
445
py
Python
custom_types.py
Adman/messenger-stats
184c3a3c8915089a211d2b68a8913855558d5c66
[ "MIT" ]
6
2018-02-04T18:57:37.000Z
2020-01-11T23:32:03.000Z
custom_types.py
franeklubi/messenger-stats
3d1eb401326e79a7a84c565c62d976f0954a7d5a
[ "MIT" ]
7
2018-01-30T21:39:08.000Z
2020-09-28T04:35:41.000Z
custom_types.py
franeklubi/messenger-stats
3d1eb401326e79a7a84c565c62d976f0954a7d5a
[ "MIT" ]
3
2019-11-02T22:58:16.000Z
2020-10-28T03:42:21.000Z
import datetime from typing import NamedTuple, List Message = NamedTuple('Message', [('sender', str), ('text', str), ('created_at', datetime.datetime)]) Participants = List[str] Conversation = NamedTuple('Conversation', [('participants', Participants), ('messages', List[Message])]) NamedConversation = NamedTuple('NamedConversation', [('name', str), ('participants', Participants), ('messages', List[Message])])
49.444444
108
0.674157
adf144b913ec184188bbfa16110d2ad8e09863b1
1,476
py
Python
assignment1/optimizer/_base_optimizer.py
simonanez/deep-learning-cs7643
2ccd3ca336e49abe83ba6516919314db72f9bb8c
[ "MIT" ]
3
2022-01-16T14:46:57.000Z
2022-02-20T22:40:16.000Z
assignment1/optimizer/_base_optimizer.py
steven-rr/deep-learning-cs7643
2ccd3ca336e49abe83ba6516919314db72f9bb8c
[ "MIT" ]
null
null
null
assignment1/optimizer/_base_optimizer.py
steven-rr/deep-learning-cs7643
2ccd3ca336e49abe83ba6516919314db72f9bb8c
[ "MIT" ]
6
2021-09-29T11:42:37.000Z
2022-02-02T02:33:51.000Z
class _BaseOptimizer: def __init__(self, learning_rate=1e-4, reg=1e-3): self.learning_rate = learning_rate self.reg = reg def update(self, model): pass def apply_regularization(self, model): ''' Apply L2 penalty to the model. Update the gradient dictionary in the model :param model: The model with gradients :return: None, but the gradient dictionary of the model should be updated ''' ############################################################################# # TODO: # # 1) Apply L2 penalty to model weights based on the regularization # # coefficient # ############################################################################# if len(model.weights) < 2: model.gradients['W1'] = model.gradients['W1'] + self.reg * model.weights['W1'] else: model.gradients['W1'] = model.gradients['W1'] + self.reg * model.weights['W1'] model.gradients['W2'] = model.gradients['W2'] + self.reg * model.weights['W2'] ############################################################################# # END OF YOUR CODE # #############################################################################
50.896552
90
0.381436
f1cb69e9959973504930eeb3dab9f3129fb6d37c
12,974
py
Python
tfx/orchestration/kubeflow/v2/step_builder_test.py
TimoKerr/tfx
10d13d57eeac21514fed73118cb43464dada67f1
[ "Apache-2.0" ]
null
null
null
tfx/orchestration/kubeflow/v2/step_builder_test.py
TimoKerr/tfx
10d13d57eeac21514fed73118cb43464dada67f1
[ "Apache-2.0" ]
null
null
null
tfx/orchestration/kubeflow/v2/step_builder_test.py
TimoKerr/tfx
10d13d57eeac21514fed73118cb43464dada67f1
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for Kubeflow V2 step builder.""" from typing import Any, Dict from kfp.pipeline_spec import pipeline_spec_pb2 as pipeline_pb2 import tensorflow as tf from tfx import components from tfx.dsl.components.common import importer from tfx.dsl.components.common import resolver from tfx.dsl.input_resolution.strategies import latest_artifact_strategy from tfx.dsl.input_resolution.strategies import latest_blessed_model_strategy from tfx.extensions.google_cloud_big_query.example_gen import component as big_query_example_gen_component from tfx.orchestration import data_types from tfx.orchestration.kubeflow.v2 import step_builder from tfx.orchestration.kubeflow.v2 import test_utils from tfx.proto import example_gen_pb2 from tfx.types import channel from tfx.types import channel_utils from tfx.types import standard_artifacts _TEST_CMDS = ('python', '-m', 'my_entrypoint.app_module') class StepBuilderTest(tf.test.TestCase): def _sole(self, d: Dict[Any, Any]) -> Any: """Asserts the dictionary has length 1 and returns the only value.""" self.assertLen(d, 1) return list(d.values())[0] def testBuildTask(self): query = 'SELECT * FROM TABLE' bq_example_gen = big_query_example_gen_component.BigQueryExampleGen( query=query) deployment_config = pipeline_pb2.PipelineDeploymentConfig() component_defs = {} my_builder = step_builder.StepBuilder( node=bq_example_gen, image='gcr.io/tensorflow/tfx:latest', deployment_config=deployment_config, component_defs=component_defs, enable_cache=True) actual_step_spec = self._sole(my_builder.build()) actual_component_def = self._sole(component_defs) self.assertProtoEquals( test_utils.get_proto_from_test_data( 'expected_bq_example_gen_component.pbtxt', pipeline_pb2.ComponentSpec()), actual_component_def) self.assertProtoEquals( test_utils.get_proto_from_test_data( 'expected_bq_example_gen_task.pbtxt', pipeline_pb2.PipelineTaskSpec()), actual_step_spec) self.assertProtoEquals( test_utils.get_proto_from_test_data( 'expected_bq_example_gen_executor.pbtxt', pipeline_pb2.PipelineDeploymentConfig()), deployment_config) def testBuildContainerTask(self): task = test_utils.DummyProducerComponent( output1=channel_utils.as_channel([standard_artifacts.Model()]), param1='value1', ) deployment_config = pipeline_pb2.PipelineDeploymentConfig() component_defs = {} my_builder = step_builder.StepBuilder( node=task, image='gcr.io/tensorflow/tfx:latest', # Note this has no effect here. deployment_config=deployment_config, component_defs=component_defs) actual_step_spec = self._sole(my_builder.build()) actual_component_def = self._sole(component_defs) self.assertProtoEquals( test_utils.get_proto_from_test_data( 'expected_dummy_container_spec_component.pbtxt', pipeline_pb2.ComponentSpec()), actual_component_def) self.assertProtoEquals( test_utils.get_proto_from_test_data( 'expected_dummy_container_spec_task.pbtxt', pipeline_pb2.PipelineTaskSpec()), actual_step_spec) self.assertProtoEquals( test_utils.get_proto_from_test_data( 'expected_dummy_container_spec_executor.pbtxt', pipeline_pb2.PipelineDeploymentConfig()), deployment_config) def testBuildContainerTask2(self): task = test_utils.dummy_producer_component( output1=channel_utils.as_channel([standard_artifacts.Model()]), param1='value1', ) deployment_config = pipeline_pb2.PipelineDeploymentConfig() component_defs = {} my_builder = step_builder.StepBuilder( node=task, image='gcr.io/tensorflow/tfx:latest', deployment_config=deployment_config, component_defs=component_defs) actual_step_spec = self._sole(my_builder.build()) actual_component_def = self._sole(component_defs) # Same as in testBuildContainerTask self.assertProtoEquals( test_utils.get_proto_from_test_data( 'expected_dummy_container_spec_component.pbtxt', pipeline_pb2.ComponentSpec()), actual_component_def) self.assertProtoEquals( test_utils.get_proto_from_test_data( 'expected_dummy_container_spec_task.pbtxt', pipeline_pb2.PipelineTaskSpec()), actual_step_spec) self.assertProtoEquals( test_utils.get_proto_from_test_data( 'expected_dummy_container_spec_executor.pbtxt', pipeline_pb2.PipelineDeploymentConfig()), deployment_config) def testBuildFileBasedExampleGen(self): beam_pipeline_args = ['runner=DataflowRunner'] example_gen = components.CsvExampleGen(input_base='path/to/data/root') deployment_config = pipeline_pb2.PipelineDeploymentConfig() component_defs = {} my_builder = step_builder.StepBuilder( node=example_gen, image='gcr.io/tensorflow/tfx:latest', image_cmds=_TEST_CMDS, beam_pipeline_args=beam_pipeline_args, deployment_config=deployment_config, component_defs=component_defs) actual_step_spec = self._sole(my_builder.build()) actual_component_def = self._sole(component_defs) self.assertProtoEquals( test_utils.get_proto_from_test_data( 'expected_csv_example_gen_component.pbtxt', pipeline_pb2.ComponentSpec()), actual_component_def) self.assertProtoEquals( test_utils.get_proto_from_test_data( 'expected_csv_example_gen_task.pbtxt', pipeline_pb2.PipelineTaskSpec()), actual_step_spec) self.assertProtoEquals( test_utils.get_proto_from_test_data( 'expected_csv_example_gen_executor.pbtxt', pipeline_pb2.PipelineDeploymentConfig()), deployment_config) def testBuildFileBasedExampleGenWithInputConfig(self): input_config = example_gen_pb2.Input(splits=[ example_gen_pb2.Input.Split(name='train', pattern='*train.tfr'), example_gen_pb2.Input.Split(name='eval', pattern='*test.tfr') ]) example_gen = components.ImportExampleGen( input_base='path/to/data/root', input_config=input_config) deployment_config = pipeline_pb2.PipelineDeploymentConfig() component_defs = {} my_builder = step_builder.StepBuilder( node=example_gen, image='gcr.io/tensorflow/tfx:latest', deployment_config=deployment_config, component_defs=component_defs) actual_step_spec = self._sole(my_builder.build()) actual_component_def = self._sole(component_defs) self.assertProtoEquals( test_utils.get_proto_from_test_data( 'expected_import_example_gen_component.pbtxt', pipeline_pb2.ComponentSpec()), actual_component_def) self.assertProtoEquals( test_utils.get_proto_from_test_data( 'expected_import_example_gen_task.pbtxt', pipeline_pb2.PipelineTaskSpec()), actual_step_spec) self.assertProtoEquals( test_utils.get_proto_from_test_data( 'expected_import_example_gen_executor.pbtxt', pipeline_pb2.PipelineDeploymentConfig()), deployment_config) def testBuildImporter(self): impt = importer.Importer( source_uri='m/y/u/r/i', properties={ 'split_names': '["train", "eval"]', }, custom_properties={ 'str_custom_property': 'abc', 'int_custom_property': 123, }, artifact_type=standard_artifacts.Examples).with_id('my_importer') deployment_config = pipeline_pb2.PipelineDeploymentConfig() component_defs = {} my_builder = step_builder.StepBuilder( node=impt, deployment_config=deployment_config, component_defs=component_defs) actual_step_spec = self._sole(my_builder.build()) actual_component_def = self._sole(component_defs) self.assertProtoEquals( test_utils.get_proto_from_test_data('expected_importer_component.pbtxt', pipeline_pb2.ComponentSpec()), actual_component_def) self.assertProtoEquals( test_utils.get_proto_from_test_data('expected_importer_task.pbtxt', pipeline_pb2.PipelineTaskSpec()), actual_step_spec) self.assertProtoEquals( test_utils.get_proto_from_test_data( 'expected_importer_executor.pbtxt', pipeline_pb2.PipelineDeploymentConfig()), deployment_config) def testBuildLatestBlessedModelStrategySucceed(self): latest_blessed_resolver = resolver.Resolver( strategy_class=latest_blessed_model_strategy.LatestBlessedModelStrategy, model=channel.Channel(type=standard_artifacts.Model), model_blessing=channel.Channel( type=standard_artifacts.ModelBlessing)).with_id('my_resolver2') test_pipeline_info = data_types.PipelineInfo( pipeline_name='test-pipeline', pipeline_root='gs://path/to/my/root') deployment_config = pipeline_pb2.PipelineDeploymentConfig() component_defs = {} my_builder = step_builder.StepBuilder( node=latest_blessed_resolver, deployment_config=deployment_config, pipeline_info=test_pipeline_info, component_defs=component_defs) actual_step_specs = my_builder.build() model_blessing_resolver_id = 'my_resolver2-model-blessing-resolver' model_resolver_id = 'my_resolver2-model-resolver' self.assertSameElements(actual_step_specs.keys(), [model_blessing_resolver_id, model_resolver_id]) self.assertProtoEquals( test_utils.get_proto_from_test_data( 'expected_latest_blessed_model_resolver_component_1.pbtxt', pipeline_pb2.ComponentSpec()), component_defs[model_blessing_resolver_id]) self.assertProtoEquals( test_utils.get_proto_from_test_data( 'expected_latest_blessed_model_resolver_task_1.pbtxt', pipeline_pb2.PipelineTaskSpec()), actual_step_specs[model_blessing_resolver_id]) self.assertProtoEquals( test_utils.get_proto_from_test_data( 'expected_latest_blessed_model_resolver_component_2.pbtxt', pipeline_pb2.ComponentSpec()), component_defs[model_resolver_id]) self.assertProtoEquals( test_utils.get_proto_from_test_data( 'expected_latest_blessed_model_resolver_task_2.pbtxt', pipeline_pb2.PipelineTaskSpec()), actual_step_specs[model_resolver_id]) self.assertProtoEquals( test_utils.get_proto_from_test_data( 'expected_latest_blessed_model_resolver_executor.pbtxt', pipeline_pb2.PipelineDeploymentConfig()), deployment_config) def testBuildLatestArtifactResolverSucceed(self): latest_model_resolver = resolver.Resolver( strategy_class=latest_artifact_strategy.LatestArtifactStrategy, model=channel.Channel(type=standard_artifacts.Model), examples=channel.Channel( type=standard_artifacts.Examples)).with_id('my_resolver') deployment_config = pipeline_pb2.PipelineDeploymentConfig() component_defs = {} test_pipeline_info = data_types.PipelineInfo( pipeline_name='test-pipeline', pipeline_root='gs://path/to/my/root') my_builder = step_builder.StepBuilder( node=latest_model_resolver, deployment_config=deployment_config, pipeline_info=test_pipeline_info, component_defs=component_defs) actual_step_spec = self._sole(my_builder.build()) actual_component_def = self._sole(component_defs) self.assertProtoEquals( test_utils.get_proto_from_test_data( 'expected_latest_artifact_resolver_component.pbtxt', pipeline_pb2.ComponentSpec()), actual_component_def) self.assertProtoEquals( test_utils.get_proto_from_test_data( 'expected_latest_artifact_resolver_task.pbtxt', pipeline_pb2.PipelineTaskSpec()), actual_step_spec) self.assertProtoEquals( test_utils.get_proto_from_test_data( 'expected_latest_artifact_resolver_executor.pbtxt', pipeline_pb2.PipelineDeploymentConfig()), deployment_config) if __name__ == '__main__': tf.test.main()
42.537705
106
0.729459
ff36f8ab0b6e6408a5d3aee7e5759437afaacd16
4,753
py
Python
rtpy/system_and_configuration.py
amitron72/rtpy
d5b71dbb6b5cb431a53e07e380624249f59218bf
[ "Apache-2.0" ]
14
2019-05-21T08:52:31.000Z
2021-05-31T00:23:36.000Z
rtpy/system_and_configuration.py
amitron72/rtpy
d5b71dbb6b5cb431a53e07e380624249f59218bf
[ "Apache-2.0" ]
3
2019-10-25T11:42:25.000Z
2020-11-16T15:34:02.000Z
rtpy/system_and_configuration.py
amitron72/rtpy
d5b71dbb6b5cb431a53e07e380624249f59218bf
[ "Apache-2.0" ]
10
2019-02-18T08:48:33.000Z
2021-06-22T09:45:00.000Z
# coding: utf-8 # Copyright (C) 2018 Orange # # This software is distributed under the terms and conditions of the 'Apache-2.0' # license which can be found in the 'LICENSE.md' file # or at 'http://www.apache.org/licenses/LICENSE-2.0'. """Functions for the SYSTEM AND CONFIGURATION REST API Methods category.""" from .tools import RtpyBase class RtpySystemAndConfiguration(RtpyBase): """SYSTEM AND CONFIGURATION methods category.""" def system_info(self, **kwargs): """ Get general system information. Parameters ---------- **kwargs Keyword arguments """ api_method = self._category + "System Info" return self._request("GET", self._prefix, api_method, kwargs) def system_health_ping(self, **kwargs): """ Get a simple status response about the state of Artifactory. Parameters ---------- **kwargs Keyword arguments """ api_method = self._category + "System Health Ping" target = self._prefix + "ping" return self._request("GET", target, api_method, kwargs) # def verify_connection() def general_configuration(self, **kwargs): """ Get the general configuration (artifactory.config.xml). Parameters ---------- **kwargs Keyword arguments """ api_method = self._category + "General Configuration" target = self._prefix + "configuration" return self._request("GET", target, api_method, kwargs) def save_general_configuration(self, xml_file_path, **kwargs): """ Save the general configuration (artifactory.config.xml). Parameters ---------- xml_file_path: str Path of the xml file to POST **kwargs Keyword arguments """ api_method = self._category + "Save General Configuration" target = self._prefix + "configuration" myparams = {"Content-Type": "application/xml"} with open(xml_file_path, "rb") as files: return self._request( "POST", target, api_method, kwargs, params=myparams, data=files ) # Unsupported method # def update_custom_url_base(new_url) def license_information(self, **kwargs): """ Retrieve information about the currently installed license. Parameters ---------- **kwargs Keyword arguments """ api_method = self._category + "Licence Information" target = self._prefix + "license" return self._request("GET", target, api_method, kwargs) def install_license(self, params, **kwargs): """ Install new license key or change the current one. Parameters ---------- params: str Settings of the license **kwargs Keyword arguments """ # The JSON output in case of an error is currently incorrect api_method = self._category + "Install License" target = self._prefix + "license" return self._request("POST", target, api_method, kwargs, params=params) # Unsupported methods # def ha_license_information() # def install_ha_cluster_licenses() # def delete_ha_cluster_license() def version_and_addons_information(self, **kwargs): """ Retrieve information about versions and addons. (the current Artifactory version, revision, and currently installed Add-ons). Parameters ---------- **kwargs Keyword arguments """ api_method = self._category + "Versions and Add-ons Information" target = self._prefix + "version" return self._request("GET", target, api_method, kwargs) def get_reverse_proxy_configuration(self, **kwargs): """ Retrieve the reverse proxy configuration. Parameters ---------- **kwargs Keyword arguments """ api_method = self._category + "Get Reverse Proxy Configuration" target = self._prefix + "configuration/webServer" return self._request("GET", target, api_method, kwargs) # Unsupported method # def update_reverse_proxy_configuration() def get_reverse_proxy_snippet(self, **kwargs): """ Get the reverse proxy configuration snippet in text format. Parameters ---------- **kwargs Keyword arguments """ api_method = self._category + "Get Reverse Proxy Snippet" target = self._prefix + "configuration/reverseProxy/nginx" return self._request("GET", target, api_method, kwargs)
28.806061
85
0.601515
ef12fa785d1680451e8e5b3dd36427a8995cb72e
9,897
py
Python
gibolt/model.py
Kozea/gibolt
5af60ada3f611aba3d6a25d61cf060c8f71351eb
[ "MIT" ]
6
2015-04-10T21:30:41.000Z
2021-05-03T21:10:44.000Z
gibolt/model.py
Kozea/gibolt
5af60ada3f611aba3d6a25d61cf060c8f71351eb
[ "MIT" ]
138
2015-04-08T09:55:55.000Z
2021-07-27T09:41:37.000Z
gibolt/model.py
Kozea/gibolt
5af60ada3f611aba3d6a25d61cf060c8f71351eb
[ "MIT" ]
2
2015-11-01T19:05:48.000Z
2019-04-23T13:00:50.000Z
import datetime import json from sqlalchemy import ( Boolean, Column, DateTime, ForeignKey, Integer, Numeric, String, Text, TypeDecorator, UniqueConstraint, func, ) from sqlalchemy.event import listens_for from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import backref, relationship from sqlalchemy.types import Enum, NullType from . import app Base = declarative_base() item_types = ["checklist", "indicator"] meeting_types = [ type_name for type_id, type_name in app.config["MEETINGS_TYPES"] ] label_types = ["ack", "circle", "priority", "qualifier"] role_types = ["leadlink", "elected", "assigned"] class SQLiteJson(TypeDecorator): impl = String class Comparator(String.Comparator): def __getitem__(self, index): if isinstance(index, tuple): index = "$%s" % ( "".join( [ "[%s]" % elem if isinstance(elem, int) else '."%s"' % elem for elem in index ] ) ) elif isinstance(index, int): index = "$[%s]" % index else: index = '$."%s"' % index # json_extract does not appear to return JSON sub-elements # which is weird. return func.json_extract(self.expr, index, type_=NullType) comparator_factory = Comparator def process_bind_param(self, value, dialect): if value is not None: value = json.dumps(value) return value def process_result_value(self, value, dialect): if value is not None: value = json.loads(value) return value class Label(Base): __tablename__ = "label" __table_args__ = (UniqueConstraint("text", name="text"),) label_id = Column( Integer, autoincrement=True, primary_key=True, nullable=False ) label_type = Column(Enum(*label_types)) text = Column(String) color = Column(String) class Priority(Base): __tablename__ = "priority" __table_args__ = (UniqueConstraint("value", name="value_unique"),) priority_id = Column( Integer, autoincrement=True, primary_key=True, nullable=False ) label_id = Column( Integer, ForeignKey("label.label_id", name="fk_priority_label"), nullable=False, ) value = Column(Integer) labels = relationship( Label, backref=backref("priorities", cascade="all,delete", uselist=False), ) class Circle(Base): __tablename__ = "circle" circle_id = Column( Integer, primary_key=True, autoincrement=True, nullable=False ) parent_circle_id = Column( Integer, ForeignKey("circle.circle_id"), nullable=True ) label_id = Column( Integer, ForeignKey("label.label_id", name="fk_circle_label"), nullable=True, ) circle_name = Column(String, unique=True) circle_purpose = Column(String) circle_domain = Column(String) circle_accountabilities = Column(String) is_active = Column(Boolean, default=True, nullable=False) circle_children = relationship( "Circle", backref=backref("circle_parent", remote_side=[circle_id]) ) circle_milestones = relationship( "MilestoneCircle", backref=backref("milestone_circle", remote_side=[circle_id]), ) label = relationship(Label, backref="circle") @property def user_ids(self): user_ids = set() for role in self.roles: if not role.is_active: continue for focus in role.role_focuses: if not focus.latest_user: continue user_ids.add(focus.latest_user.user_id) return user_ids @listens_for(Circle.is_active, "set") def receive_attribute_change(target, value, oldvalue, initiator): if target.circle_children: for child in target.circle_children: child.is_active = value class Role(Base): __tablename__ = "role" role_id = Column( Integer, primary_key=True, autoincrement=True, nullable=False ) circle_id = Column( Integer, ForeignKey("circle.circle_id", name="fk_role_circle"), nullable=False, ) role_name = Column(String) role_purpose = Column(String) role_domain = Column(String) role_accountabilities = Column(String) is_active = Column(Boolean, default=True, nullable=False) role_type = Column(Enum(*role_types)) circle = relationship(Circle, backref="roles") class RoleFocus(Base): __tablename__ = "role_focus" role_focus_id = Column( Integer, primary_key=True, autoincrement=True, nullable=False ) role_id = Column( Integer, ForeignKey("role.role_id", name="fk_focus_role"), nullable=False, ) focus_name = Column(String, default="", nullable=False) duration = Column(Integer) role = relationship( Role, backref=backref("role_focuses", cascade="all, delete-orphan") ) @property def latest_user(self): users = self.role_focus_users for user in users: if user.end_date is None: return user else: if user.start_date is not None: start = user.start_date.date() if datetime.date.today() < start: return None end = user.end_date.date() if datetime.date.today() <= end: return user class RoleFocusUser(Base): __tablename__ = "role_focus_user" role_focus_user_id = Column( Integer, primary_key=True, autoincrement=True, nullable=False ) role_focus_id = Column( Integer, ForeignKey("role_focus.role_focus_id", name="fk_user_focus"), nullable=False, ) user_id = Column(Integer) start_date = Column(DateTime) end_date = Column(DateTime) role_focus = relationship( RoleFocus, backref=backref( "role_focus_users", cascade="all, delete-orphan", order_by=lambda: ( RoleFocusUser.end_date.desc().nullsfirst(), RoleFocusUser.start_date.desc().nullsfirst(), ), ), ) class Item(Base): __tablename__ = "item" item_id = Column( Integer, primary_key=True, autoincrement=True, nullable=False ) role_focus_id = Column( Integer, ForeignKey("role_focus.role_focus_id", name="fk_item_rolefocus"), nullable=False, ) item_type = Column(Enum(*item_types)) content = Column(Text) role_focus = relationship( RoleFocus, backref=backref("items", cascade="all, delete-orphan") ) class Report(Base): __tablename__ = "report" report_id = Column( Integer, primary_key=True, autoincrement=True, nullable=False ) circle_id = Column(Integer, ForeignKey("circle.circle_id"), nullable=False) report_type = Column(Enum(*meeting_types)) created_at = Column(DateTime, default=datetime.datetime.now) author_id = Column(Integer) content = Column(Text) modified_at = Column(DateTime, onupdate=datetime.datetime.now) modified_by = Column(Integer) is_submitted = Column(Boolean, default=False, nullable=False) circle = relationship(Circle, backref="reports") attendees = relationship( "ReportAttendee", cascade="all,delete", backref="report" ) actions = relationship( "ReportChecklist", cascade="all,delete", backref="report" ) indicators = relationship( "ReportIndicator", cascade="all,delete", backref="report" ) projects = relationship( "ReportMilestone", cascade="all,delete", backref="report" ) agenda = relationship( "ReportAgenda", cascade="all,delete", backref="report" ) class MilestoneCircle(Base): __tablename__ = "milestone_circle" circle_id = Column( Integer, ForeignKey("circle.circle_id"), primary_key=True ) milestone_number = Column(Integer, primary_key=True) repo_name = Column(String, primary_key=True) is_active = Column(Boolean, default=True, nullable=False) class ReportAttendee(Base): __tablename__ = "report_attendee" report_id = Column( Integer, ForeignKey("report.report_id"), primary_key=True ) user_id = Column(Integer, primary_key=True) user = Column(SQLiteJson) checked = Column(Boolean, default=True, nullable=False) class ReportChecklist(Base): __tablename__ = "report_checklist" report_id = Column( Integer, ForeignKey("report.report_id"), primary_key=True ) item_id = Column(Integer, ForeignKey("item.item_id"), primary_key=True) content = Column(String) checked = Column(Boolean, default=False, nullable=False) item = relationship(Item) class ReportIndicator(Base): __tablename__ = "report_indicator" report_id = Column( Integer, ForeignKey("report.report_id"), primary_key=True ) item_id = Column(Integer, ForeignKey("item.item_id"), primary_key=True) content = Column(String) value = Column(Numeric) class ReportMilestone(Base): __tablename__ = "report_milestone" report_id = Column( Integer, ForeignKey("report.report_id"), primary_key=True ) milestone_number = Column(Integer, primary_key=True) repo_name = Column(String, primary_key=True) milestone = Column(SQLiteJson) class ReportAgenda(Base): __tablename__ = "report_agenda" report_id = Column( Integer, ForeignKey("report.report_id"), primary_key=True ) ticket_id = Column(Integer, primary_key=True) ticket = Column(SQLiteJson)
29.900302
79
0.632414
ba131c1b3e2d9d6d602c35c7bd4a775badba5b6c
667
py
Python
10_processes/code/threading_simple.py
lluxury/P_U_S_A
1eb9d1fef74f9ce3618ae950f5223f598510be84
[ "MIT" ]
null
null
null
10_processes/code/threading_simple.py
lluxury/P_U_S_A
1eb9d1fef74f9ce3618ae950f5223f598510be84
[ "MIT" ]
null
null
null
10_processes/code/threading_simple.py
lluxury/P_U_S_A
1eb9d1fef74f9ce3618ae950f5223f598510be84
[ "MIT" ]
null
null
null
#!/usr/bin/env python from threading import Thread from time import sleep import atexit from datetime import datetime class SpawnThread(Thread): """Runs threads""" count = 0 def run(self): SpawnThread.count += 1 threadnum = SpawnThread.count print "Thread %s begins at %s" % (threadnum, datetime.now()) sleep(5) print "Thread %s is done at %s" % (threadnum, datetime.now()) def cleanup(): print "All Threads are finished" if __name__ == "__main__": try: for i in range(5): secondThread = SpawnThread() secondThread.start() finally: atexit.register(cleanup)
22.233333
69
0.61919
9e85feb2cff6cf8b50eed0916bf54aca55ce83c8
489
py
Python
zoo/public/regnet/regnetx_032.py
megvii-research/basecls
6b395a0a888370b4523764afb78a5a7634a3f6cd
[ "Apache-2.0" ]
23
2021-12-08T02:35:01.000Z
2022-03-16T02:23:19.000Z
zoo/public/regnet/regnetx_032.py
megvii-research/basecls
6b395a0a888370b4523764afb78a5a7634a3f6cd
[ "Apache-2.0" ]
4
2021-12-23T11:31:17.000Z
2022-02-28T01:35:31.000Z
zoo/public/regnet/regnetx_032.py
megvii-research/basecls
6b395a0a888370b4523764afb78a5a7634a3f6cd
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. from basecls.configs import RegNetConfig _cfg = dict( batch_size=64, model=dict( name="regnetx_032", ), solver=dict( basic_lr=0.05, ), model_ema=dict( enabled=True, momentum=0.99996, ), ) class Cfg(RegNetConfig): def __init__(self, values_or_file=None, **kwargs): super().__init__(_cfg) self.merge(values_or_file, **kwargs)
20.375
58
0.621677
eda35b5ea006ff0149c27db7f170abfd00aa693f
3,350
py
Python
app/wordlists.py
fterrier/gender-decoder
62544ab317bdda1c1e97c27932890b4c68909a47
[ "MIT" ]
null
null
null
app/wordlists.py
fterrier/gender-decoder
62544ab317bdda1c1e97c27932890b4c68909a47
[ "MIT" ]
null
null
null
app/wordlists.py
fterrier/gender-decoder
62544ab317bdda1c1e97c27932890b4c68909a47
[ "MIT" ]
1
2019-01-29T14:12:19.000Z
2019-01-29T14:12:19.000Z
# These words are written as the stem to make it easier to match all variants. # In other words, the suffix is intentionally left out. feminine_coded_words = [ "agree", "affectionate", "child", "cheer", "collab", "commit", "communal", "compassion", "connect", "considerate", "cooperat", "co-operat", "depend", "emotiona", "empath", "feel", "flatterable", "gentle", "honest", "interpersonal", "interdependen", "interpersona", "inter-personal", "inter-dependen", "inter-persona", "kind", "kinship", "loyal", "modesty", "nag", "nurtur", "pleasant", "polite", "quiet", "respon", "sensitiv", "submissive", "support", "sympath", "tender", "together", "trust", "understand", "warm", "whin", "enthusias", "inclusive", "yield", "share", "sharin", # german starts here "bedächtig", "bescheiden", "ehrlich", "ehrlich", "emotional", "empathisch", "engagiert", "freundlich", "fröhlich", "fürsorglich", "gemeinsam", "gemeinschaftlich", "gestalterisch", "kommunikativ", "kooperativ", "kreativ", "leidenschaftlich", "loyal", "mitfühlend", "partnerschaftlich", "resilient", "sympathisch", "teamfähig", "teamorientiert", "unterstützend", "verantwortungsvoll", "verlässlich", "verständnisvoll", "vertrauensvoll", "weiblich", "zusammen", "zuverlässig", "zwischenmenschlich" ] masculine_coded_words = [ "active", "adventurous", "aggress", "ambitio", "analy", "assert", "athlet", "autonom", "battle", "boast", "challeng", "champion", "compet", "confident", "courag", "decid", "decision", "decisive", "defend", "determin", "domina", "dominant", "driven", "fearless", "fight", "force", "greedy", "head-strong", "headstrong", "hierarch", "hostil", "impulsive", "independen", "individual", "intellect", "lead", "logic", "objective", "opinion", "outspoken", "persist", "principle", "reckless", "self-confiden", "self-relian", "self-sufficien", "selfconfiden", "selfrelian", "selfsufficien", "stubborn", "superior", "unreasonab", # german starts here "aktiv", "ambitioniert", "analytisch", "direkt", "dominant", "durchsetzungsfähig", "durchsetzungsstark", "ehrgeizig", "entscheidend", "entschlossen", "führend", "herausfordernd", "hierarchisch", "individuell", "kompetetiv", "kraftvoll", "logisch", "männlich", "objektiv", "selbstbewusst", "stark", "überdurchschnittlich", "unabhängig", "unabhängig", "zielstrebig" ] feminine_sentences = [ "prise en charge" ] masculine_sentences = [ "alpha male" ] hyphenated_coded_words = [ "co-operat", "inter-personal", "inter-dependen", "inter-persona", "self-confiden", "self-relian", "self-sufficien" ] possible_codings = ( "strongly feminine-coded", "feminine-coded", "neutral", "masculine-coded", "strongly masculine-coded" )
17.005076
78
0.550149
50dcb4eb1883f0c016452aab5b2a7e61b06c7730
295
py
Python
manabi/nose_plugins.py
aehlke/manabi
1dfdd4ecb9c1214b6a70268be0dcfeda9da8754b
[ "MIT" ]
14
2015-10-03T07:34:28.000Z
2021-09-20T07:10:29.000Z
manabi/nose_plugins.py
aehlke/manabi
1dfdd4ecb9c1214b6a70268be0dcfeda9da8754b
[ "MIT" ]
23
2019-10-25T08:47:23.000Z
2022-01-30T02:00:45.000Z
manabi/nose_plugins.py
aehlke/manabi
1dfdd4ecb9c1214b6a70268be0dcfeda9da8754b
[ "MIT" ]
7
2016-10-04T08:10:36.000Z
2021-09-20T07:10:33.000Z
import logging from nose.plugins import Plugin class SilenceSouth(Plugin): south_logging_level = logging.ERROR def configure(self, options, conf): super(SilenceSouth, self).configure(options, conf) logging.getLogger('south').setLevel(self.south_logging_level)
22.692308
69
0.725424
ff54134042ee87ba08752ff8bd5e3701f300040b
2,402
py
Python
algorithms/code/leetcode/lc046_permutations/lc046_permutations.py
altermarkive/training
6a13f5b2f466156ad5db0e25da0e601d2404b4c3
[ "MIT" ]
null
null
null
algorithms/code/leetcode/lc046_permutations/lc046_permutations.py
altermarkive/training
6a13f5b2f466156ad5db0e25da0e601d2404b4c3
[ "MIT" ]
1
2022-02-16T11:28:56.000Z
2022-02-16T11:28:56.000Z
algorithms/code/leetcode/lc046_permutations/lc046_permutations.py
altermarkive/training
6a13f5b2f466156ad5db0e25da0e601d2404b4c3
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # https://leetcode.com/problems/permutations/ import unittest from typing import List class Solution: def __permute(self, prefix, remaining, permutations): if len(remaining) == 0: permutations.append(prefix.copy()) else: for value in remaining: prefix.append(value) reduced = set(remaining) reduced.remove(value) self.__permute(prefix, reduced, permutations) prefix.pop() def permute(self, nums: List[int]) -> List[List[int]]: permutations = [] remaining = set(nums) self.__permute([], remaining, permutations) return permutations class TestCode(unittest.TestCase): @staticmethod def cmp_to_key(mycmp): # pragma: no cover class K: def __init__(self, obj, *_): self.obj = obj def __lt__(self, other): return mycmp(self.obj, other.obj) < 0 def __gt__(self, other): return mycmp(self.obj, other.obj) > 0 def __eq__(self, other): return mycmp(self.obj, other.obj) == 0 def __le__(self, other): return mycmp(self.obj, other.obj) <= 0 def __ge__(self, other): return mycmp(self.obj, other.obj) >= 0 def __ne__(self, other): return mycmp(self.obj, other.obj) != 0 return K @staticmethod def integer_list_comparator(l1, l2): # pragma: no cover if len(l1) < len(l2): return -1 if len(l1) > len(l2): return 1 for l1i, l2i in zip(l1, l2): if l1i < l2i: return -1 if l1i > l2i: return 1 return 0 def test_example(self): nums = [1, 2, 3] expected = [ [1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]] result = Solution().permute(nums) result = sorted( result, key=TestCode.cmp_to_key(TestCode.integer_list_comparator)) self.assertEqual(len(expected), len(result)) for i, _ in enumerate(expected): self.assertEqual(len(expected[i]), len(result[i])) for j, _ in enumerate(expected[i]): self.assertEqual(expected[i][j], result[i][j])
30.025
78
0.52373
87fe3fcee7ea293ad36fb71605f242b42ceec87d
6,415
py
Python
tests/test_distributed.py
laudv/treeck
3e4165c146f644af6387fa7f890ad93d1ca84d11
[ "Apache-2.0" ]
4
2020-02-03T20:03:32.000Z
2020-03-29T16:07:53.000Z
tests/test_distributed.py
laudv/treeck
3e4165c146f644af6387fa7f890ad93d1ca84d11
[ "Apache-2.0" ]
null
null
null
tests/test_distributed.py
laudv/treeck
3e4165c146f644af6387fa7f890ad93d1ca84d11
[ "Apache-2.0" ]
null
null
null
#import matplotlib.pyplot as plt import unittest, json import numpy as np import z3 import importlib import treeck from treeck import * from treeck.verifier import Verifier from treeck.z3backend import Z3Backend as Backend from treeck.distributed import DistributedVerifier, VerifierFactory from dask.distributed import Client from start_dask import start_local dask_scheduler = "localhost:8786" class TestDistributedVerifier(unittest.TestCase): def test_img_generate_splits(self): class VFactory(VerifierFactory): def __call__(self, lk, check_paths): v = Verifier(lk, Backend()) v.add_constraint(v.fvar() < 0.0) v.add_constraint(v.xvar(0) > 50) v.add_constraint(v.xvar(1) < 50) return v with Client(dask_scheduler) as client: client.restart() N = 10 at = AddTree.read("tests/models/xgb-img-easy.json") dt = DomTree(at, {}) dv = DistributedVerifier(client, dt, VFactory(), check_paths = True, num_initial_tasks = N, stop_when_num_sats = N) dv.check() #print(json.dumps(dv.results, indent=2, default=str)) count_with_status = 0 count_with_sat = 0 for k, d in dv.results.items(): if isinstance(k, int) and "status" in d: count_with_status += 1 if d["status"].is_sat(): count_with_sat += 1 self.assertEqual(count_with_status, N) self.assertGreater(count_with_sat, 0) def test_bin_mnist(self): class VFactory(VerifierFactory): def __call__(self, lk, check_paths): v = Verifier(lk, Backend()) v.add_constraint(v.fvar() > 5.0) v.add_constraint(z3.PbLe([(v.xvar(fid).get(), 1) for fid in v.instance(0).feat_ids()], 50)) return v with Client(dask_scheduler) as client: client.restart() N = 10 at = AddTree.read("tests/models/xgb-mnist-bin-yis1-intermediate.json") dt = DomTree(at, {}) dv = DistributedVerifier(client, dt, VFactory(), check_paths = False, num_initial_tasks = N, timeout_start = 5.0, stop_when_num_sats = N) dv.check() #print(json.dumps(dv.results, indent=2, default=repr)) #print(dt.tree()) count_with_status = 0 count_with_sat = 0 for k, d in dv.results.items(): if isinstance(k, int) and "status" in d: count_with_status += 1 if d["status"] == Verifier.Result.SAT: count_with_sat += 1 self.assertGreater(d["model"]["f"], 5.0) inst = [True] * (28*28) for i, x in d["model"]["xs"].items(): inst[i] = x self.assertEqual(d["model"]["f"], at.predict_single(inst)) #print(d["model"]["f"], at.predict_single(inst)) self.assertGreaterEqual(count_with_status, N) self.assertGreater(count_with_sat, 0) def test_img_multi_instance(self): class VFactory(VerifierFactory): def __call__(self, lk, check_paths): v = Verifier(lk, Backend()) v.add_constraint(v.fvar(instance=0) < 0.0) v.add_constraint(v.xvar(0, instance=0) > 50) v.add_constraint(v.xvar(1, instance=0) < 50) # instances are exactly the same! for fid1, fid2 in zip(v.instance(0).feat_ids(), v.instance(1).feat_ids()): v.add_constraint(v.xvar(fid1, instance=0) == v.xvar(fid2, instance=1)) v.add_constraint(v.fvar(instance=1).get() - v.fvar(instance=0).get() < 9999) return v with Client(dask_scheduler) as client: client.restart() N = 10 at0 = AddTree.read("tests/models/xgb-img-easy.json") at1 = AddTree.read("tests/models/xgb-img-easy.json") at1.base_score = 10000 dt = DomTree([(at0, {}), (at1, {})]) dv = DistributedVerifier(client, dt, VFactory(), check_paths = True, num_initial_tasks = N, stop_when_num_sats = N) dv.check() #print(json.dumps(dv.results, indent=2, default=str)) #print(dt.tree()) count_with_status = 0 count_with_sat = 0 for k, d in dv.results.items(): if isinstance(k, int) and "status" in d: count_with_status += 1 if d["status"].is_sat(): count_with_sat += 1 self.assertEqual(count_with_status, N) self.assertEqual(count_with_sat, 0) #def test_adv(self): # instance_key = 0 # model = "xgb-mnist-yis0-easy" # offset = 10 # max_sum_offset = 50 # def vfactory_aux(instance, offset, max_sum_offset, doms, at): # v = Verifier(doms, at, Backend(), Strategy()) # sum_constraint = 0 # for j, pixel in zip(range(v.num_features), instance): # x = v.xvar(j) # v.add_constraint((x > max(0, pixel-offset)) & (x < min(255, pixel+offset))) # sum_constraint += z3.If(x.get()-pixel <= 0, pixel-x.get(), x.get()-pixel) # v.add_constraint(sum_constraint < max_sum_offset) # return v # with open("tests/models/mnist-instances.json") as f: # instance_key = 0 # instance = np.array(json.load(f)[str(instance_key)]) # vfactory = lambda doms, at: vfactory_aux(instance, offset, max_sum_offset, doms, at) # with Client("tcp://localhost:30333") as client: # at = AddTree.read(f"tests/models/{model}.json") # dv = DistributedVerifier(client, at, vfactory) # dv.run() if __name__ == "__main__": z3.set_pp_option("rational_to_decimal", True) z3.set_pp_option("precision", 3) z3.set_pp_option("max_width", 130) unittest.main()
38.413174
93
0.535776
e87385161c0508778bb45a297c96982984bdcb39
1,832
py
Python
benchmark/startPyquil2749.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
benchmark/startPyquil2749.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
benchmark/startPyquil2749.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
# qubit number=4 # total number=37 import pyquil from pyquil.api import local_forest_runtime, QVMConnection from pyquil import Program, get_qc from pyquil.gates import * import numpy as np conn = QVMConnection() def make_circuit()-> Program: prog = Program() # circuit begin prog += H(3) # number=31 prog += CZ(0,3) # number=32 prog += H(3) # number=33 prog += X(3) # number=29 prog += CNOT(0,3) # number=30 prog += H(1) # number=2 prog += H(2) # number=3 prog += H(3) # number=4 prog += H(0) # number=5 prog += H(1) # number=6 prog += H(2) # number=7 prog += H(3) # number=8 prog += X(2) # number=34 prog += Y(1) # number=19 prog += H(0) # number=9 prog += Y(2) # number=10 prog += Y(2) # number=11 prog += Y(3) # number=20 prog += Y(1) # number=12 prog += RX(-2.158274153016188,3) # number=24 prog += H(0) # number=16 prog += CZ(2,0) # number=17 prog += H(0) # number=18 prog += CNOT(1,0) # number=21 prog += Z(1) # number=22 prog += CNOT(1,0) # number=23 prog += H(0) # number=25 prog += CZ(2,0) # number=26 prog += H(0) # number=27 prog += X(0) # number=35 prog += X(0) # number=36 # circuit end return prog def summrise_results(bitstrings) -> dict: d = {} for l in bitstrings: if d.get(l) is None: d[l] = 1 else: d[l] = d[l] + 1 return d if __name__ == '__main__': prog = make_circuit() qvm = get_qc('4q-qvm') results = qvm.run_and_measure(prog,1024) bitstrings = np.vstack([results[i] for i in qvm.qubits()]).T bitstrings = [''.join(map(str, l)) for l in bitstrings] writefile = open("../data/startPyquil2749.csv","w") print(summrise_results(bitstrings),file=writefile) writefile.close()
25.09589
64
0.563865
9b374f19d3465e613217bdf5165031584a57a296
9,272
py
Python
emaileasily/emaileasily.py
erastusnzula/easy-email
3eceb871e5cee6c123e32010b0ef3ede1048684c
[ "MIT" ]
null
null
null
emaileasily/emaileasily.py
erastusnzula/easy-email
3eceb871e5cee6c123e32010b0ef3ede1048684c
[ "MIT" ]
null
null
null
emaileasily/emaileasily.py
erastusnzula/easy-email
3eceb871e5cee6c123e32010b0ef3ede1048684c
[ "MIT" ]
null
null
null
""" Author: Erastus Nzula. Licence: MIT. Description: A simplified way to send and read emails. Contribution status: open. """ import email import imaplib import os import smtplib import socket import webbrowser from email.header import decode_header from email.message import EmailMessage from tkinter.filedialog import askopenfilenames message = EmailMessage() filenames = [] body = [] global subject def email_to(*receivers_addresses): """ :param receivers_addresses: The email main receivers' addresses. :return: email receivers' addresses. """ to_recipients = [] header = 'To' return loop_through_addresses(receivers_addresses, to_recipients, header) def email_subject(subject_=None): """ :param subject_: the email subject. :return: email subject. """ try: message['Subject'] = subject_ return message['Subject'] except ValueError: for key in message.keys(): del message[key] print('Re-enter email subject.') def email_bcc(*bcc_addresses): """ :param bcc_addresses: email bcc receivers' addresses. :return: bcc receivers' addresses. """ bcc_recipients = [] header = 'Bcc' return loop_through_addresses(bcc_addresses, bcc_recipients, header) def email_cc(*cc_addresses): """ :param cc_addresses: the email copy receivers' addresses :return: email address """ cc_recipients = [] header = 'Cc' return loop_through_addresses(cc_addresses, cc_recipients, header) def loop_through_addresses(addresses, recipients, header): """ Loop through all addresses. :param addresses: user address input. :param recipients: list to store all addresses. :param header: message label (To, Bcc or Cc) :return: email addresses. """ try: for recipient in addresses: recipients.append(recipient) message[header] = recipients return message[header] except ValueError: for key in message.keys(): del message[key] print('Re-enter email address.') def email_attach_document(): """ Allows attachment of files from directory. :return: files to attach. """ try: documents = askopenfilenames(title='Select files to attach') for document in documents: with open(document, "rb") as file: message.add_attachment(file.read(), maintype="application", subtype="octet-stream", filename=os.path.basename(file.name)) filenames.append(os.path.basename(file.name)) print(f'Document: {os.path.basename(file.name)} attached successfully.') except TypeError: print('Please call the function email_attach_document after email_content') def email_content(content=None): """ Accepts plain email content. :param content: user plain content input. :return: email body. """ body.append(content) return message.set_content(content) def email_html(content=None): """ Accepts html content input. :param content: html content. :return:email body in html format. """ body.append(content) return message.set_content(f"""{content}""", subtype='html') def email_send(sender_email, password, host="smtp.gmail.com", port=465): """ Logs in users and sends emails. :param sender_email: sender email address. :param password: sender password. :param host: email provider host address. :param port: email provider port. :return: email send status. """ message['From'] = sender_email try: with smtplib.SMTP_SSL(host, port) as smtp: smtp.login(sender_email, password) print('Sending email...') smtp.send_message(message) print(f'Email successfully sent.') smtp.quit() for key in message.keys(): del message[key] except (smtplib.SMTPRecipientsRefused, socket.gaierror): for key in message.keys(): del message[key] print('Failed to send email.') def name_folder(subject_email): """ Returns the snake case naming convention for emails' attachment folders and filenames. :param subject_email: email subject. :return: folder name """ return "".join(c if c.isalnum() else "_" for c in subject_email) def read_emails(email_address, email_password, number_of_emails=2, label='INBOX', host='imap.gmail.com', port=993): """ Fetches emails and returns its content. :param email_address: sender email address. :param email_password: sender email password :param number_of_emails: the number of emails to view. :param label: the label to fetch emails from. :param host: the email provider host address. :param port: the email provider port :return: fetched emails. """ global subject imap = imaplib.IMAP4_SSL(host, port) imap.login(email_address, email_password) print('Successfully logged in, fetching emails...') status, all_messages = imap.select(label) messages = int(all_messages[0]) for i in range(messages, messages - number_of_emails, -1): _, email_messages = imap.fetch(str(i), "(RFC822)") for email_message in email_messages: if isinstance(email_message, tuple): msg = email.message_from_bytes(email_message[1]) get_subject_and_from(msg) if msg.is_multipart(): get_multipart_email(msg) else: get_non_multipart_emails(msg) close_imap(imap) def close_imap(imap): """ Closes the imaplib connection and logs out the user. :param imap: The imaplib connection. :return: 0 """ imap.close() imap.logout() def get_subject_and_from(msg): """ Gets the email subject, date and sender. Convert them to human readable form. :param msg: email content :return: email subject, sender and date. """ global subject subject, encoding = decode_header(msg['Subject'])[0] if isinstance(subject, bytes): try: subject = subject.decode(encoding) except TypeError: pass sender, encoding = decode_header(msg.get("From"))[0] if isinstance(sender, bytes): sender = sender.decode(encoding) date, encoding = decode_header(msg.get("Date"))[0] if isinstance(date, bytes): date = date.decode(encoding) print('==' * 50) print("Subject: ", subject) print("From: ", sender) print("Date: ", date) def get_multipart_email(msg): """ Classifies multipart emails based on content type. Prints the body of emails without attachments. For emails with attachments it returns the get_attachments function. :param msg: email content. :return: email_body. """ global subject for part in msg.walk(): content_type = part.get_content_type() content_disposition = str(part.get("Content-Disposition")) email_body = None try: email_body = part.get_payload(decode=True).decode() except (AttributeError, UnicodeDecodeError): pass if content_type == "text/plain" and "attachment" not in content_disposition: print(email_body) elif "attachment" in content_disposition: get_attachments(part) def get_attachments(part): """ Gets the attached files in a email. Creates a folder based on email subject. Stores the attached in the folder. :param part: The email attachment part :return: email attached files. """ filename = part.get_filename() if filename: folder_name = name_folder(subject) if not os.path.isdir(folder_name): os.mkdir(folder_name) file_path = os.path.join(folder_name, filename) open(file_path, "wb").write(part.get_payload(decode=True)) print('Attached files saved at: ' + file_path) def get_non_multipart_emails(msg): """ Fetches emails without attachments. If email content type is text/plain it prints out the email content(email body). If email content type is text/html it returns the get_html_emails function. :param msg: email message type :return: email_body """ content_type = msg.get_content_type() email_body = msg.get_payload(decode=True).decode() if content_type == 'text/plain': print(email_body) if content_type == "text/html": get_html_emails(email_body) def get_html_emails(email_body): """ Creates a folder with name based on the email subject. Creates a html file inside the folder. Writes the email content in the file and opens it in a web browser. :param email_body: fetched email body. :return: email_body. """ try: folder_name = name_folder(subject) if not os.path.isdir(folder_name): os.mkdir(folder_name) filename = subject + '.html' file_path = os.path.join(folder_name, filename) open(file_path, "w").write(email_body) print(email_body) webbrowser.open(file_path) except UnicodeEncodeError: pass
30.5
104
0.652286
71ab76621233ea2662b083f8b086e87608f006c1
3,287
py
Python
setup.py
eddiejessup/nestler
f42dfb4132dd94e1166c4a96afad77c825319282
[ "MIT" ]
null
null
null
setup.py
eddiejessup/nestler
f42dfb4132dd94e1166c4a96afad77c825319282
[ "MIT" ]
null
null
null
setup.py
eddiejessup/nestler
f42dfb4132dd94e1166c4a96afad77c825319282
[ "MIT" ]
null
null
null
from setuptools import setup, find_packages from codecs import open from os import path here = path.abspath(path.dirname(__file__)) with open(path.join(here, 'README.md'), encoding='utf-8') as f: long_description = f.read() setup( name='nestler', version='0.1.0', description='Generate reports from Markdown files with embedded Python', long_description=long_description, url='https://github.com/eddiejessup/nestler', author='Elliot Marsden', author_email='[email protected]', license='MIT', # See https://pypi.python.org/pypi?%3Aaction=list_classifiers classifiers=[ # How mature is this project? Common values are # 3 - Alpha # 4 - Beta # 5 - Production/Stable 'Development Status :: 4 - Beta', # Indicate who your project is intended for 'Intended Audience :: Developers', # Pick your license as you wish (should match "license" above) 'License :: OSI Approved :: MIT License', # Specify the Python versions you support here. In particular, ensure # that you indicate whether you support Python 2, Python 3 or both. 'Programming Language :: Python :: 3.6', ], keywords='jupyter report data-science analytics', # You can specify the packages manually here if your project is # simple, or use find_packages(). packages=find_packages(exclude=['contrib', 'docs', 'tests']), # Alternatively, if you want to distribute just a my_module.py, uncomment # this: # py_modules=["my_module"], # Run-time dependencies. These will be installed by pip when # your project is installed. For an analysis of "install_requires" vs pip's # requirements files see: # https://packaging.python.org/en/latest/requirements.html install_requires=[ 'pyyaml', 'pyparsing', 'pypandoc', 'jupyter', ], # Additional groups of dependencies (e.g. development # dependencies). You can install these using the following syntax, # for example: # $ pip install -e .[dev,test] # extras_require={ # 'dev': ['check-manifest'], # 'test': ['coverage'], # }, # If there are data files included in your packages that need to be # installed, specify them here. If using Python 2.6 or less, then these # have to be included in MANIFEST.in as well. include_package_data=True, # package_data={ # 'assets': ['nestler.data'], # }, # Although 'package_data' is the preferred approach, in some case you may # need to place data files outside of your packages. See: # http://docs.python.org/3.4/distutils/setupscript.html#installing-additional-files # noqa # In this case, 'data_file' will be installed into '<sys.prefix>/my_data' # data_files=[('my_data', ['data/data_file'])], # To provide executable scripts, use entry points in preference to the # "scripts" keyword. Entry points provide cross-platform support and allow # pip to create the appropriate form of executable for the target platform. entry_points={ 'console_scripts': [ 'nestler = nestler.nestler:main', 'start-kernel = nestler.start_kernel:main', ], }, )
33.886598
94
0.654092
718857f5299955fba696766cc102fdc881e9ddf9
1,312
py
Python
optimization_work/distributed_solution.py
pghartig/Power-Control
c23613b74c9fe1a1ecd6d415f5bf0cb625920661
[ "MIT" ]
7
2020-04-19T01:58:47.000Z
2022-03-24T02:24:23.000Z
optimization_work/distributed_solution.py
pghartig/Power-Control
c23613b74c9fe1a1ecd6d415f5bf0cb625920661
[ "MIT" ]
null
null
null
optimization_work/distributed_solution.py
pghartig/Power-Control
c23613b74c9fe1a1ecd6d415f5bf0cb625920661
[ "MIT" ]
3
2021-03-21T12:34:11.000Z
2021-08-15T17:23:48.000Z
from network_simulations import het_net import cvxpy as cp import matplotlib.pyplot as plt import numpy as np import copy """ first setup the network according using the het_net class then consolidate all of the information from the network to solve the central optimization problem """ def test_dist_optimization(): num_users = 10 num_antenna = num_users + 5 network = het_net.Het_Network(5, 30, num_users, num_antenna, .1, power_vector_setup=True) # network.update_beam_formers() for_comp = copy.deepcopy(network) for_comp.update_beam_formers() # Choose number of iterations to allow num_iterations = 500 utilities, duals = network.allocate_power_step(num_iterations) test_utilities, test_duals = for_comp.allocate_power_step(num_iterations) network.print_layout() plt.figure() plt.plot(np.arange(num_iterations+1), utilities, label = "moore-pensose") plt.plot(np.arange(num_iterations+1), test_utilities, label = "optimized") plt.legend(loc = "lower left") plt.figure() duals = np.asarray(duals) for columns in range(duals.shape[1]): plt.plot(duals[:, columns]) plt.figure() test_duals = np.asarray(test_duals) for columns in range(test_duals.shape[1]): plt.plot(test_duals[:, columns]) plt.show()
32
156
0.724848
76185f73eae7962a02b011b6b084ac810596b874
1,458
py
Python
src/backend/migrations/versions/20191221_164504_881811805554_.py
zackramjan/motuz
892252eb50acbd8135bf9df9872df5e4cfe6277b
[ "MIT" ]
84
2019-05-10T14:56:48.000Z
2022-03-19T17:07:24.000Z
src/backend/migrations/versions/20191221_164504_881811805554_.py
zackramjan/motuz
892252eb50acbd8135bf9df9872df5e4cfe6277b
[ "MIT" ]
226
2019-05-28T21:59:22.000Z
2022-03-09T10:58:24.000Z
src/backend/migrations/versions/20191221_164504_881811805554_.py
zackramjan/motuz
892252eb50acbd8135bf9df9872df5e4cfe6277b
[ "MIT" ]
16
2019-09-27T01:35:49.000Z
2022-03-08T16:18:50.000Z
"""empty message Revision ID: 881811805554 Revises: 1035b06e75e0 Create Date: 2019-12-21 16:45:04.180704 """ from alembic import op import sqlalchemy as sa from sqlalchemy.dialects import postgresql # revision identifiers, used by Alembic. revision = '881811805554' down_revision = '1035b06e75e0' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('revoked_token', sa.Column('id', sa.Integer(), autoincrement=True, nullable=False), sa.Column('jti', sa.String(), nullable=False), sa.Column('type', sa.String(), nullable=False), sa.Column('identity', sa.String(), nullable=False), sa.Column('exp', sa.Integer(), nullable=False), sa.PrimaryKeyConstraint('id'), sa.UniqueConstraint('jti') ) op.drop_table('invalid_token') # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('invalid_token', sa.Column('id', sa.INTEGER(), autoincrement=True, nullable=False), sa.Column('token', sa.VARCHAR(length=500), autoincrement=False, nullable=False), sa.Column('blacklisted_on', postgresql.TIMESTAMP(), autoincrement=False, nullable=False), sa.PrimaryKeyConstraint('id', name='invalid_token_pkey'), sa.UniqueConstraint('token', name='invalid_token_token_key') ) op.drop_table('revoked_token') # ### end Alembic commands ###
32.4
93
0.70096
ec7d21490f4fcd547b34ea57e4f55f9201d5feef
3,773
py
Python
cuml_bench/knn_clsf.py
KalyanovD/scikit-learn_bench
13f05203e3c62fe576c91a897d576c32e2c3e50a
[ "Apache-2.0" ]
59
2019-06-13T18:25:55.000Z
2022-03-28T19:33:23.000Z
cuml_bench/knn_clsf.py
KalyanovD/scikit-learn_bench
13f05203e3c62fe576c91a897d576c32e2c3e50a
[ "Apache-2.0" ]
45
2018-10-10T16:17:21.000Z
2022-03-25T16:00:58.000Z
cuml_bench/knn_clsf.py
KalyanovD/scikit-learn_bench
13f05203e3c62fe576c91a897d576c32e2c3e50a
[ "Apache-2.0" ]
38
2018-10-08T17:07:25.000Z
2021-11-10T06:29:37.000Z
# =============================================================================== # Copyright 2020-2021 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =============================================================================== import argparse import bench from cuml.neighbors import KNeighborsClassifier parser = argparse.ArgumentParser( description='cuML kNN classifier benchmark') parser.add_argument('--task', default='classification', type=str, choices=('search', 'classification'), help='kNN task: search or classification') parser.add_argument('--n-neighbors', default=5, type=int, help='Number of neighbors to use') parser.add_argument('--weights', type=str, default='uniform', help='Weight function used in prediction') parser.add_argument('--method', type=str, default='brute', help='Algorithm used to compute the nearest neighbors') parser.add_argument('--metric', type=str, default='euclidean', help='Distance metric to use') params = bench.parse_args(parser) # Load generated data X_train, X_test, y_train, y_test = bench.load_data(params) params.n_classes = y_train[y_train.columns[0]].nunique() # Create classification object knn_clsf = KNeighborsClassifier(n_neighbors=params.n_neighbors, weights=params.weights, algorithm=params.method, metric=params.metric) # Measure time and accuracy on fitting train_time, _ = bench.measure_function_time(knn_clsf.fit, X_train, y_train, params=params) if params.task == 'classification': y_pred = knn_clsf.predict(X_train) train_acc = 100 * bench.accuracy_score(y_pred, y_train) # Measure time and accuracy on prediction if params.task == 'classification': predict_time, yp = bench.measure_function_time(knn_clsf.predict, X_test, params=params) test_acc = 100 * bench.accuracy_score(yp, y_test) else: predict_time, _ = bench.measure_function_time(knn_clsf.kneighbors, X_test, params=params) if params.task == 'classification': bench.print_output(library='cuml', algorithm=knn_clsf.algorithm + '_knn_clsf', stages=['training', 'prediction'], params=params, functions=['knn_clsf.fit', 'knn_clsf.predict'], times=[train_time, predict_time], metrics=[train_acc, test_acc], metric_type='accuracy[%]', data=[X_train, X_test], alg_instance=knn_clsf) else: bench.print_output(library='cuml', algorithm=knn_clsf.algorithm + '_knn_search', stages=['training', 'search'], params=params, functions=['knn_clsf.fit', 'knn_clsf.kneighbors'], times=[train_time, predict_time], metrics=[], metric_type=None, data=[X_train, X_test], alg_instance=knn_clsf)
46.580247
82
0.588126
d056cf255e6503787ab3973175c14d8327b8ca04
13,869
py
Python
rllib/agents/impala/vtrace_tf_policy.py
daobook/ray
af9f1ef4dc160e0671206556b387f8017f3c3930
[ "Apache-2.0" ]
33
2020-05-27T14:25:24.000Z
2022-03-22T06:11:30.000Z
rllib/agents/impala/vtrace_tf_policy.py
daobook/ray
af9f1ef4dc160e0671206556b387f8017f3c3930
[ "Apache-2.0" ]
227
2021-10-01T08:00:01.000Z
2021-12-28T16:47:26.000Z
rllib/agents/impala/vtrace_tf_policy.py
gramhagen/ray
c18caa4db36d466718bdbcb2229aa0b2dc03da1f
[ "Apache-2.0" ]
5
2020-08-06T15:53:07.000Z
2022-02-09T03:31:31.000Z
"""Adapted from A3CTFPolicy to add V-trace. Keep in sync with changes to A3CTFPolicy and VtraceSurrogatePolicy.""" import numpy as np import logging import gym import ray from ray.rllib.agents.impala import vtrace_tf as vtrace from ray.rllib.models.tf.tf_action_dist import Categorical from ray.rllib.policy.sample_batch import SampleBatch from ray.rllib.policy.tf_policy_template import build_tf_policy from ray.rllib.policy.tf_policy import LearningRateSchedule, \ EntropyCoeffSchedule from ray.rllib.utils import force_list from ray.rllib.utils.framework import try_import_tf from ray.rllib.utils.tf_utils import explained_variance tf1, tf, tfv = try_import_tf() logger = logging.getLogger(__name__) class VTraceLoss: def __init__(self, actions, actions_logp, actions_entropy, dones, behaviour_action_logp, behaviour_logits, target_logits, discount, rewards, values, bootstrap_value, dist_class, model, valid_mask, config, vf_loss_coeff=0.5, entropy_coeff=0.01, clip_rho_threshold=1.0, clip_pg_rho_threshold=1.0): """Policy gradient loss with vtrace importance weighting. VTraceLoss takes tensors of shape [T, B, ...], where `B` is the batch_size. The reason we need to know `B` is for V-trace to properly handle episode cut boundaries. Args: actions: An int|float32 tensor of shape [T, B, ACTION_SPACE]. actions_logp: A float32 tensor of shape [T, B]. actions_entropy: A float32 tensor of shape [T, B]. dones: A bool tensor of shape [T, B]. behaviour_action_logp: Tensor of shape [T, B]. behaviour_logits: A list with length of ACTION_SPACE of float32 tensors of shapes [T, B, ACTION_SPACE[0]], ..., [T, B, ACTION_SPACE[-1]] target_logits: A list with length of ACTION_SPACE of float32 tensors of shapes [T, B, ACTION_SPACE[0]], ..., [T, B, ACTION_SPACE[-1]] discount: A float32 scalar. rewards: A float32 tensor of shape [T, B]. values: A float32 tensor of shape [T, B]. bootstrap_value: A float32 tensor of shape [B]. dist_class: action distribution class for logits. valid_mask: A bool tensor of valid RNN input elements (#2992). config: Trainer config dict. """ # Compute vtrace on the CPU for better perf. with tf.device("/cpu:0"): self.vtrace_returns = vtrace.multi_from_logits( behaviour_action_log_probs=behaviour_action_logp, behaviour_policy_logits=behaviour_logits, target_policy_logits=target_logits, actions=tf.unstack(actions, axis=2), discounts=tf.cast(~tf.cast(dones, tf.bool), tf.float32) * discount, rewards=rewards, values=values, bootstrap_value=bootstrap_value, dist_class=dist_class, model=model, clip_rho_threshold=tf.cast(clip_rho_threshold, tf.float32), clip_pg_rho_threshold=tf.cast(clip_pg_rho_threshold, tf.float32)) self.value_targets = self.vtrace_returns.vs # The policy gradients loss. masked_pi_loss = tf.boolean_mask( actions_logp * self.vtrace_returns.pg_advantages, valid_mask) self.pi_loss = -tf.reduce_sum(masked_pi_loss) self.mean_pi_loss = -tf.reduce_mean(masked_pi_loss) # The baseline loss. delta = tf.boolean_mask(values - self.vtrace_returns.vs, valid_mask) delta_squarred = tf.math.square(delta) self.vf_loss = 0.5 * tf.reduce_sum(delta_squarred) self.mean_vf_loss = 0.5 * tf.reduce_mean(delta_squarred) # The entropy loss. masked_entropy = tf.boolean_mask(actions_entropy, valid_mask) self.entropy = tf.reduce_sum(masked_entropy) self.mean_entropy = tf.reduce_mean(masked_entropy) # The summed weighted loss. self.total_loss = self.pi_loss - self.entropy * entropy_coeff # Optional vf loss (or in a separate term due to separate # optimizers/networks). self.loss_wo_vf = self.total_loss if not config["_separate_vf_optimizer"]: self.total_loss += self.vf_loss * vf_loss_coeff def _make_time_major(policy, seq_lens, tensor, drop_last=False): """Swaps batch and trajectory axis. Args: policy: Policy reference seq_lens: Sequence lengths if recurrent or None tensor: A tensor or list of tensors to reshape. drop_last: A bool indicating whether to drop the last trajectory item. Returns: res: A tensor with swapped axes or a list of tensors with swapped axes. """ if isinstance(tensor, list): return [ _make_time_major(policy, seq_lens, t, drop_last) for t in tensor ] if policy.is_recurrent(): B = tf.shape(seq_lens)[0] T = tf.shape(tensor)[0] // B else: # Important: chop the tensor into batches at known episode cut # boundaries. # TODO: (sven) this is kind of a hack and won't work for # batch_mode=complete_episodes. T = policy.config["rollout_fragment_length"] B = tf.shape(tensor)[0] // T rs = tf.reshape(tensor, tf.concat([[B, T], tf.shape(tensor)[1:]], axis=0)) # swap B and T axes res = tf.transpose( rs, [1, 0] + list(range(2, 1 + int(tf.shape(tensor).shape[0])))) if drop_last: return res[:-1] return res def build_vtrace_loss(policy, model, dist_class, train_batch): model_out, _ = model(train_batch) action_dist = dist_class(model_out, model) if isinstance(policy.action_space, gym.spaces.Discrete): is_multidiscrete = False output_hidden_shape = [policy.action_space.n] elif isinstance(policy.action_space, gym.spaces.MultiDiscrete): is_multidiscrete = True output_hidden_shape = policy.action_space.nvec.astype(np.int32) else: is_multidiscrete = False output_hidden_shape = 1 def make_time_major(*args, **kw): return _make_time_major(policy, train_batch.get(SampleBatch.SEQ_LENS), *args, **kw) actions = train_batch[SampleBatch.ACTIONS] dones = train_batch[SampleBatch.DONES] rewards = train_batch[SampleBatch.REWARDS] behaviour_action_logp = train_batch[SampleBatch.ACTION_LOGP] behaviour_logits = train_batch[SampleBatch.ACTION_DIST_INPUTS] unpacked_behaviour_logits = tf.split( behaviour_logits, output_hidden_shape, axis=1) unpacked_outputs = tf.split(model_out, output_hidden_shape, axis=1) values = model.value_function() if policy.is_recurrent(): max_seq_len = tf.reduce_max(train_batch[SampleBatch.SEQ_LENS]) mask = tf.sequence_mask(train_batch[SampleBatch.SEQ_LENS], max_seq_len) mask = tf.reshape(mask, [-1]) else: mask = tf.ones_like(rewards) # Prepare actions for loss loss_actions = actions if is_multidiscrete else tf.expand_dims( actions, axis=1) # Inputs are reshaped from [B * T] => [(T|T-1), B] for V-trace calc. drop_last = policy.config["vtrace_drop_last_ts"] policy.loss = VTraceLoss( actions=make_time_major(loss_actions, drop_last=drop_last), actions_logp=make_time_major( action_dist.logp(actions), drop_last=drop_last), actions_entropy=make_time_major( action_dist.multi_entropy(), drop_last=drop_last), dones=make_time_major(dones, drop_last=drop_last), behaviour_action_logp=make_time_major( behaviour_action_logp, drop_last=drop_last), behaviour_logits=make_time_major( unpacked_behaviour_logits, drop_last=drop_last), target_logits=make_time_major(unpacked_outputs, drop_last=drop_last), discount=policy.config["gamma"], rewards=make_time_major(rewards, drop_last=drop_last), values=make_time_major(values, drop_last=drop_last), bootstrap_value=make_time_major(values)[-1], dist_class=Categorical if is_multidiscrete else dist_class, model=model, valid_mask=make_time_major(mask, drop_last=drop_last), config=policy.config, vf_loss_coeff=policy.config["vf_loss_coeff"], entropy_coeff=policy.entropy_coeff, clip_rho_threshold=policy.config["vtrace_clip_rho_threshold"], clip_pg_rho_threshold=policy.config["vtrace_clip_pg_rho_threshold"]) if policy.config.get("_separate_vf_optimizer"): return policy.loss.loss_wo_vf, policy.loss.vf_loss else: return policy.loss.total_loss def stats(policy, train_batch): drop_last = policy.config["vtrace"] and \ policy.config["vtrace_drop_last_ts"] values_batched = _make_time_major( policy, train_batch.get(SampleBatch.SEQ_LENS), policy.model.value_function(), drop_last=drop_last) return { "cur_lr": tf.cast(policy.cur_lr, tf.float64), "policy_loss": policy.loss.mean_pi_loss, "entropy": policy.loss.mean_entropy, "entropy_coeff": tf.cast(policy.entropy_coeff, tf.float64), "var_gnorm": tf.linalg.global_norm(policy.model.trainable_variables()), "vf_loss": policy.loss.mean_vf_loss, "vf_explained_var": explained_variance( tf.reshape(policy.loss.value_targets, [-1]), tf.reshape(values_batched, [-1])) } def grad_stats(policy, train_batch, grads): # We have support for more than one loss (list of lists of grads). if policy.config.get("_tf_policy_handles_more_than_one_loss"): grad_gnorm = [tf.linalg.global_norm(g) for g in grads] # Old case: We have a single list of grads (only one loss term and # optimizer). else: grad_gnorm = tf.linalg.global_norm(grads) return { "grad_gnorm": grad_gnorm, } def choose_optimizer(policy, config): if policy.config["opt_type"] == "adam": if policy.config["framework"] in ["tf2", "tfe"]: optim = tf.keras.optimizers.Adam(policy.cur_lr) if policy.config["_separate_vf_optimizer"]: return optim, tf.keras.optimizers.Adam(policy.config["_lr_vf"]) else: optim = tf1.train.AdamOptimizer(policy.cur_lr) if policy.config["_separate_vf_optimizer"]: return optim, tf1.train.AdamOptimizer(policy.config["_lr_vf"]) else: if policy.config["_separate_vf_optimizer"]: raise ValueError("RMSProp optimizer not supported for separate" "vf- and policy losses yet! Set `opt_type=adam`") if tfv == 2: optim = tf.keras.optimizers.RMSprop(policy.cur_lr, config["decay"], config["momentum"], config["epsilon"]) else: optim = tf1.train.RMSPropOptimizer(policy.cur_lr, config["decay"], config["momentum"], config["epsilon"]) return optim def clip_gradients(policy, optimizer, loss): # Supporting more than one loss/optimizer. if policy.config["_tf_policy_handles_more_than_one_loss"]: optimizers = force_list(optimizer) losses = force_list(loss) assert len(optimizers) == len(losses) clipped_grads_and_vars = [] for optim, loss_ in zip(optimizers, losses): grads_and_vars = optim.compute_gradients( loss_, policy.model.trainable_variables()) clipped_g_and_v = [] for g, v in grads_and_vars: if g is not None: clipped_g, _ = tf.clip_by_global_norm( [g], policy.config["grad_clip"]) clipped_g_and_v.append((clipped_g[0], v)) clipped_grads_and_vars.append(clipped_g_and_v) policy.grads = [ g for g_and_v in clipped_grads_and_vars for (g, v) in g_and_v ] # Only one optimizer and and loss term. else: grads_and_vars = optimizer.compute_gradients( loss, policy.model.trainable_variables()) grads = [g for (g, v) in grads_and_vars] policy.grads, _ = tf.clip_by_global_norm(grads, policy.config["grad_clip"]) clipped_grads_and_vars = list( zip(policy.grads, policy.model.trainable_variables())) return clipped_grads_and_vars def setup_mixins(policy, obs_space, action_space, config): LearningRateSchedule.__init__(policy, config["lr"], config["lr_schedule"]) EntropyCoeffSchedule.__init__(policy, config["entropy_coeff"], config["entropy_coeff_schedule"]) VTraceTFPolicy = build_tf_policy( name="VTraceTFPolicy", get_default_config=lambda: ray.rllib.agents.impala.impala.DEFAULT_CONFIG, loss_fn=build_vtrace_loss, stats_fn=stats, grad_stats_fn=grad_stats, optimizer_fn=choose_optimizer, compute_gradients_fn=clip_gradients, before_loss_init=setup_mixins, mixins=[LearningRateSchedule, EntropyCoeffSchedule], get_batch_divisibility_req=lambda p: p.config["rollout_fragment_length"])
39.739255
79
0.632562
ee27a6750b5d0433b2dfd4e2fad2450de84a3fb4
1,713
py
Python
predict.py
Dr-Awkward/UdacityImageClassifier
7daf65f62c0bd8e23467472e4bea18fbd1323636
[ "MIT" ]
null
null
null
predict.py
Dr-Awkward/UdacityImageClassifier
7daf65f62c0bd8e23467472e4bea18fbd1323636
[ "MIT" ]
null
null
null
predict.py
Dr-Awkward/UdacityImageClassifier
7daf65f62c0bd8e23467472e4bea18fbd1323636
[ "MIT" ]
null
null
null
import nnModel import torchvision from torchvision import datasets, transforms, models import helpers.JsonLoader import argparse ####################################################### # Load a saved model and predict a flower image # 1. Get the directory to the image that we will infer on # 2. Get the directory to the save checkpoint # 3. Get the number of most likley classes to show # 4. Get the name of the json file to map categories to real names # 5. Choose GPU for inference # Create the parser and add the arguments parser = argparse.ArgumentParser(description="Load a Neural Network to use for inference") parser.add_argument('data_directory', help="The relative path to the image files to infer on.") parser.add_argument('checkpoint', help="The relative path to the neural network checkpoint as a pth file.") parser.add_argument('--top_k', default=1, type=int, help="The amount of most likley classes to return for the predictions") parser.add_argument('--category_names', default = './cat_to_name.json', help="The json file (including file path) to load category names") parser.add_argument('--gpu', default=False, action='store_true', help="Boolean to infer with the gpu") # Collect the arguments args = parser.parse_args() data_directory = args.data_directory checkpoint = args.checkpoint top_k = args.top_k category_name = args.category_names use_gpu = args.gpu # Load the model model = nnModel.load_model(checkpoint) # Load the content of the json file categories = helpers.JsonLoader.load_json(category_name) # Predict nnModel.predict(categories, data_directory, model, use_gpu, top_k)
38.066667
93
0.71045
964dac6a052ed1b2db006714c7503b972ee6a0cf
2,040
py
Python
tests/zquantum/core/history/artifact_storage_test.py
alexjuda2/z-quantum-core
c258100dbd091f0b22495b77b36399426ae9abac
[ "Apache-2.0" ]
24
2020-04-15T17:36:59.000Z
2022-01-25T05:02:14.000Z
tests/zquantum/core/history/artifact_storage_test.py
alexjuda2/z-quantum-core
c258100dbd091f0b22495b77b36399426ae9abac
[ "Apache-2.0" ]
177
2020-04-23T15:19:59.000Z
2022-03-30T18:06:17.000Z
tests/zquantum/core/history/artifact_storage_test.py
alexjuda2/z-quantum-core
c258100dbd091f0b22495b77b36399426ae9abac
[ "Apache-2.0" ]
19
2020-06-24T10:56:02.000Z
2021-09-30T13:02:21.000Z
"""Test cases for storing artifacts and recording functions that store them.""" import numpy as np import pytest from zquantum.core.history.example_functions import Function5, function_3, function_4 from zquantum.core.history.recorder import ArtifactCollection, recorder, store_artifact from zquantum.core.history.save_conditions import every_nth from zquantum.core.interfaces.functions import CallableStoringArtifacts def test_store_artifact_by_default_does_not_force_artifacts_storage(): artifacts = ArtifactCollection() store_artifact(artifacts)("bitstring", "1111") assert not artifacts.forced @pytest.mark.parametrize( "source_function,params_sequence,expected_artifacts", [ ( function_3, [3, 4, 5], [{"bitstring": string} for string in ["11", "100", "101"]], ), ( function_4, [0, 10, 21], [{"bitstring": string} for string in ["0", "1010", "10101"]], ), ( Function5(2), [np.array([1.5, 2, 3]), np.array([4.0, 2.5, 3.0])], [{"something": 3.5}, {"something": 6.5}], ), ], ) def test_recorder_stores_all_artifacts_by_default( source_function: CallableStoringArtifacts, params_sequence, expected_artifacts ): function = recorder(source_function) for param in params_sequence: function(param) assert [entry.artifacts for entry in function.history] == expected_artifacts def test_recorder_stores_history_entry_if_artifact_is_force_stored(): function = recorder(function_4, save_condition=every_nth(5)) for n in [0, 2, 3, 5, 7, 5]: function(n) assert [entry.call_number for entry in function.history] == [0, 1, 5] assert [entry.value for entry in function.history] == [0, 4, 10] assert [entry.params for entry in function.history] == [0, 2, 5] assert [entry.artifacts for entry in function.history] == [ {"bitstring": "0"}, {"bitstring": "10"}, {"bitstring": "101"}, ]
34.576271
87
0.657353
f6ca6423fa22d1a1f2c1bed5c669e5caa674f5d6
48,740
py
Python
nebula2_fork/graph/ttypes.py
linzhiming0826/nebula-python
0c508aa9780981c1fef2bf826d624a69ca2c64b0
[ "Apache-2.0" ]
null
null
null
nebula2_fork/graph/ttypes.py
linzhiming0826/nebula-python
0c508aa9780981c1fef2bf826d624a69ca2c64b0
[ "Apache-2.0" ]
null
null
null
nebula2_fork/graph/ttypes.py
linzhiming0826/nebula-python
0c508aa9780981c1fef2bf826d624a69ca2c64b0
[ "Apache-2.0" ]
null
null
null
# # Autogenerated by Thrift # # DO NOT EDIT UNLESS YOU ARE SURE THAT YOU KNOW WHAT YOU ARE DOING # @generated # from __future__ import absolute_import import six import sys from nebula2_fork.fbthrift.util.Recursive import fix_spec from nebula2_fork.fbthrift.Thrift import TType, TMessageType, TPriority, TRequestContext, TProcessorEventHandler, TServerInterface, TProcessor, TException, TApplicationException, UnimplementedTypedef from nebula2_fork.fbthrift.protocol.TProtocol import TProtocolException import nebula2_fork.common.ttypes import pprint import warnings from nebula2_fork.fbthrift import Thrift from nebula2_fork.fbthrift.transport import TTransport from nebula2_fork.fbthrift.protocol import TBinaryProtocol from nebula2_fork.fbthrift.protocol import TCompactProtocol from nebula2_fork.fbthrift.protocol import THeaderProtocol fastproto = None try: from nebula2_fork.fbthrift.protocol import fastproto except ImportError: pass all_structs = [] UTF8STRINGS = bool(0) or sys.version_info.major >= 3 __all__ = ['UTF8STRINGS', 'ProfilingStats', 'PlanNodeBranchInfo', 'Pair', 'PlanNodeDescription', 'PlanDescription', 'ExecutionResponse', 'AuthResponse'] class ProfilingStats: """ Attributes: - rows - exec_duration_in_us - total_duration_in_us - other_stats """ thrift_spec = None thrift_field_annotations = None thrift_struct_annotations = None __init__ = None @staticmethod def isUnion(): return False def read(self, iprot): if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0) return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.I64: self.rows = iprot.readI64() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.I64: self.exec_duration_in_us = iprot.readI64() else: iprot.skip(ftype) elif fid == 3: if ftype == TType.I64: self.total_duration_in_us = iprot.readI64() else: iprot.skip(ftype) elif fid == 4: if ftype == TType.MAP: self.other_stats = {} (_ktype1, _vtype2, _size0 ) = iprot.readMapBegin() if _size0 >= 0: for _i4 in six.moves.range(_size0): _key5 = iprot.readString() _val6 = iprot.readString() self.other_stats[_key5] = _val6 else: while iprot.peekMap(): _key7 = iprot.readString() _val8 = iprot.readString() self.other_stats[_key7] = _val8 iprot.readMapEnd() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeStructBegin('ProfilingStats') if self.rows != None: oprot.writeFieldBegin('rows', TType.I64, 1) oprot.writeI64(self.rows) oprot.writeFieldEnd() if self.exec_duration_in_us != None: oprot.writeFieldBegin('exec_duration_in_us', TType.I64, 2) oprot.writeI64(self.exec_duration_in_us) oprot.writeFieldEnd() if self.total_duration_in_us != None: oprot.writeFieldBegin('total_duration_in_us', TType.I64, 3) oprot.writeI64(self.total_duration_in_us) oprot.writeFieldEnd() if self.other_stats != None: oprot.writeFieldBegin('other_stats', TType.MAP, 4) oprot.writeMapBegin(TType.STRING, TType.STRING, len(self.other_stats)) for kiter9,viter10 in self.other_stats.items(): oprot.writeString(kiter9) oprot.writeString(viter10) oprot.writeMapEnd() oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def __repr__(self): L = [] padding = ' ' * 4 if self.rows is not None: value = pprint.pformat(self.rows, indent=0) value = padding.join(value.splitlines(True)) L.append(' rows=%s' % (value)) if self.exec_duration_in_us is not None: value = pprint.pformat(self.exec_duration_in_us, indent=0) value = padding.join(value.splitlines(True)) L.append(' exec_duration_in_us=%s' % (value)) if self.total_duration_in_us is not None: value = pprint.pformat(self.total_duration_in_us, indent=0) value = padding.join(value.splitlines(True)) L.append(' total_duration_in_us=%s' % (value)) if self.other_stats is not None: value = pprint.pformat(self.other_stats, indent=0) value = padding.join(value.splitlines(True)) L.append(' other_stats=%s' % (value)) return "%s(%s)" % (self.__class__.__name__, "\n" + ",\n".join(L) if L else '') def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) # Override the __hash__ function for Python3 - t10434117 if not six.PY2: __hash__ = object.__hash__ class PlanNodeBranchInfo: """ Attributes: - is_do_branch - condition_node_id """ thrift_spec = None thrift_field_annotations = None thrift_struct_annotations = None __init__ = None @staticmethod def isUnion(): return False def read(self, iprot): if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0) return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.BOOL: self.is_do_branch = iprot.readBool() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.I64: self.condition_node_id = iprot.readI64() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeStructBegin('PlanNodeBranchInfo') if self.is_do_branch != None: oprot.writeFieldBegin('is_do_branch', TType.BOOL, 1) oprot.writeBool(self.is_do_branch) oprot.writeFieldEnd() if self.condition_node_id != None: oprot.writeFieldBegin('condition_node_id', TType.I64, 2) oprot.writeI64(self.condition_node_id) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def __repr__(self): L = [] padding = ' ' * 4 if self.is_do_branch is not None: value = pprint.pformat(self.is_do_branch, indent=0) value = padding.join(value.splitlines(True)) L.append(' is_do_branch=%s' % (value)) if self.condition_node_id is not None: value = pprint.pformat(self.condition_node_id, indent=0) value = padding.join(value.splitlines(True)) L.append(' condition_node_id=%s' % (value)) return "%s(%s)" % (self.__class__.__name__, "\n" + ",\n".join(L) if L else '') def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) # Override the __hash__ function for Python3 - t10434117 if not six.PY2: __hash__ = object.__hash__ class Pair: """ Attributes: - key - value """ thrift_spec = None thrift_field_annotations = None thrift_struct_annotations = None __init__ = None @staticmethod def isUnion(): return False def read(self, iprot): if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0) return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.key = iprot.readString() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRING: self.value = iprot.readString() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeStructBegin('Pair') if self.key != None: oprot.writeFieldBegin('key', TType.STRING, 1) oprot.writeString(self.key) oprot.writeFieldEnd() if self.value != None: oprot.writeFieldBegin('value', TType.STRING, 2) oprot.writeString(self.value) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def __repr__(self): L = [] padding = ' ' * 4 if self.key is not None: value = pprint.pformat(self.key, indent=0) value = padding.join(value.splitlines(True)) L.append(' key=%s' % (value)) if self.value is not None: value = pprint.pformat(self.value, indent=0) value = padding.join(value.splitlines(True)) L.append(' value=%s' % (value)) return "%s(%s)" % (self.__class__.__name__, "\n" + ",\n".join(L) if L else '') def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) # Override the __hash__ function for Python3 - t10434117 if not six.PY2: __hash__ = object.__hash__ class PlanNodeDescription: """ Attributes: - name - id - output_var - description - profiles - branch_info - dependencies """ thrift_spec = None thrift_field_annotations = None thrift_struct_annotations = None __init__ = None @staticmethod def isUnion(): return False def read(self, iprot): if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0) return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.name = iprot.readString() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.I64: self.id = iprot.readI64() else: iprot.skip(ftype) elif fid == 3: if ftype == TType.STRING: self.output_var = iprot.readString() else: iprot.skip(ftype) elif fid == 4: if ftype == TType.LIST: self.description = [] (_etype14, _size11) = iprot.readListBegin() if _size11 >= 0: for _i15 in six.moves.range(_size11): _elem16 = Pair() _elem16.read(iprot) self.description.append(_elem16) else: while iprot.peekList(): _elem17 = Pair() _elem17.read(iprot) self.description.append(_elem17) iprot.readListEnd() else: iprot.skip(ftype) elif fid == 5: if ftype == TType.LIST: self.profiles = [] (_etype21, _size18) = iprot.readListBegin() if _size18 >= 0: for _i22 in six.moves.range(_size18): _elem23 = ProfilingStats() _elem23.read(iprot) self.profiles.append(_elem23) else: while iprot.peekList(): _elem24 = ProfilingStats() _elem24.read(iprot) self.profiles.append(_elem24) iprot.readListEnd() else: iprot.skip(ftype) elif fid == 6: if ftype == TType.STRUCT: self.branch_info = PlanNodeBranchInfo() self.branch_info.read(iprot) else: iprot.skip(ftype) elif fid == 7: if ftype == TType.LIST: self.dependencies = [] (_etype28, _size25) = iprot.readListBegin() if _size25 >= 0: for _i29 in six.moves.range(_size25): _elem30 = iprot.readI64() self.dependencies.append(_elem30) else: while iprot.peekList(): _elem31 = iprot.readI64() self.dependencies.append(_elem31) iprot.readListEnd() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeStructBegin('PlanNodeDescription') if self.name != None: oprot.writeFieldBegin('name', TType.STRING, 1) oprot.writeString(self.name) oprot.writeFieldEnd() if self.id != None: oprot.writeFieldBegin('id', TType.I64, 2) oprot.writeI64(self.id) oprot.writeFieldEnd() if self.output_var != None: oprot.writeFieldBegin('output_var', TType.STRING, 3) oprot.writeString(self.output_var) oprot.writeFieldEnd() if self.description != None: oprot.writeFieldBegin('description', TType.LIST, 4) oprot.writeListBegin(TType.STRUCT, len(self.description)) for iter32 in self.description: iter32.write(oprot) oprot.writeListEnd() oprot.writeFieldEnd() if self.profiles != None: oprot.writeFieldBegin('profiles', TType.LIST, 5) oprot.writeListBegin(TType.STRUCT, len(self.profiles)) for iter33 in self.profiles: iter33.write(oprot) oprot.writeListEnd() oprot.writeFieldEnd() if self.branch_info != None: oprot.writeFieldBegin('branch_info', TType.STRUCT, 6) self.branch_info.write(oprot) oprot.writeFieldEnd() if self.dependencies != None: oprot.writeFieldBegin('dependencies', TType.LIST, 7) oprot.writeListBegin(TType.I64, len(self.dependencies)) for iter34 in self.dependencies: oprot.writeI64(iter34) oprot.writeListEnd() oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def __repr__(self): L = [] padding = ' ' * 4 if self.name is not None: value = pprint.pformat(self.name, indent=0) value = padding.join(value.splitlines(True)) L.append(' name=%s' % (value)) if self.id is not None: value = pprint.pformat(self.id, indent=0) value = padding.join(value.splitlines(True)) L.append(' id=%s' % (value)) if self.output_var is not None: value = pprint.pformat(self.output_var, indent=0) value = padding.join(value.splitlines(True)) L.append(' output_var=%s' % (value)) if self.description is not None: value = pprint.pformat(self.description, indent=0) value = padding.join(value.splitlines(True)) L.append(' description=%s' % (value)) if self.profiles is not None: value = pprint.pformat(self.profiles, indent=0) value = padding.join(value.splitlines(True)) L.append(' profiles=%s' % (value)) if self.branch_info is not None: value = pprint.pformat(self.branch_info, indent=0) value = padding.join(value.splitlines(True)) L.append(' branch_info=%s' % (value)) if self.dependencies is not None: value = pprint.pformat(self.dependencies, indent=0) value = padding.join(value.splitlines(True)) L.append(' dependencies=%s' % (value)) return "%s(%s)" % (self.__class__.__name__, "\n" + ",\n".join(L) if L else '') def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) # Override the __hash__ function for Python3 - t10434117 if not six.PY2: __hash__ = object.__hash__ class PlanDescription: """ Attributes: - plan_node_descs - node_index_map - format - optimize_time_in_us """ thrift_spec = None thrift_field_annotations = None thrift_struct_annotations = None __init__ = None @staticmethod def isUnion(): return False def read(self, iprot): if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0) return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.LIST: self.plan_node_descs = [] (_etype38, _size35) = iprot.readListBegin() if _size35 >= 0: for _i39 in six.moves.range(_size35): _elem40 = PlanNodeDescription() _elem40.read(iprot) self.plan_node_descs.append(_elem40) else: while iprot.peekList(): _elem41 = PlanNodeDescription() _elem41.read(iprot) self.plan_node_descs.append(_elem41) iprot.readListEnd() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.MAP: self.node_index_map = {} (_ktype43, _vtype44, _size42 ) = iprot.readMapBegin() if _size42 >= 0: for _i46 in six.moves.range(_size42): _key47 = iprot.readI64() _val48 = iprot.readI64() self.node_index_map[_key47] = _val48 else: while iprot.peekMap(): _key49 = iprot.readI64() _val50 = iprot.readI64() self.node_index_map[_key49] = _val50 iprot.readMapEnd() else: iprot.skip(ftype) elif fid == 3: if ftype == TType.STRING: self.format = iprot.readString() else: iprot.skip(ftype) elif fid == 4: if ftype == TType.I32: self.optimize_time_in_us = iprot.readI32() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeStructBegin('PlanDescription') if self.plan_node_descs != None: oprot.writeFieldBegin('plan_node_descs', TType.LIST, 1) oprot.writeListBegin(TType.STRUCT, len(self.plan_node_descs)) for iter51 in self.plan_node_descs: iter51.write(oprot) oprot.writeListEnd() oprot.writeFieldEnd() if self.node_index_map != None: oprot.writeFieldBegin('node_index_map', TType.MAP, 2) oprot.writeMapBegin(TType.I64, TType.I64, len(self.node_index_map)) for kiter52,viter53 in self.node_index_map.items(): oprot.writeI64(kiter52) oprot.writeI64(viter53) oprot.writeMapEnd() oprot.writeFieldEnd() if self.format != None: oprot.writeFieldBegin('format', TType.STRING, 3) oprot.writeString(self.format) oprot.writeFieldEnd() if self.optimize_time_in_us != None: oprot.writeFieldBegin('optimize_time_in_us', TType.I32, 4) oprot.writeI32(self.optimize_time_in_us) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def __repr__(self): L = [] padding = ' ' * 4 if self.plan_node_descs is not None: value = pprint.pformat(self.plan_node_descs, indent=0) value = padding.join(value.splitlines(True)) L.append(' plan_node_descs=%s' % (value)) if self.node_index_map is not None: value = pprint.pformat(self.node_index_map, indent=0) value = padding.join(value.splitlines(True)) L.append(' node_index_map=%s' % (value)) if self.format is not None: value = pprint.pformat(self.format, indent=0) value = padding.join(value.splitlines(True)) L.append(' format=%s' % (value)) if self.optimize_time_in_us is not None: value = pprint.pformat(self.optimize_time_in_us, indent=0) value = padding.join(value.splitlines(True)) L.append(' optimize_time_in_us=%s' % (value)) return "%s(%s)" % (self.__class__.__name__, "\n" + ",\n".join(L) if L else '') def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) # Override the __hash__ function for Python3 - t10434117 if not six.PY2: __hash__ = object.__hash__ class ExecutionResponse: """ Attributes: - error_code - latency_in_us - data - space_name - error_msg - plan_desc - comment """ thrift_spec = None thrift_field_annotations = None thrift_struct_annotations = None __init__ = None @staticmethod def isUnion(): return False def read(self, iprot): if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0) return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.I32: self.error_code = iprot.readI32() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.I32: self.latency_in_us = iprot.readI32() else: iprot.skip(ftype) elif fid == 3: if ftype == TType.STRUCT: self.data = nebula2_fork.common.ttypes.DataSet() self.data.read(iprot) else: iprot.skip(ftype) elif fid == 4: if ftype == TType.STRING: self.space_name = iprot.readString() else: iprot.skip(ftype) elif fid == 5: if ftype == TType.STRING: self.error_msg = iprot.readString() else: iprot.skip(ftype) elif fid == 6: if ftype == TType.STRUCT: self.plan_desc = PlanDescription() self.plan_desc.read(iprot) else: iprot.skip(ftype) elif fid == 7: if ftype == TType.STRING: self.comment = iprot.readString() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeStructBegin('ExecutionResponse') if self.error_code != None: oprot.writeFieldBegin('error_code', TType.I32, 1) oprot.writeI32(self.error_code) oprot.writeFieldEnd() if self.latency_in_us != None: oprot.writeFieldBegin('latency_in_us', TType.I32, 2) oprot.writeI32(self.latency_in_us) oprot.writeFieldEnd() if self.data != None: oprot.writeFieldBegin('data', TType.STRUCT, 3) self.data.write(oprot) oprot.writeFieldEnd() if self.space_name != None: oprot.writeFieldBegin('space_name', TType.STRING, 4) oprot.writeString(self.space_name) oprot.writeFieldEnd() if self.error_msg != None: oprot.writeFieldBegin('error_msg', TType.STRING, 5) oprot.writeString(self.error_msg) oprot.writeFieldEnd() if self.plan_desc != None: oprot.writeFieldBegin('plan_desc', TType.STRUCT, 6) self.plan_desc.write(oprot) oprot.writeFieldEnd() if self.comment != None: oprot.writeFieldBegin('comment', TType.STRING, 7) oprot.writeString(self.comment) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def __repr__(self): L = [] padding = ' ' * 4 if self.error_code is not None: value = pprint.pformat(self.error_code, indent=0) value = padding.join(value.splitlines(True)) L.append(' error_code=%s' % (value)) if self.latency_in_us is not None: value = pprint.pformat(self.latency_in_us, indent=0) value = padding.join(value.splitlines(True)) L.append(' latency_in_us=%s' % (value)) if self.data is not None: value = pprint.pformat(self.data, indent=0) value = padding.join(value.splitlines(True)) L.append(' data=%s' % (value)) if self.space_name is not None: value = pprint.pformat(self.space_name, indent=0) value = padding.join(value.splitlines(True)) L.append(' space_name=%s' % (value)) if self.error_msg is not None: value = pprint.pformat(self.error_msg, indent=0) value = padding.join(value.splitlines(True)) L.append(' error_msg=%s' % (value)) if self.plan_desc is not None: value = pprint.pformat(self.plan_desc, indent=0) value = padding.join(value.splitlines(True)) L.append(' plan_desc=%s' % (value)) if self.comment is not None: value = pprint.pformat(self.comment, indent=0) value = padding.join(value.splitlines(True)) L.append(' comment=%s' % (value)) return "%s(%s)" % (self.__class__.__name__, "\n" + ",\n".join(L) if L else '') def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) # Override the __hash__ function for Python3 - t10434117 if not six.PY2: __hash__ = object.__hash__ class AuthResponse: """ Attributes: - error_code - error_msg - session_id - time_zone_offset_seconds - time_zone_name """ thrift_spec = None thrift_field_annotations = None thrift_struct_annotations = None __init__ = None @staticmethod def isUnion(): return False def read(self, iprot): if (isinstance(iprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0) return if (isinstance(iprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(iprot, THeaderProtocol.THeaderProtocolAccelerate) and iprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastproto is not None: fastproto.decode(self, iprot.trans, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.I32: self.error_code = iprot.readI32() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRING: self.error_msg = iprot.readString() else: iprot.skip(ftype) elif fid == 3: if ftype == TType.I64: self.session_id = iprot.readI64() else: iprot.skip(ftype) elif fid == 4: if ftype == TType.I32: self.time_zone_offset_seconds = iprot.readI32() else: iprot.skip(ftype) elif fid == 5: if ftype == TType.STRING: self.time_zone_name = iprot.readString() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if (isinstance(oprot, TBinaryProtocol.TBinaryProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_BINARY_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=0)) return if (isinstance(oprot, TCompactProtocol.TCompactProtocolAccelerated) or (isinstance(oprot, THeaderProtocol.THeaderProtocolAccelerate) and oprot.get_protocol_id() == THeaderProtocol.THeaderProtocol.T_COMPACT_PROTOCOL)) and self.thrift_spec is not None and fastproto is not None: oprot.trans.write(fastproto.encode(self, [self.__class__, self.thrift_spec, False], utf8strings=UTF8STRINGS, protoid=2)) return oprot.writeStructBegin('AuthResponse') if self.error_code != None: oprot.writeFieldBegin('error_code', TType.I32, 1) oprot.writeI32(self.error_code) oprot.writeFieldEnd() if self.error_msg != None: oprot.writeFieldBegin('error_msg', TType.STRING, 2) oprot.writeString(self.error_msg) oprot.writeFieldEnd() if self.session_id != None: oprot.writeFieldBegin('session_id', TType.I64, 3) oprot.writeI64(self.session_id) oprot.writeFieldEnd() if self.time_zone_offset_seconds != None: oprot.writeFieldBegin('time_zone_offset_seconds', TType.I32, 4) oprot.writeI32(self.time_zone_offset_seconds) oprot.writeFieldEnd() if self.time_zone_name != None: oprot.writeFieldBegin('time_zone_name', TType.STRING, 5) oprot.writeString(self.time_zone_name) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def __repr__(self): L = [] padding = ' ' * 4 if self.error_code is not None: value = pprint.pformat(self.error_code, indent=0) value = padding.join(value.splitlines(True)) L.append(' error_code=%s' % (value)) if self.error_msg is not None: value = pprint.pformat(self.error_msg, indent=0) value = padding.join(value.splitlines(True)) L.append(' error_msg=%s' % (value)) if self.session_id is not None: value = pprint.pformat(self.session_id, indent=0) value = padding.join(value.splitlines(True)) L.append(' session_id=%s' % (value)) if self.time_zone_offset_seconds is not None: value = pprint.pformat(self.time_zone_offset_seconds, indent=0) value = padding.join(value.splitlines(True)) L.append(' time_zone_offset_seconds=%s' % (value)) if self.time_zone_name is not None: value = pprint.pformat(self.time_zone_name, indent=0) value = padding.join(value.splitlines(True)) L.append(' time_zone_name=%s' % (value)) return "%s(%s)" % (self.__class__.__name__, "\n" + ",\n".join(L) if L else '') def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) # Override the __hash__ function for Python3 - t10434117 if not six.PY2: __hash__ = object.__hash__ all_structs.append(ProfilingStats) ProfilingStats.thrift_spec = ( None, # 0 (1, TType.I64, 'rows', None, None, 0, ), # 1 (2, TType.I64, 'exec_duration_in_us', None, None, 0, ), # 2 (3, TType.I64, 'total_duration_in_us', None, None, 0, ), # 3 (4, TType.MAP, 'other_stats', (TType.STRING,False,TType.STRING,False), None, 1, ), # 4 ) ProfilingStats.thrift_struct_annotations = { "cpp.type": "nebula::ProfilingStats", } ProfilingStats.thrift_field_annotations = { } def ProfilingStats__init__(self, rows=None, exec_duration_in_us=None, total_duration_in_us=None, other_stats=None,): self.rows = rows self.exec_duration_in_us = exec_duration_in_us self.total_duration_in_us = total_duration_in_us self.other_stats = other_stats ProfilingStats.__init__ = ProfilingStats__init__ def ProfilingStats__setstate__(self, state): state.setdefault('rows', None) state.setdefault('exec_duration_in_us', None) state.setdefault('total_duration_in_us', None) state.setdefault('other_stats', None) self.__dict__ = state ProfilingStats.__getstate__ = lambda self: self.__dict__.copy() ProfilingStats.__setstate__ = ProfilingStats__setstate__ all_structs.append(PlanNodeBranchInfo) PlanNodeBranchInfo.thrift_spec = ( None, # 0 (1, TType.BOOL, 'is_do_branch', None, None, 0, ), # 1 (2, TType.I64, 'condition_node_id', None, None, 0, ), # 2 ) PlanNodeBranchInfo.thrift_struct_annotations = { "cpp.type": "nebula::PlanNodeBranchInfo", } PlanNodeBranchInfo.thrift_field_annotations = { } def PlanNodeBranchInfo__init__(self, is_do_branch=None, condition_node_id=None,): self.is_do_branch = is_do_branch self.condition_node_id = condition_node_id PlanNodeBranchInfo.__init__ = PlanNodeBranchInfo__init__ def PlanNodeBranchInfo__setstate__(self, state): state.setdefault('is_do_branch', None) state.setdefault('condition_node_id', None) self.__dict__ = state PlanNodeBranchInfo.__getstate__ = lambda self: self.__dict__.copy() PlanNodeBranchInfo.__setstate__ = PlanNodeBranchInfo__setstate__ all_structs.append(Pair) Pair.thrift_spec = ( None, # 0 (1, TType.STRING, 'key', False, None, 0, ), # 1 (2, TType.STRING, 'value', False, None, 0, ), # 2 ) Pair.thrift_struct_annotations = { "cpp.type": "nebula::Pair", } Pair.thrift_field_annotations = { } def Pair__init__(self, key=None, value=None,): self.key = key self.value = value Pair.__init__ = Pair__init__ def Pair__setstate__(self, state): state.setdefault('key', None) state.setdefault('value', None) self.__dict__ = state Pair.__getstate__ = lambda self: self.__dict__.copy() Pair.__setstate__ = Pair__setstate__ all_structs.append(PlanNodeDescription) PlanNodeDescription.thrift_spec = ( None, # 0 (1, TType.STRING, 'name', False, None, 0, ), # 1 (2, TType.I64, 'id', None, None, 0, ), # 2 (3, TType.STRING, 'output_var', False, None, 0, ), # 3 (4, TType.LIST, 'description', (TType.STRUCT,[Pair, Pair.thrift_spec, False]), None, 1, ), # 4 (5, TType.LIST, 'profiles', (TType.STRUCT,[ProfilingStats, ProfilingStats.thrift_spec, False]), None, 1, ), # 5 (6, TType.STRUCT, 'branch_info', [PlanNodeBranchInfo, PlanNodeBranchInfo.thrift_spec, False], None, 1, ), # 6 (7, TType.LIST, 'dependencies', (TType.I64,None), None, 1, ), # 7 ) PlanNodeDescription.thrift_struct_annotations = { "cpp.type": "nebula::PlanNodeDescription", } PlanNodeDescription.thrift_field_annotations = { } def PlanNodeDescription__init__(self, name=None, id=None, output_var=None, description=None, profiles=None, branch_info=None, dependencies=None,): self.name = name self.id = id self.output_var = output_var self.description = description self.profiles = profiles self.branch_info = branch_info self.dependencies = dependencies PlanNodeDescription.__init__ = PlanNodeDescription__init__ def PlanNodeDescription__setstate__(self, state): state.setdefault('name', None) state.setdefault('id', None) state.setdefault('output_var', None) state.setdefault('description', None) state.setdefault('profiles', None) state.setdefault('branch_info', None) state.setdefault('dependencies', None) self.__dict__ = state PlanNodeDescription.__getstate__ = lambda self: self.__dict__.copy() PlanNodeDescription.__setstate__ = PlanNodeDescription__setstate__ all_structs.append(PlanDescription) PlanDescription.thrift_spec = ( None, # 0 (1, TType.LIST, 'plan_node_descs', (TType.STRUCT,[PlanNodeDescription, PlanNodeDescription.thrift_spec, False]), None, 0, ), # 1 (2, TType.MAP, 'node_index_map', (TType.I64,None,TType.I64,None), None, 0, ), # 2 (3, TType.STRING, 'format', False, None, 0, ), # 3 (4, TType.I32, 'optimize_time_in_us', None, None, 0, ), # 4 ) PlanDescription.thrift_struct_annotations = { "cpp.type": "nebula::PlanDescription", } PlanDescription.thrift_field_annotations = { } def PlanDescription__init__(self, plan_node_descs=None, node_index_map=None, format=None, optimize_time_in_us=None,): self.plan_node_descs = plan_node_descs self.node_index_map = node_index_map self.format = format self.optimize_time_in_us = optimize_time_in_us PlanDescription.__init__ = PlanDescription__init__ def PlanDescription__setstate__(self, state): state.setdefault('plan_node_descs', None) state.setdefault('node_index_map', None) state.setdefault('format', None) state.setdefault('optimize_time_in_us', None) self.__dict__ = state PlanDescription.__getstate__ = lambda self: self.__dict__.copy() PlanDescription.__setstate__ = PlanDescription__setstate__ all_structs.append(ExecutionResponse) ExecutionResponse.thrift_spec = ( None, # 0 (1, TType.I32, 'error_code', nebula2_fork.common.ttypes.ErrorCode, None, 0, ), # 1 (2, TType.I32, 'latency_in_us', None, None, 0, ), # 2 (3, TType.STRUCT, 'data', [nebula2_fork.common.ttypes.DataSet, nebula2_fork.common.ttypes.DataSet.thrift_spec, False], None, 1, ), # 3 (4, TType.STRING, 'space_name', False, None, 1, ), # 4 (5, TType.STRING, 'error_msg', False, None, 1, ), # 5 (6, TType.STRUCT, 'plan_desc', [PlanDescription, PlanDescription.thrift_spec, False], None, 1, ), # 6 (7, TType.STRING, 'comment', False, None, 1, ), # 7 ) ExecutionResponse.thrift_struct_annotations = { "cpp.type": "nebula::ExecutionResponse", } ExecutionResponse.thrift_field_annotations = { } def ExecutionResponse__init__(self, error_code=None, latency_in_us=None, data=None, space_name=None, error_msg=None, plan_desc=None, comment=None,): self.error_code = error_code self.latency_in_us = latency_in_us self.data = data self.space_name = space_name self.error_msg = error_msg self.plan_desc = plan_desc self.comment = comment ExecutionResponse.__init__ = ExecutionResponse__init__ def ExecutionResponse__setstate__(self, state): state.setdefault('error_code', None) state.setdefault('latency_in_us', None) state.setdefault('data', None) state.setdefault('space_name', None) state.setdefault('error_msg', None) state.setdefault('plan_desc', None) state.setdefault('comment', None) self.__dict__ = state ExecutionResponse.__getstate__ = lambda self: self.__dict__.copy() ExecutionResponse.__setstate__ = ExecutionResponse__setstate__ all_structs.append(AuthResponse) AuthResponse.thrift_spec = ( None, # 0 (1, TType.I32, 'error_code', nebula2_fork.common.ttypes.ErrorCode, None, 0, ), # 1 (2, TType.STRING, 'error_msg', False, None, 1, ), # 2 (3, TType.I64, 'session_id', None, None, 1, ), # 3 (4, TType.I32, 'time_zone_offset_seconds', None, None, 1, ), # 4 (5, TType.STRING, 'time_zone_name', False, None, 1, ), # 5 ) AuthResponse.thrift_struct_annotations = { "cpp.type": "nebula::AuthResponse", } AuthResponse.thrift_field_annotations = { } def AuthResponse__init__(self, error_code=None, error_msg=None, session_id=None, time_zone_offset_seconds=None, time_zone_name=None,): self.error_code = error_code self.error_msg = error_msg self.session_id = session_id self.time_zone_offset_seconds = time_zone_offset_seconds self.time_zone_name = time_zone_name AuthResponse.__init__ = AuthResponse__init__ def AuthResponse__setstate__(self, state): state.setdefault('error_code', None) state.setdefault('error_msg', None) state.setdefault('session_id', None) state.setdefault('time_zone_offset_seconds', None) state.setdefault('time_zone_name', None) self.__dict__ = state AuthResponse.__getstate__ = lambda self: self.__dict__.copy() AuthResponse.__setstate__ = AuthResponse__setstate__ fix_spec(all_structs) del all_structs
40.01642
339
0.693086
7f8e0825b399905383ed05229e29b275f4aba6d9
5,848
py
Python
maxipago/managers/payment/recurring.py
joma-s/maxipago-sdk-python
16428e6aca78a18a4e2bf4e2b48cab1bc65177be
[ "MIT" ]
null
null
null
maxipago/managers/payment/recurring.py
joma-s/maxipago-sdk-python
16428e6aca78a18a4e2bf4e2b48cab1bc65177be
[ "MIT" ]
null
null
null
maxipago/managers/payment/recurring.py
joma-s/maxipago-sdk-python
16428e6aca78a18a4e2bf4e2b48cab1bc65177be
[ "MIT" ]
1
2021-10-20T19:27:49.000Z
2021-10-20T19:27:49.000Z
# coding: utf-8 from maxipago.managers.base import ManagerTransaction, ManagerApi from maxipago.requesters.payment import PaymentRecurringRequester from maxipago.resources.payment import PaymentResource from maxipago.resources.recurring import CancelResource, EditResource class PaymentRecurringManager(ManagerTransaction): def add(self, **kwargs): fields = ( ('processor_id', {'translated_name': 'processorID'}), ('reference_num', {'translated_name': 'referenceNum'}), ('ip_address', {'translated_name': 'ipAddress', 'required': False}), ('card_number', {'translated_name': 'transactionDetail/payType/creditCard/number'}), ('card_expiration_month', {'translated_name': 'transactionDetail/payType/creditCard/expMonth'}), ('card_expiration_year', {'translated_name': 'transactionDetail/payType/creditCard/expYear'}), ('card_cvv', {'translated_name': 'transactionDetail/payType/creditCard/cvvNumber', 'required': False}), ('charge_total', {'translated_name': 'payment/chargeTotal'}), ('currency_code', {'translated_name': 'payment/currencyCode', 'required': True}), ('recurring_action', {'translated_name': 'recurring/action', 'default': 'new'}), ('recurring_start', {'translated_name': 'recurring/startDate', 'required': False}), ('recurring_last', {'translated_name': 'recurring/lastDate', 'required': False}), ('recurring_frequency', {'translated_name': 'recurring/frequency'}), ('recurring_period', {'translated_name': 'recurring/period'}), ('recurring_first_amount', {'translated_name': 'recurring/firstAmount', 'required': False}), ('recurring_last_amount', {'translated_name': 'recurring/lastAmount', 'required': False}), ('recurring_installments', {'translated_name': 'recurring/installments'}), ('recurring_failure_threshold', {'translated_name': 'recurring/failureThreshold', 'required': False}), ) requester = PaymentRecurringRequester(fields, kwargs) return self.send(command='recurringPayment', requester=requester, resource=PaymentResource) def delete(self, **kwargs): fields = ( ('order_id', {'translated_name': 'orderID'}), ) requester = PaymentRecurringRequester(fields, kwargs) manager = ManagerApi(maxid=self.maxid, api_key=self.api_key, api_version=self.api_version, sandbox=self.sandbox) return manager.send(command='cancel-recurring', requester=requester, resource=CancelResource) class PaymentRecurringManagerApi(ManagerApi): def edit(self, **kwargs): fields = ( ('order_id', {'translated_name': 'orderID'}), ('card_number', {'translated_name': 'paymentInfo/cardInfo/creditCardNumber', 'required': False}), ('card_expiration_month', {'translated_name': 'paymentInfo/cardInfo/expirationMonth', 'required': False}), ('card_expiration_year', {'translated_name': 'paymentInfo/cardInfo/expirationYear', 'required': False}), ('card_soft_description', {'translated_name': 'paymentInfo/cardInfo/softDescriptor', 'required': False}), ('charge_total', {'translated_name': 'paymentInfo/chargeTotal'}), ('processor_id', {'translated_name': 'recurring/processorID', 'Required': False}), ('recurring_action', {'translated_name': 'recurring/action', 'default': 'enabled', 'required': True}), ('recurring_installments', {'translated_name': 'recurring/installments'}), ('recurring_next_date', {'translated_name': 'recurring/nextFireDate', 'required': False}), ('recurring_day', {'translated_name': 'recurring/fireDay', 'required': False}), ('recurring_period', {'translated_name': 'recurring/period', 'required': False}), ('recurring_last_date', {'translated_name': 'recurring/lastDate', 'required': False}), ('recurring_last_amount', {'translated_name': 'recurring/lastAmount', 'required': False}), ('billing_name', {'translated_name': 'billingInfo/name', 'required': False}), ('billing_address', {'translated_name': 'billingInfo/address1', 'required': False}), ('billing_address2', {'translated_name': 'billingInfo/address2', 'required': False}), ('billing_city', {'translated_name': 'billingInfo/city', 'required': False}), ('billing_postalcode', {'translated_name': 'billingInfo/zip', 'required': False}), ('billing_country', {'translated_name': 'billingInfo/country', 'required': False}), ('billing_email', {'translated_name': 'billingInfo/email', 'required': False}), ('billing_phone', {'translated_name': 'billingInfo/phone', 'required': False}), ('shipping_name', {'translated_name': 'shippingInfo/name', 'required': False}), ('shipping_address', {'translated_name': 'shippingInfo/address1', 'required': False}), ('shipping_address2', {'translated_name': 'shippingInfo/address2', 'required': False}), ('shipping_city', {'translated_name': 'shippingInfo/city', 'required': False}), ('shipping_postalcode', {'translated_name': 'shippingInfo/zip', 'required': False}), ('shipping_country', {'translated_name': 'shippingInfo/country', 'required': False}), ('shipping_email', {'translated_name': 'shippingInfo/email', 'required': False}), ('shipping_phone', {'translated_name': 'shippingInfo/phone', 'required': False}), ) requester = PaymentRecurringRequester(fields, kwargs) return self.send(command='modify-recurring', requester=requester, resource=EditResource)
62.88172
120
0.654412
e0d42391efe5d36f64510ec6d3785e8194a32107
1,659
py
Python
thirdparty/instant-meshes/instant-meshes-dust3d/ext/nanogui/ext/pybind11/tests/test_operator_overloading.py
MelvinG24/dust3d
c4936fd900a9a48220ebb811dfeaea0effbae3ee
[ "MIT" ]
2,392
2016-12-17T14:14:12.000Z
2022-03-30T19:40:40.000Z
thirdparty/instant-meshes/instant-meshes-dust3d/ext/nanogui/ext/pybind11/tests/test_operator_overloading.py
MelvinG24/dust3d
c4936fd900a9a48220ebb811dfeaea0effbae3ee
[ "MIT" ]
106
2018-04-19T17:47:31.000Z
2022-03-01T19:44:11.000Z
thirdparty/instant-meshes/instant-meshes-dust3d/ext/nanogui/ext/pybind11/tests/test_operator_overloading.py
MelvinG24/dust3d
c4936fd900a9a48220ebb811dfeaea0effbae3ee
[ "MIT" ]
184
2017-11-15T09:55:37.000Z
2022-02-21T16:30:46.000Z
def test_operator_overloading(): from pybind11_tests import Vector2, Vector, ConstructorStats v1 = Vector2(1, 2) v2 = Vector(3, -1) assert str(v1) == "[1.000000, 2.000000]" assert str(v2) == "[3.000000, -1.000000]" assert str(v1 + v2) == "[4.000000, 1.000000]" assert str(v1 - v2) == "[-2.000000, 3.000000]" assert str(v1 - 8) == "[-7.000000, -6.000000]" assert str(v1 + 8) == "[9.000000, 10.000000]" assert str(v1 * 8) == "[8.000000, 16.000000]" assert str(v1 / 8) == "[0.125000, 0.250000]" assert str(8 - v1) == "[7.000000, 6.000000]" assert str(8 + v1) == "[9.000000, 10.000000]" assert str(8 * v1) == "[8.000000, 16.000000]" assert str(8 / v1) == "[8.000000, 4.000000]" v1 += v2 v1 *= 2 assert str(v1) == "[8.000000, 2.000000]" cstats = ConstructorStats.get(Vector2) assert cstats.alive() == 2 del v1 assert cstats.alive() == 1 del v2 assert cstats.alive() == 0 assert cstats.values() == ['[1.000000, 2.000000]', '[3.000000, -1.000000]', '[4.000000, 1.000000]', '[-2.000000, 3.000000]', '[-7.000000, -6.000000]', '[9.000000, 10.000000]', '[8.000000, 16.000000]', '[0.125000, 0.250000]', '[7.000000, 6.000000]', '[9.000000, 10.000000]', '[8.000000, 16.000000]', '[8.000000, 4.000000]'] assert cstats.default_constructions == 0 assert cstats.copy_constructions == 0 assert cstats.move_constructions >= 10 assert cstats.copy_assignments == 0 assert cstats.move_assignments == 0
39.5
81
0.537071
32d052655d26bf77f38daaa518d73819c6bf557a
1,486
py
Python
util/credits.py
jessescn/ControleAcademico
496cb6b40ca894cecff1f8966dbf0389be392095
[ "MIT" ]
8
2019-09-25T18:24:24.000Z
2021-02-28T02:59:17.000Z
util/credits.py
jessescn/ControleAcademico
496cb6b40ca894cecff1f8966dbf0389be392095
[ "MIT" ]
14
2019-09-19T17:13:48.000Z
2021-03-31T19:42:06.000Z
util/credits.py
jessescn/ControleAcademico
496cb6b40ca894cecff1f8966dbf0389be392095
[ "MIT" ]
2
2019-10-02T19:07:00.000Z
2019-10-19T19:36:41.000Z
import re from functools import reduce def print_credits(subjects): subjects = list(filter(approved, subjects)) mandatory = get_mandatory(subjects) genaral_opt = get_general_optative(subjects) specific_opt = get_specific_optative(subjects) print(" Créditos\n") print("Obrigatórios: (" + mandatory + "/132)") print("Optativos Específicos: (" + specific_opt + "/40)") print("Optativos Gerais: (" + genaral_opt + "/16)\n") def get_general_optative(subjects): optative = list(filter(general_optative, subjects)) return get_credits_sum(optative) def get_specific_optative(subjects): optative = list(filter(specific_optative, subjects)) return get_credits_sum(optative) def get_mandatory(subjects): mand = list(filter(mandatory, subjects)) return get_credits_sum(mand) def get_credits_sum(subjects): return reduce(sum_credits, subjects, {"creditos": "0"})["creditos"] def sum_credits(subject1, subject2): return {"creditos": str(int(subject1['creditos']) + int(subject2['creditos']))} def approved(subject): return subject['situacao'] == 'Aprovado' or subject['situacao'] == 'Dispensa' def mandatory(subject): return subject['tipo'] == 'Obrigatória' def general_optative(subject): return subject['tipo'] == 'Optativa' and not(re.search("\A141",subject['codigo'])) def specific_optative(subject): return subject['tipo'] == 'Optativa' and (re.search("\A141",subject['codigo']))
33.022222
84
0.701884
082f046cbde749565b175802b98002bc565747b1
372
py
Python
Mini/newBase64.py
pjx206/PythonLearning
e00d5ceff36295adc15642d76f257120315f8941
[ "MIT" ]
null
null
null
Mini/newBase64.py
pjx206/PythonLearning
e00d5ceff36295adc15642d76f257120315f8941
[ "MIT" ]
null
null
null
Mini/newBase64.py
pjx206/PythonLearning
e00d5ceff36295adc15642d76f257120315f8941
[ "MIT" ]
null
null
null
import base64 stdtable = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/' def decode_str(s, table): global stdtable transtab = str.maketrans(table, stdtable) s = s.translate(transtab) return base64.b64decode(bytes(s, encoding='ascii')) def main(): print(decode_str('ywjJza==', table=)) if __name__ == '__main__': main()
20.666667
77
0.704301
54f0631d7e92c3315efc013a924bf59dd75cf501
12,169
py
Python
lib/tool_shed/test/functional/test_0410_repository_component_review_access_control.py
quacksawbones/galaxy-1
65f7259b29d3886e526d9be670c60d9da9fbe038
[ "CC-BY-3.0" ]
1,085
2015-02-18T16:14:38.000Z
2022-03-30T23:52:07.000Z
lib/tool_shed/test/functional/test_0410_repository_component_review_access_control.py
quacksawbones/galaxy-1
65f7259b29d3886e526d9be670c60d9da9fbe038
[ "CC-BY-3.0" ]
11,253
2015-02-18T17:47:32.000Z
2022-03-31T21:47:03.000Z
lib/tool_shed/test/functional/test_0410_repository_component_review_access_control.py
quacksawbones/galaxy-1
65f7259b29d3886e526d9be670c60d9da9fbe038
[ "CC-BY-3.0" ]
1,000
2015-02-18T16:18:10.000Z
2022-03-29T08:22:56.000Z
from ..base.twilltestcase import common, ShedTwillTestCase repository_name = 'filtering_0410' repository_description = 'Galaxy filtering tool for test 0410' repository_long_description = 'Long description of Galaxy filtering tool for test 0410' ''' 1. Create a repository in the tool shed owned by test_user_1. 2. Have test_user_2 complete a review of the repository. 3. Have test_user_1 browse the review. 4. Have test_user_3 browse the repository and make sure they are not allowed to browse the review. 5. Have test_user_1 give write permission on the repository to the test_user_3. 6. Have test_user_3 browse the repository again and they should now have the ability to browse the review. 7. Have test_user_3 browse the review. ''' class TestRepositoryComponentReviews(ShedTwillTestCase): '''Test repository component review features.''' def test_0000_initiate_users(self): """Create necessary user accounts and login as an admin user. Create all the user accounts that are needed for this test script to run independently of other test. Previously created accounts will not be re-created. """ self.login(email=common.test_user_1_email, username=common.test_user_1_name) test_user_1 = self.test_db_util.get_user(common.test_user_1_email) assert test_user_1 is not None, f'Problem retrieving user with email {common.test_user_1_email} from the database' self.test_db_util.get_private_role(test_user_1) self.login(email=common.test_user_2_email, username=common.test_user_2_name) test_user_2 = self.test_db_util.get_user(common.test_user_2_email) assert test_user_2 is not None, f'Problem retrieving user with email {common.test_user_2_email} from the database' self.test_db_util.get_private_role(test_user_2) self.login(email=common.test_user_3_email, username=common.test_user_3_name) test_user_3 = self.test_db_util.get_user(common.test_user_3_email) assert test_user_3 is not None, f'Problem retrieving user with email {common.test_user_3_email} from the database' self.test_db_util.get_private_role(test_user_3) self.login(email=common.admin_email, username=common.admin_username) admin_user = self.test_db_util.get_user(common.admin_email) assert admin_user is not None, f'Problem retrieving user with email {common.admin_email} from the database' self.test_db_util.get_private_role(admin_user) def test_0005_grant_reviewer_role(self): '''Grant the repository reviewer role to test_user_2. We now have an admin user (admin_user) and three non-admin users (test_user_1, test_user_2, and test_user_3). Grant the repository reviewer role to test_user_2, who will not be the owner of the reviewed repositories, and do not grant any roles to test_user_3 yet. ''' reviewer_role = self.test_db_util.get_role_by_name('Repository Reviewer') test_user_2 = self.test_db_util.get_user(common.test_user_2_email) self.grant_role_to_user(test_user_2, reviewer_role) def test_0010_verify_repository_review_components(self): '''Ensure that the required review components exist. Make sure all the components we are to review are recorded in the database. ''' self.add_repository_review_component(name='Repository dependencies', description='Repository dependencies defined in a file named repository_dependencies.xml included in the repository') strings_displayed = ['Data types', 'Functional tests', 'README', 'Repository dependencies', 'Tool dependencies', 'Tools', 'Workflows'] self.manage_review_components(strings_displayed=strings_displayed) def test_0015_create_repository(self): """Create and populate the filtering repository We are at step 1. Log in as test_user_1 and create the filtering repository, then upload a basic set of components to be reviewed in subsequent tests. """ category = self.create_category(name='Test 0400 Repository Component Reviews', description='Test 0400 Repository Component Reviews') self.login(email=common.test_user_1_email, username=common.test_user_1_name) strings_displayed = self.expect_repo_created_strings(repository_name) repository = self.get_or_create_repository(name=repository_name, description=repository_description, long_description=repository_long_description, owner=common.test_user_1_name, category_id=self.security.encode_id(category.id), strings_displayed=strings_displayed) self.upload_file(repository, filename='filtering/filtering_1.1.0.tar', filepath=None, valid_tools_only=True, uncompress_file=True, remove_repo_files_not_in_tar=False, commit_message='Uploaded filtering 1.1.0 tarball.', strings_displayed=[], strings_not_displayed=[]) self.upload_file(repository, filename='filtering/filtering_test_data.tar', filepath=None, valid_tools_only=True, uncompress_file=True, remove_repo_files_not_in_tar=False, commit_message='Uploaded filtering test data.', strings_displayed=[], strings_not_displayed=[]) self.upload_file(repository, filename='readme.txt', filepath=None, valid_tools_only=True, uncompress_file=True, remove_repo_files_not_in_tar=False, commit_message='Uploaded readme.txt.', strings_displayed=[], strings_not_displayed=[]) def test_0020_review_repository(self): '''Complete a review of the filtering repository. We are at step 2 - Have test_user_2 complete a review of the repository. Review all components of the filtering repository, with the appropriate contents and approved/not approved/not applicable status. ''' self.login(email=common.test_user_2_email, username=common.test_user_2_name) repository = self.test_db_util.get_repository_by_name_and_owner(repository_name, common.test_user_1_name) review_contents_dict = {'Data types': dict(), 'README': dict(rating=5, comment='Clear and concise readme file, a true pleasure to read.', approved='yes', private='no'), 'Functional tests': dict(rating=5, comment='A good set of functional tests.', approved='yes', private='no'), 'Repository dependencies': dict(), 'Tool dependencies': dict(), 'Tools': dict(rating=5, comment='Excellent tool, easy to use.', approved='yes', private='no'), 'Workflows': dict()} self.create_repository_review(repository, review_contents_dict) def test_0025_verify_repository_review(self): '''Verify that the review was completed and displays properly. We are at step 3 - Have test_user_1 browse the review. Verify that all the review components were submitted, and that the repository owner can see the review. ''' self.login(email=common.test_user_1_email, username=common.test_user_1_name) repository = self.test_db_util.get_repository_by_name_and_owner(repository_name, common.test_user_1_name) user = self.test_db_util.get_user(common.test_user_2_email) strings_displayed = ['Data types', 'Functional tests', 'yes', 'A good set of functional tests.', 'README', 'yes', 'Workflows', 'Tools'] strings_displayed.extend(['Clear and concise readme file, a true pleasure to read.', 'Tool dependencies', 'not_applicable']) strings_displayed.extend(['Repository dependencies', 'Excellent tool, easy to use.']) strings_displayed = ['Browse reviews of this repository'] self.display_manage_repository_page(repository, strings_displayed=strings_displayed) self.verify_repository_reviews(repository, reviewer=user, strings_displayed=strings_displayed) def test_0030_browse_with_other_user(self): '''Verify that test_user_3 is blocked from browsing the review. We are at step 4 - Have test_user_3 browse the repository and make sure they are not allowed to browse the review. ''' self.login(email=common.test_user_3_email, username=common.test_user_3_name) repository = self.test_db_util.get_repository_by_name_and_owner(repository_name, common.test_user_1_name) user = self.test_db_util.get_user(common.test_user_2_email) strings_not_displayed = ['Browse reviews of this repository'] self.display_manage_repository_page(repository, strings_not_displayed=strings_not_displayed) strings_not_displayed = ['A good set of functional tests.', 'Clear and concise readme file, a true pleasure to read.'] strings_not_displayed.append('Excellent tool, easy to use.') changeset_revision = self.get_repository_tip(repository) review = self.test_db_util.get_repository_review_by_user_id_changeset_revision(user.id, repository.id, changeset_revision) self.browse_component_review(review, strings_not_displayed=strings_not_displayed) def test_0035_grant_write_access_to_other_user(self): '''Grant write access on the filtering_0410 repository to test_user_3. We are at step 5 - Have test_user_1 give write permission on the repository to the test_user_3. ''' self.login(email=common.test_user_1_email, username=common.test_user_1_name) repository = self.test_db_util.get_repository_by_name_and_owner(repository_name, common.test_user_1_name) self.grant_write_access(repository, usernames=[common.test_user_3_name]) def test_0040_verify_test_user_3_can_browse_reviews(self): '''Check that test_user_3 can now browse reviews. We are at step 6 - Have test_user_3 browse the repository again and they should now have the ability to browse the review. ''' self.login(email=common.test_user_3_email, username=common.test_user_3_name) repository = self.test_db_util.get_repository_by_name_and_owner(repository_name, common.test_user_1_name) strings_displayed = ['Browse reviews of this repository'] self.display_manage_repository_page(repository, strings_displayed=strings_displayed) def test_0045_verify_browse_review_with_write_access(self): '''Check that test_user_3 can now display reviews. We are at step 7 - Have test_user_3 browse the review. ''' self.login(email=common.test_user_3_email, username=common.test_user_3_name) repository = self.test_db_util.get_repository_by_name_and_owner(repository_name, common.test_user_1_name) user = self.test_db_util.get_user(common.test_user_2_email) strings_displayed = ['A&nbsp;good&nbsp;set&nbsp;of&nbsp;functional&nbsp;tests.', 'Clear&nbsp;and&nbsp;concise&nbsp;readme&nbsp;file', 'a&nbsp;true&nbsp;pleasure&nbsp;to&nbsp;read.', 'Excellent&nbsp;tool,&nbsp;easy&nbsp;to&nbsp;use.'] changeset_revision = self.get_repository_tip(repository) review = self.test_db_util.get_repository_review_by_user_id_changeset_revision(user.id, repository.id, changeset_revision) self.browse_component_review(review, strings_displayed=strings_displayed)
63.712042
162
0.689046
ece08db469b8b7b561c4451ec360e88729a13e65
1,314
py
Python
flask_service/tests/test_swagger.py
mwprog/atomist-flask-microservice
65a18a0f149bf30af3cb5f9eb0818aa784901ade
[ "Apache-2.0" ]
null
null
null
flask_service/tests/test_swagger.py
mwprog/atomist-flask-microservice
65a18a0f149bf30af3cb5f9eb0818aa784901ade
[ "Apache-2.0" ]
6
2018-06-06T20:00:46.000Z
2018-06-08T14:19:55.000Z
flask_service/tests/test_swagger.py
mwprog/atomist-flask-microservice
65a18a0f149bf30af3cb5f9eb0818aa784901ade
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- from flask_service.swagger import spec from flask_service import __version__ def test_document_meta(): api = spec.to_dict() assert api['info']['title'] == 'flask_service' assert api['info']['version'] == __version__ assert api['info']['description'] == 'My application' def test_document_health_endpoint(): api = spec.to_dict() assert '/health' in api['paths'] assert 'get' in api['paths']['/health'] assert '200' in api['paths']['/health']['get']['responses'] assert 'string' in api['paths']['/health']['get']['responses']['200']['schema'] assert '503' in api['paths']['/health']['get']['responses'] assert 'string' in api['paths']['/health']['get']['responses']['503']['schema'] def test_document_status_endpoint(): api = spec.to_dict() assert '/status' in api['paths'] assert 'get' in api['paths']['/status'] assert '200' in api['paths']['/status']['get']['responses'] assert 'string' in api['paths']['/status']['get']['responses']['200']['schema'] def test_document_my_app_endpoint(): api = spec.to_dict() assert '/' in api['paths'] assert 'get' in api['paths']['/'] assert '200' in api['paths']['/']['get']['responses'] assert 'string' in api['paths']['/']['get']['responses']['200']['schema']
36.5
83
0.617199
424f257e072dc59501f85a31fa24fc892b213eff
51
py
Python
tlp/django_app/oscar_apps/promotions/admin.py
munisisazade/create-django-app
f62395af2adaacacc4d3a3857c6570c9647d13a1
[ "MIT" ]
14
2018-01-08T12:50:10.000Z
2021-12-26T18:38:14.000Z
tlp/django_app/oscar_apps/promotions/admin.py
munisisazade/create-django-app
f62395af2adaacacc4d3a3857c6570c9647d13a1
[ "MIT" ]
10
2018-03-01T14:17:05.000Z
2022-03-11T23:26:11.000Z
tlp/django_app/oscar_apps/promotions/admin.py
munisisazade/create-django-app
f62395af2adaacacc4d3a3857c6570c9647d13a1
[ "MIT" ]
4
2019-04-09T17:29:34.000Z
2020-06-07T14:46:23.000Z
from oscar.apps.promotions.admin import * # noqa
17
49
0.745098
8e64e54226fd48e478c3ace52062c9a4fabb648d
1,272
py
Python
config.py
pubggamerzytm/Telegram-Airdrop-Bot
f94bc81a39528794c389b9528b913e59bf3acca4
[ "MIT" ]
null
null
null
config.py
pubggamerzytm/Telegram-Airdrop-Bot
f94bc81a39528794c389b9528b913e59bf3acca4
[ "MIT" ]
null
null
null
config.py
pubggamerzytm/Telegram-Airdrop-Bot
f94bc81a39528794c389b9528b913e59bf3acca4
[ "MIT" ]
null
null
null
# --------------------------------------------- # # Plugin Name : TelegramAirdropBot # # Author Name : vsnz # # File Name : config.py # # --------------------------------------------- # # Enable / disable the airdrop airdrop_live = True # Telegram token = '1309504600:AAEeBquYnfrdKOqGd_1kBUwsPengw42bTHo' # More: https://core.telegram.org/bots#3-how-do-i-create-a-bot log_channel = '-412534591' # Channel ID. Example: -1001355597767 admins = [] # Telegram User ID's. Admins are able to execute command "/airdroplist" airdrop_cap = 100 # Max airdrop submissions that are being accepted texts = { 'start_1': 'Hi {} and welcome to our Airdrop!\n\nGet started by clicking the button below.\n\n', 'start_2': 'Hi {},\n\nYour address has been added to the airdrop list!\n\n', 'airdrop_start': 'The airdrop didn\'t start yet.', 'airdrop_address': 'Type in your $ETH address:', 'airdrop_max_cap': 'ℹ️ The airdrop reached its max cap.', 'airdrop_walletused': '⚠️ That address has already been used. Use a different one.', 'airdrop_confirmation': '✅ Your address has been added to airdrop list.', }
47.111111
129
0.568396
ae11e1243cb53f5f42b6ff89be2e7f16c453990c
23,983
py
Python
scripts/momentum-budget.py
jenfly/monsoon-onset
6d8651a337daa174960e716d378292452db77246
[ "MIT" ]
3
2016-10-22T07:11:46.000Z
2021-05-23T12:21:21.000Z
scripts/momentum-budget.py
jenfly/monsoon-onset
6d8651a337daa174960e716d378292452db77246
[ "MIT" ]
1
2022-02-23T08:28:52.000Z
2022-02-23T08:28:52.000Z
scripts/momentum-budget.py
jenfly/monsoon-onset
6d8651a337daa174960e716d378292452db77246
[ "MIT" ]
2
2017-05-25T02:45:53.000Z
2021-08-07T09:30:02.000Z
import sys sys.path.append('/home/jwalker/dynamics/python/atmos-tools') sys.path.append('/home/jwalker/dynamics/python/atmos-read') import numpy as np import xarray as xray import pandas as pd import matplotlib.pyplot as plt import matplotlib as mpl import collections import atmos as atm import merra import indices import utils # ---------------------------------------------------------------------- yearstr = '1979-2014' onset_nm = 'CHP_MFC' ndays = 5 lon1, lon2 = 60, 100 daynm, yearnm = 'dayrel', 'year' latname, lonname, pname = 'YDim', 'XDim', 'Height' datadir = atm.homedir() + 'datastore/merra/analysis/' savedir = 'figs/' filenm = datadir + 'ubudget/merra_ubudget_dailyrel_%s_ndays%d_%dE-%dE_%s.nc' files = {} files['ubudget'] = filenm % (onset_nm, ndays, lon1, lon2, yearstr) varnms = ['U', 'V'] plev_plot = 200 pmid = 500 # Pressure level to plot psi latitude-day contours for nm in varnms: filenm = datadir + 'merra_%s%d_dailyrel_%s_%s.nc' files[nm] = filenm % (nm, plev_plot, onset_nm, yearstr) filenm = datadir + 'merra_%s_sector_%dE-%dE_dailyrel_%s_%s.nc' files[nm + '_latp'] = filenm % (nm, lon1, lon2, onset_nm, yearstr) # ---------------------------------------------------------------------- # Read data from each year # Zonal momentum budget components filenm = files['ubudget'] print('Loading ' + filenm) with xray.open_dataset(filenm) as ubudget: ubudget.load() # Scaling factor for all terms in momentum budget scale = 1e-4 ubudget = ubudget / scale ubudget.attrs['comp_units'] = '%.0e m/s2' % scale # Read other lat-lon variables and smooth with rolling mean for nm in varnms: filenm = files[nm] print('Loading ' + filenm) with xray.open_dataset(filenm) as ds: var = ds['%s%d' % (nm, plev_plot)].load() daydim = atm.get_coord(var, coord_name=daynm, return_type='dim') ubudget[nm] = atm.rolling_mean(var, ndays, axis=daydim, center=True) # Read other lat-pres variables and smooth with rolling mean data_latp = xray.Dataset() for nm in varnms: varnm = nm + '_latp' filenm = files[varnm] print('Loading ' + filenm) with xray.open_dataset(filenm) as ds: var = ds[nm].load() daydim = atm.get_coord(var, coord_name=daynm, return_type='dim') data_latp[nm] = atm.rolling_mean(var, ndays, axis=daydim, center=True) # Compute streamfunction print('Computing streamfunction') if (lon2 - lon1) < 360: sector_scale = (lon2 - lon1) / 360. else: sector_scale = None data_latp['PSI'] = atm.streamfunction(data_latp['V'], sector_scale=sector_scale) # Additional metadata ubudget.attrs['ndays'] = ndays ubudget.attrs['lon1'] = lon1 ubudget.attrs['lon2'] = lon2 # Topography for lat-pres contour plots print('Loading topography') psfile = atm.homedir() + 'dynamics/python/atmos-tools/data/topo/ncep2_ps.nc' with xray.open_dataset(psfile) as ds: ps = ds['ps'] / 100 if (lon2 - lon1) < 360: ps = atm.dim_mean(ps, 'lon', lon1, lon2) else: ps = atm.dim_mean(ps, 'lon') # ---------------------------------------------------------------------- # Consolidate terms together groups = collections.OrderedDict() groups['ADV_AVG'] = ['ADV_AVG_AVG_X', 'ADV_AVG_AVG_Y', 'ADV_AVG_AVG_P'] groups['ADV_AVST'] = ['ADV_AVG_ST_X', 'ADV_AVG_ST_Y', 'ADV_AVG_ST_P'] groups['ADV_STAV'] = ['ADV_ST_AVG_X', 'ADV_ST_AVG_Y', 'ADV_ST_AVG_P'] groups['ADV_CRS'] = ['ADV_AVST', 'ADV_STAV'] groups['EMFC_TR'] = ['EMFC_TR_X', 'EMFC_TR_Y', 'EMFC_TR_P'] groups['EMFC_ST'] = ['EMFC_ST_X', 'EMFC_ST_Y', 'EMFC_ST_P'] groups['EMFC'] = ['EMFC_TR', 'EMFC_ST'] groups['COR'] = ['COR_AVG', 'COR_ST'] groups['ADV+COR'] = ['ADV_AVG', 'COR_AVG'] groups['SUM'] = ['ADV_AVG', 'ADV_CRS', 'EMFC', 'COR', 'PGF_ST', 'ANA'] print('Consolidating ubudget terms') for key in groups: nms = groups[key] ubudget[key] = ubudget[nms[0]] for nm in nms[1:]: ubudget[key] = ubudget[key] + ubudget[nm] # Tile the zonal mean values varbig = ubudget['SUM'] for nm in ubudget.data_vars: if lonname not in ubudget[nm].dims: vals = atm.biggify(ubudget[nm], varbig, tile=True) ubudget[nm] = xray.DataArray(vals, coords=varbig.coords) # Sector mean budget print('Computing sector mean ubudget') ubudget_sector = atm.dim_mean(ubudget, 'lon', lon1, lon2) # Streamfunction mean and eddy-driven decomposition print('Computing streamfunction components') eqbuf = 5.0 sector_scale = (lon2 - lon1) / 360.0 v = utils.v_components(ubudget_sector, scale=scale, eqbuf=eqbuf) psi_comp = xray.Dataset() for nm in v.data_vars: psi_comp[nm] = atm.streamfunction(v[nm], sector_scale=sector_scale) # Extract single pressure level for line plots print('Extracting single pressure level for plots') attrs = ubudget.attrs attrs['plev'] = plev_plot ubudget = atm.subset(ubudget, {pname: (plev_plot, plev_plot)}, squeeze=True) ubudget_sector_plevs = ubudget_sector.copy() ubudget_sector = atm.subset(ubudget_sector, {pname: (plev_plot, plev_plot)}, squeeze=True) ubudget.attrs = attrs ubudget_sector.attrs = attrs print('Finished loading/calculating data') # ---------------------------------------------------------------------- # Utility functions and plot formatting options def saveclose(filestr): atm.savefigs(filestr, ext='pdf', merge=True) plt.close('all') def get_daystr(plotdays): if len(atm.makelist(plotdays)) > 1: daystr = 'Rel Days %d to %d' % (plotdays[0], plotdays[-1]) savestr = 'reldays%d_%d' % (plotdays[0], plotdays[-1]) else: daystr = 'Rel Day %d' % plotdays savestr = 'relday%d' % plotdays return daystr, savestr # ---------------------------------------------------------------------- # Streamfunction latitude-day contours psimid = atm.subset(data_latp['PSI'], {pname : (pmid, pmid)}, squeeze=True) lat = atm.get_coord(data_latp, 'lat') days = atm.get_coord(data_latp, 'dayrel') clev = np.arange(-70, 71, 5) ticks = np.arange(-70, 71, 10) title='PSI%d' % pmid plt.figure(figsize=(10, 7)) plt.contourf(days, lat, psimid.T, clev, cmap='RdBu_r', extend='both') cb = plt.colorbar(ticks=ticks) plt.ylim(-60, 60) plt.xticks(np.arange(-120, 201, 30)) plt.grid() plt.title(title) plt.xlabel('Day Rel') plt.ylabel('Latitude') # ---------------------------------------------------------------------- # Streamfunction decomposition def psi_latpres(psi, ps, cint=10, xlims=(-60, 60), xticks=range(-60, 61, 15), title=''): xmin, xmax = xlims axlims = (xmin, xmax, 0, 1000) atm.contour_latpres(psi, clev=cint, topo=ps, omitzero=True, axlims=axlims) plt.xticks(xticks, xticks) plt.grid() plt.title(title, fontsize=10) # plotdays = [-30, -15, 0, 15, 30] # keys = ['TOT', 'MMC', 'EDDY', 'PGF', 'RESID'] plotdays = [-30, 0, 30] keys = ['TOT', 'MMC', 'EDDY'] xlims, xticks = (-35, 35), range(-30, 31, 10) cint = 5 nrow, ncol = len(keys), len(plotdays) advance_by = 'col' fig_kw = {'figsize' : (11, 7), 'sharex' : True, 'sharey' : True} gridspec_kw = {'left' : 0.08, 'right' : 0.99, 'wspace' : 0.06, 'hspace' : 0.08, 'bottom' : 0.08, 'top' : 0.9} # fig_kw = {'figsize' : (14, 8), 'sharex' : True, 'sharey' : True} # gridspec_kw = {'left' : 0.06, 'right' : 0.99, 'wspace' : 0.06, 'hspace' : 0.08, # 'bottom' : 0.06, 'top' : 0.92} suptitle = '%d-%dE $\psi$ components' % (lon1, lon2) grp = atm.FigGroup(nrow, ncol, advance_by, fig_kw=fig_kw, gridspec_kw=gridspec_kw, suptitle=suptitle) for key in keys: for day in plotdays: grp.next() if grp.row == 0: title = 'Day %d' % day else: title = '' if key == 'TOT': psi = data_latp['PSI'].sel(dayrel=day) else: psi = psi_comp[key].sel(dayrel=day) psi_latpres(psi, ps, cint, xlims, xticks, title=title) if grp.col > 0: plt.ylabel('') if grp.row < grp.nrow - 1: plt.xlabel('') atm.text(key, (0.05, 0.88)) # ---------------------------------------------------------------------- # Lat-pres contours of ubudget components day = 0 nm = 'COR_AVG' var = ubudget_sector_plevs[nm].sel(dayrel=day) plt.figure() atm.pcolor_latpres(var) plt.xlim(-60,60) # ---------------------------------------------------------------------- # Lat-pres contours and line plots on individual days def latpres(data_latp, day, ps, xlims=(-60, 60), xticks=range(-60, 61, 15), title=None, clev_u=5, clev_psi=5, u_clr='m', u_kw={'alpha' : 0.35}, psi_kw={'alpha' : 0.7}): """Plot lat-pres contours of streamfunction and zonal wind. """ xmin, xmax = xlims axlims = (xmin, xmax, 0, 1000) latp_data = atm.subset(data_latp, {'dayrel' : (day, day)}, squeeze=True) u = latp_data['U'] psi = latp_data['PSI'] atm.contour_latpres(u, clev=clev_u, topo=ps, colors=u_clr, contour_kw=u_kw, axlims=axlims) atm.contour_latpres(psi, clev=clev_psi, omitzero=True, axlims=axlims, contour_kw=psi_kw) plt.xticks(xticks, xticks) plt.grid() if title is not None: plt.title(title) def lineplot(ubudget_sector, keys, day, style, xlims=(-60, 60), xticks=range(-60, 61, 15), title=None, ylabel=None, legend=True, legend_kw={'fontsize' : 8, 'loc' : 'lower center', 'ncol' : 2, 'handlelength' : 2.5}): """Plot ubudget terms and winds vs latitude.""" subset_dict = {'dayrel' : (day, day), 'lat': xlims} data = atm.subset(ubudget_sector[keys], subset_dict, squeeze=True) data = data.to_dataframe() data.plot(ax=plt.gca(), style=style, legend=False) plt.xlim(xlims) plt.xticks(xticks, xticks) plt.xlabel('Latitude') plt.grid() if legend: plt.legend(**legend_kw) if ylabel is not None: plt.ylabel(ylabel) if title is not None: plt.title(title) # Summary plot of psi and u lat-pres contours for presentation nrow, ncol = 2, 2 advance_by = 'row' fig_kw = {'figsize' : (11, 7), 'sharex' : 'col', 'sharey' : 'row'} gridspec_kw = {'left' : 0.1, 'right' : 0.96, 'wspace' : 0.06, 'hspace' : 0.2, 'bottom' : 0.08, 'top' : 0.95} plotdays = [-15, 0, 15, 30] xlims, xticks = (-35, 35), range(-30, 31, 10) grp = atm.FigGroup(nrow, ncol,fig_kw=fig_kw, gridspec_kw=gridspec_kw) for day in plotdays: grp.next() title = 'Day %d' % day latpres(data_latp, day, ps, xlims=xlims, xticks=xticks) plt.title(title, fontsize=11) if grp.row < grp.nrow - 1: plt.xlabel('') if grp.col > 0: plt.ylabel('') # Lat-pres contours and line plots of 200 mb momentum budget style = {'ADV_AVG' : 'b', 'COR_AVG' : 'b--', 'ADV+COR' : 'r', 'PGF_ST' : 'k', 'ADV_CRS' : 'g', 'ADV_AVST' : 'g--', 'ADV_STAV' : 'g-.', 'EMFC' : 'm', 'EMFC_TR' : 'm--', 'EMFC_ST' : 'm-.', 'SUM' : 'k--', 'ACCEL' : 'c', 'ANA' : 'y', 'U' : 'k', 'V' : 'k--'} keys_dict = collections.OrderedDict() #keys_dict['ubudget'] = ['ADV_AVG', 'COR_AVG', 'ADV+COR', 'PGF_ST', # 'ADV_CRS', 'EMFC', 'ANA', 'SUM', 'ACCEL'] keys_dict['ubudget'] = ['ADV_AVG', 'COR_AVG', 'ADV+COR', 'PGF_ST', 'ADV_CRS', 'EMFC'] keys_dict['winds'] = ['U', 'V'] keys_dict['eddies'] = ['EMFC_TR', 'EMFC_ST', 'EMFC', 'ADV_CRS'] ylabels = {} units = '$10^{-4}$ m s$^{-2}$' #ylabels['ubudget'] = '%d hPa ubudget (%s)' % (plev_plot, units) ylabels['ubudget'] = units ylabels['eddies'] = ylabels['ubudget'] #ylabels['winds'] = '%d hPa winds (m/s)' % plev_plot ylabels['winds'] = 'm/s' #plotdays = [-30, -15, 0, 15, 30] + [-90, -45, 0, 45, 90] #nrow, ncol = 4, 5 plotdays = [-30, 0, 30] nrow, ncol = 4, 3 advance_by = 'row' # fig_kw = {'figsize' : (18, 12), 'sharex' : 'col', 'sharey' : 'row'} # gridspec_kw = {'left' : 0.05, 'right' : 0.99, 'wspace' : 0.06, 'hspace' : 0.08, # 'bottom' : 0.04, 'top' : 0.92, 'height_ratios' : [1, 0.6, 1, 1]} fig_kw = {'figsize' : (11, 9), 'sharex' : 'col', 'sharey' : 'row'} gridspec_kw = {'left' : 0.08, 'right' : 0.99, 'wspace' : 0.09, 'hspace' : 0.1, 'bottom' : 0.05, 'top' : 0.92, 'height_ratios' : [1, 0.6, 1, 1]} legend_kw={'fontsize' : 8, 'loc' : 'upper center', 'ncol' : 2, 'handlelength' : 2.5} suptitle = '%d-%d E U and $\psi$ contours, ubudget at 200 hPa' % (lon1, lon2) #for tropics in [False, True]: for tropics in [False]: if tropics: xlims, xticks = (-35, 35), range(-30, 31, 10) else: xlims, xticks = (-60, 60), range(-60, 61, 15) grp = atm.FigGroup(nrow, ncol, advance_by, fig_kw=fig_kw, gridspec_kw=gridspec_kw, suptitle=suptitle) for day in plotdays: grp.next() if grp.row == 0: title = 'Day %d' % day else: title = None latpres(data_latp, day, ps, title=title, xlims=xlims, xticks=xticks) for nm in ['winds', 'ubudget', 'eddies']: grp.next() if grp.col == 0: legend = True # if nm == 'ubudget' : # legend_kw['loc'] = 'lower center' # else: # legend_kw['loc'] = 'upper center' else: legend = False keys = keys_dict[nm] lineplot(ubudget_sector, keys, day, style, xlims=xlims, xticks=xticks, legend=legend, legend_kw=legend_kw, ylabel=ylabels[nm]) saveclose(savedir + 'ubudget_sector_latpres_lineplots') # ---------------------------------------------------------------------- # Plot groups together keys_list = [['ADV_AVG', 'ADV_CRS', 'COR_AVG', 'COR_ST', 'EMFC', 'PGF_ST', 'SUM', 'ACCEL'], ['U', 'V'], ['ADV_AVG', 'ADV_AVST', 'ADV_STAV', 'ADV_CRS'], ['COR_AVG', 'COR_ST', 'COR'], ['EMFC_TR', 'EMFC_ST', 'EMFC']] def pcolor_sector(var, daynm, clims, u=None, v=None): days = var[daynm].values lat = atm.get_coord(var, 'lat') x, y = np.meshgrid(days, lat) vals = var.values.T vals = np.ma.masked_array(vals, mask=np.isnan(vals)) plt.pcolormesh(x, y, vals, cmap='RdBu_r') plt.clim(clims) plt.colorbar(extend='both') if u is not None: plt.contour(x, y, u.values.T, [0], colors='k', linewidths=1.5) if v is not None: plt.contour(x, y, v.values.T, [0], colors='k', alpha=0.5) plt.xlim(days.min(), days.max()) plt.xlabel('Rel Day') plt.ylabel('Latitude') def plot_groups(ubudget, keys_list, daynm, plotdays=None, latlims=None): """Plot groups of lat-lon or lat-day plots. """ if latlims is not None: ubudget = atm.subset(ubudget, {'lat' : latlims}) units = ubudget.attrs['comp_units'] plev = ubudget.attrs['plev'] lon1, lon2 = ubudget.attrs['lon1'], ubudget.attrs['lon2'] try: lon = atm.get_coord(ubudget, 'lon') sector = False except ValueError: sector = True if sector: suptitle = '%d-%d E Zonal Momentum Budget at %d hPa (%s)' suptitle = suptitle % (lon1, lon2, plev, units) xticks = range(-120, 201, 60) else: daystr, savestr = get_daystr(plotdays) suptitle = '%s Zonal Momentum Budget at %d hPa (%s)' suptitle = suptitle % (daystr, plev, units) xticks = range(40, 121, 20) nrow, ncol = 3, 4 figsize = (14, 10) opts = {'left' : 0.05, 'right' : 0.95, 'bottom' : 0.04, 'top' : 0.92, 'wspace' : 0.1, 'hspace' : 0.1} for i, keys in enumerate(keys_list): if sector: data = ubudget[keys] else: data = atm.subset(ubudget[keys], {daynm : (plotdays, None)}) if len(atm.makelist(plotdays)) > 1: data = data.mean(dim=daynm) clims = atm.climits(data, symmetric=True) if sector: clims = 0.9 * np.array(clims) if i == 0 or i == 2: isub = 0 plt.figure(figsize=figsize) plt.suptitle(suptitle) plt.subplots_adjust(**opts) for j, nm in enumerate(keys): isub += 1 if 'U' in keys: clims = atm.climits(data[nm], symmetric=True) plt.subplot(nrow, ncol, isub) if sector: pcolor_sector(data[nm], daynm, clims, ubudget['U'], ubudget['V']) else: atm.pcolor_latlon(data[nm], fancy=False) plt.clim(clims) plt.title(nm, fontsize=9) atm.fmt_subplot(nrow, ncol, isub, xticks=xticks) plt.grid(True) # Skip to next row if necessary if ncol > len(keys): isub += ncol - len(keys) for tropics in [True, False]: savestr = savedir + 'ubudget_' if tropics: savestr = savestr + 'tropics_' latlims = [-30, 30] else: latlims = None # Lat-lon maps for plotdays in [-90, -30, 0, 30, 60]: plot_groups(ubudget, keys_list, daynm, plotdays, latlims) saveclose(savestr + 'latlon') # Sector lat-day maps plot_groups(ubudget_sector, keys_list, daynm, None, latlims) saveclose(savestr + 'sector_latday') # ---------------------------------------------------------------------- # def zerocrossings(var, latmin, latmax, smoothing=30, interp_res=0.1, nkeep=3): # var = atm.subset(var, {'lat' : (latmin, latmax)}) # if smoothing is not None: # var = atm.rolling_mean(var, smoothing, axis=0, center=True) # lat = atm.get_coord(var, 'lat') # lat_i = np.arange(latmin, latmax + interp_res, interp_res) # daynm = var.dims[0] # days = var[daynm] # crossings = np.nan * np.ones((nkeep, len(days)), dtype=float) # # for d, day in enumerate(days): # vals = var.sel(**{daynm : day}) # if not np.isnan(vals).all(): # vals = np.interp(lat_i, lat, vals) # icross = np.where(np.diff(np.sign(vals)))[0] # latcross = lat_i[icross] # n = min(nkeep, len(latcross)) # crossings[:n, d] = latcross[:n] # # coords = {'n' : np.arange(nkeep) + 1, daynm : var[daynm]} # crossings = xray.DataArray(crossings, name='zerolat', dims=['n', daynm], # coords=coords) # # return crossings # # def psimax_lat(psi, latmin=-30, latmax=10, pmin=300, pmax=700, nsmooth=5): # days_in = psi['dayrel'] # psi = atm.subset(psi, {'lat' : (latmin, latmax), 'plev' : (pmin, pmax)}, # squeeze=True) # psi = psi[nsmooth:-nsmooth] # pdim = atm.get_coord(psi, 'plev', 'dim') # psi = psi.max(axis=pdim) # # lat = atm.get_coord(psi, 'lat') # latdim = atm.get_coord(psi, 'lat', 'dim') # ilatmax = psi.argmax(axis=latdim) # latmax = lat[ilatmax] # days = atm.get_coord(psi, 'dayrel') # latmax = xray.DataArray(latmax, coords={'dayrel' : days}) # latmax = latmax.reindex_like(days_in) # return latmax # ---------------------------------------------------------------------- # # Line plots on individual days # # latmin, latmax = -40, 50 # smoothing = None # nkeep = {'U' : 2, 'V' : 3} # zerolats = xray.Dataset() # for nm in nkeep: # n = nkeep[nm] # crossings = zerocrossings(ubudget_sector[nm], latmin, latmax, nkeep=n, # smoothing=smoothing) # for i in crossings['n'].values: # key = nm + '%d' % i # zerolats[key] = crossings.sel(n=i).drop('n') # # check_zerolats = False # if check_zerolats: # plt.figure() # for nm in zerolats.data_vars: # plt.plot(zerolats[daynm], zerolats[nm], label=nm) # plt.legend() # # # style = {'ADV_AVG' : 'b', 'COR_AVG' : 'b--', 'ADV+COR' : 'r', # 'PGF_ST' : 'k', 'ADV_CRS' : 'g', 'ADV_AVST' : 'g--', # 'ADV_STAV' : 'g-.', 'EMFC' : 'm', 'EMFC_TR' : 'm--', 'EMFC_ST' : 'm-.', # 'SUM' : 'k--', 'ACCEL' : 'c', 'ANA' : 'y', 'U' : 'k', 'V' : 'k--'} # # keys_dict = collections.OrderedDict() # keys_dict['ubudget'] = ['ADV_AVG', 'COR_AVG', 'ADV+COR', 'PGF_ST', # 'ADV_CRS', 'EMFC', 'ANA', 'SUM', 'ACCEL'] # keys_dict['winds'] = ['U', 'V'] # keys_dict['eddies'] = ['EMFC_TR', 'EMFC_ST', 'EMFC', 'ADV_AVST', 'ADV_STAV', # 'ADV_CRS'] # suptitle = '%d-%d E %s at %d hPa' # suptitles = {} # suptitles['ubudget'] = suptitle % (lon1, lon2, 'Zonal Momentum Budget', plev) # suptitles['eddies'] = suptitles['ubudget'] # suptitles['winds'] = suptitle % (lon1, lon2, 'Winds', plev) # ylabels = {} # ylabels['ubudget'] = 'ubudget (%s)' % ubudget.attrs['comp_units'] # ylabels['eddies'] = ylabels['ubudget'] # ylabels['winds'] = 'winds (m/s)' # # plotdays = [-90, -30, -15, 0, 15, 30, 60, 90] # nrow, ncol = 2, 4 # figsize = (14, 10) # lat = atm.get_coord(ubudget, 'lat') # latname = atm.get_coord(ubudget, 'lat', 'name') # opts = {'left' : 0.05, 'right' : 0.95, 'bottom' : 0.06, 'top' : 0.94, # 'wspace' : 0.1, 'hspace' : 0.1} # lg_row, lg_col, lg_loc, lg_ncol = 2, 1, 'upper center', 2 # zlat_opts = {'U1' : {'label' : 'U=0'}, 'U2' : {}, # 'V1' : {'linestyle' : 'dashed', 'label' : 'V=0'}, # 'V2' : {'linestyle' : 'dashed'}, 'V3' : {'linestyle' : 'dashed'}} # # for nm in keys_dict: # keys = keys_dict[nm] # suptitle, ylabel = suptitles[nm], ylabels[nm] # for latlims in [(-60, 60), (-35, 35)]: # fig, axes = plt.subplots(nrow, ncol, figsize=figsize, sharex=True, # sharey=True) # plt.subplots_adjust(**opts) # plt.autoscale(tight=True) # plt.suptitle(suptitle) # for i, day in enumerate(plotdays): # row, col = atm.subplot_index(nrow, ncol, i + 1) # ax = axes[row - 1, col - 1] # subset_dict = {daynm : (day, day), latname: latlims} # data = atm.subset(ubudget_sector[keys], subset_dict, squeeze=True) # #data = data.drop(daynm).to_dataframe() # data = data.to_dataframe() # data.plot(ax=ax, style=style, legend=False) # # Plot vertical lines for U=0 and V=0 # zlats = zerolats.sel(**{daynm : day}) # for nm in zlats.data_vars: # ax.axvline(zlats[nm], color='k', alpha=0.5, linewidth=1.5, # **zlat_opts[nm]) # ax.set_title('Day %d' % day, fontsize=10) # ax.grid(True) # if row == lg_row and col == lg_col: # ax.legend(fontsize=9, loc=lg_loc, ncol=lg_ncol, handlelength=3) # if row == nrow: # ax.set_xlabel('Lat') # if col == 1: # ax.set_ylabel(ylabel) # # saveclose(savedir + 'ubudget_sector_lineplots') # ---------------------------------------------------------------------- # latmax = psimax_lat(data_latp['PSI'], nsmooth=ndays, pmin=600, pmax=700) # # # Ubudget terms at latitude of psimax # print('Computing ubudget terms at latitude of psimax for each day') # days = latmax['dayrel'] # days = days[np.isfinite(latmax)] # ubudget_psimax = xray.Dataset() # for d, day in enumerate(days): # lat0 = latmax.sel(dayrel=day).values # ds = atm.subset(ubudget_sector, {'lat' : (lat0, lat0)}, squeeze=True) # ds = atm.subset(ds, {'dayrel' : (day, day)}, squeeze=False) # if d == 0: # ubudget_psimax = ds # else: # ubudget_psimax = xray.concat([ubudget_psimax, ds], dim='dayrel') # # keys = ['ADV_AVG', 'COR_AVG', 'ADV+COR_AVG', 'PGF_ST', # 'ADV_CRS', 'EMFC', 'ANA', 'SUM', 'ACCEL'] # # xticks = range(-120, 201, 30) # xlims = [-120, 200] # plt.figure(figsize=(8, 12)) # plt.subplot(2, 1, 1) # plt.plot(latmax['dayrel'], latmax) # plt.xticks(xticks) # plt.xlim(xlims) # plt.grid(True) # plt.subplot(2, 1, 2) # ubudget_psimax[keys].to_dataframe().plot(ax=plt.gca(), style=style, legend=False) # plt.legend(fontsize=8, ncol=3) # plt.xticks(xticks) # plt.xlim(xlims) # plt.grid(True)
36.896923
83
0.562315
b32e27cbd86ecb26002c422478e64cd189ca3599
3,428
py
Python
src/urh/controller/SpectrumDialogController.py
awesome-archive/urh
c8c3aabc9d637ca660d8c72c3d8372055e0f3ec7
[ "Apache-2.0" ]
null
null
null
src/urh/controller/SpectrumDialogController.py
awesome-archive/urh
c8c3aabc9d637ca660d8c72c3d8372055e0f3ec7
[ "Apache-2.0" ]
null
null
null
src/urh/controller/SpectrumDialogController.py
awesome-archive/urh
c8c3aabc9d637ca660d8c72c3d8372055e0f3ec7
[ "Apache-2.0" ]
null
null
null
from PyQt5.QtCore import pyqtSlot from urh.FFTSceneManager import FFTSceneManager from urh.controller.SendRecvDialogController import SendRecvDialogController from urh.dev.VirtualDevice import VirtualDevice, Mode from urh.plugins.NetworkSDRInterface.NetworkSDRInterfacePlugin import NetworkSDRInterfacePlugin class SpectrumDialogController(SendRecvDialogController): def __init__(self, freq, samp_rate, bw, gain, device: str, parent=None, testing_mode=False): self.is_rx = True super().__init__(freq, samp_rate, bw, gain, device, parent=parent, testing_mode=testing_mode) self.graphics_view = self.ui.graphicsViewReceive self.update_interval = 1 self.ui.stackedWidget.setCurrentIndex(0) self.hide_receive_ui_items() self.hide_send_ui_items() self.setWindowTitle("Spectrum analyzer") self.scene_manager = FFTSceneManager(parent=self, graphic_view=self.graphics_view) self.graphics_view.setScene(self.scene_manager.scene) self.graphics_view.scene_manager = self.scene_manager # do not use network sdr plugin for spectrum analysis index = next((i for i in range(self.ui.cbDevice.count()) if self.ui.cbDevice.itemText(i) == NetworkSDRInterfacePlugin.NETWORK_SDR_NAME), None) if index is not None: self.ui.cbDevice.removeItem(index) self.init_device() self.create_connects() def create_connects(self): super().create_connects() self.graphics_view.freq_clicked.connect(self.on_graphics_view_freq_clicked) def update_view(self): if super().update_view(): x, y = self.device.spectrum if x is None or y is None: return self.scene_manager.scene.frequencies = x self.scene_manager.plot_data = y self.scene_manager.init_scene() self.scene_manager.show_full_scene() self.graphics_view.update() def init_device(self): device_name = self.ui.cbDevice.currentText() if self.device: self.device.free_data() # Can't perform gc.collect() here, because the dialog itself would be deleted # see https://github.com/jopohl/urh/issues/83 # gc.collect() self.device = VirtualDevice(self.backend_handler, device_name, Mode.spectrum, bw=1e6, freq=433.92e6, gain=40, samp_rate=1e6, device_ip="192.168.10.2", parent=self) self._create_device_connects() @pyqtSlot(float) def on_graphics_view_freq_clicked(self, freq: float): self.ui.spinBoxFreq.setValue(freq) self.ui.spinBoxFreq.editingFinished.emit() @pyqtSlot() def on_freq_changed(self): self.device.frequency = self.ui.spinBoxFreq.value() self.scene_manager.scene.center_freq = self.ui.spinBoxFreq.value() self.scene_manager.clear_path() self.scene_manager.clear_peak() @pyqtSlot() def on_start_clicked(self): super().on_start_clicked() self.device.start() @pyqtSlot() def on_device_started(self): super().on_device_started() self.ui.btnClear.setEnabled(False) self.ui.btnStart.setEnabled(False) @pyqtSlot() def on_clear_clicked(self): self.scene_manager.clear_path() self.scene_manager.clear_peak()
37.67033
107
0.672695
127485b72707708fecb395d8a73d7ab032cda0c1
1,580
py
Python
src/conll/ProcessConllFormat.py
vikasbahirwani/SequenceTagging
b4e0dc2a71f869a27ada003c9276fd1f269e230d
[ "Apache-2.0" ]
null
null
null
src/conll/ProcessConllFormat.py
vikasbahirwani/SequenceTagging
b4e0dc2a71f869a27ada003c9276fd1f269e230d
[ "Apache-2.0" ]
null
null
null
src/conll/ProcessConllFormat.py
vikasbahirwani/SequenceTagging
b4e0dc2a71f869a27ada003c9276fd1f269e230d
[ "Apache-2.0" ]
null
null
null
__author__ = "Vikas Bahirwani" DATADIR = "../../data/conll" from pathlib import Path def convertToSentences(conll_filename): with Path(conll_filename).open('r') as f: words = [] pos_tags = [] chunk_tags = [] ner_tags = [] for i, line in enumerate(f): if line != '\n': splits = line.strip().split() words.append(splits[0]) pos_tags.append(splits[1]) chunk_tags.append(splits[2]) ner_tags.append(splits[3]) else: yield ' '.join(words), ' '.join(pos_tags), ' '.join(chunk_tags), ' '.join(ner_tags) words = [] pos_tags = [] chunk_tags = [] ner_tags = [] if __name__ == '__main__': file_prefixes = ["train", "testa", "testb"] for prefix in file_prefixes: words_filename = str(Path(DATADIR, "{}.words.txt".format(prefix))) tags_filename = str(Path(DATADIR, "{}.tags.txt".format(prefix))) with Path(words_filename).open('w') as fwords, Path(tags_filename).open('w') as ftags: for i, processed in enumerate(convertToSentences(str(Path(DATADIR, '{}.txt'.format(prefix))))): sentence, _, _, ner_tags = processed fwords.write("{}\n".format(sentence)) ftags.write("{}\n".format(ner_tags)) if i % 100 == 0: print("{} {} lines processed".format(prefix, i)) print("{} A total of {} lines processed".format(prefix, i))
35.111111
107
0.525316
eeaa3f2ccbf9e024379137b6319c2582d30e5277
19,891
py
Python
concept_formation/structure_mapper.py
ThomasHoppe/concept_formation
2468fea78ba46804bf44228519eb33ebc5780d31
[ "MIT" ]
47
2015-06-08T20:34:18.000Z
2021-09-26T17:59:06.000Z
concept_formation/structure_mapper.py
ThomasHoppe/concept_formation
2468fea78ba46804bf44228519eb33ebc5780d31
[ "MIT" ]
65
2015-07-27T18:16:31.000Z
2021-10-04T14:02:51.000Z
concept_formation/structure_mapper.py
ThomasHoppe/concept_formation
2468fea78ba46804bf44228519eb33ebc5780d31
[ "MIT" ]
13
2015-07-27T13:27:03.000Z
2022-03-15T02:18:10.000Z
""" This module contains the :class:`StructureMapper<concept_formation.structure_mapper.StructureMapper>` class which is used rename variable attributes it improve the category utility on instances. It is an instance of a :class:`preprocessor<concept_formation.preprocessor.Preprocessor>` with a :func:`transform` and :func:`undo_tranform` methods. """ from __future__ import print_function from __future__ import unicode_literals from __future__ import absolute_import from __future__ import division from random import choice from random import random from itertools import combinations from munkres import Munkres # from scipy.optimize import linear_sum_assignment from py_search.base import Problem from py_search.base import Node from py_search.optimization import hill_climbing from concept_formation.preprocessor import Preprocessor from concept_formation.preprocessor import rename_relation from concept_formation.preprocessor import get_attribute_components from concept_formation.cobweb3 import Cobweb3Node from concept_formation.cobweb3 import cv_key def get_component_names(instance, vars_only=True): """ Given an instance or a concept's probability table return a list of all of the component names. If vars_only is false, than all constants and variables are returned. :param instance: An instance or a concept's probability table. :type instance: an instance :param vars_only: Whether or not to return only variables (i.e., strings with a names with a '?' at the beginning) or both variables and constants. :type vars_only: boolean :return: A frozenset of all of the component names present in the instance :rtype: frozenset >>> instance = {('a', ('sub1', 'c1')): 0, ('a', 'c2'): 0, ... ('_', '_a', 'c3'): 0} >>> names = get_component_names(instance, False) >>> frozenset(names) == frozenset({'c3', 'c2', ('sub1', 'c1'), 'sub1', 'a', ... ('a', ('sub1', 'c1')), ('a', 'c2'), ... 'c1'}) True >>> names = get_component_names(instance, True) >>> frozenset(names) == frozenset() True >>> instance = {('relation1', ('sub1', 'c1'), 'o3'): True} >>> names = get_component_names(instance, False) >>> frozenset(names) == frozenset({'o3', ('relation1', ('sub1', 'c1'), ... 'o3'), 'sub1', ('sub1', 'c1'), ... 'c1', 'relation1'}) True """ names = set() for attr in instance: for name in get_attribute_components(attr, vars_only): names.add(name) return names def rename_flat(target, mapping): """ Given an instance and a mapping rename the components and relations and return the renamed instance. :param instance: An instance to be renamed according to a mapping :type instance: instance :param mapping: :param mapping: A dictionary of mappings between component names :type mapping: dict :return: A copy of the instance with components and relations renamed :rtype: instance >>> import pprint >>> instance = {('a', '?c1'): 1, ('good', '?c1'): True} >>> mapping = {'?c1': '?o1'} >>> renamed = rename_flat(instance,mapping) >>> pprint.pprint(renamed) {('a', '?o1'): 1, ('good', '?o1'): True} """ temp_instance = {} for attr in target: if attr in mapping: temp_instance[mapping[attr]] = target[attr] elif isinstance(attr, tuple): temp_instance[rename_relation(attr, mapping)] = target[attr] else: temp_instance[attr] = target[attr] return temp_instance def bind_flat_attr(attr, mapping): """ Renames an attribute given a mapping. :param attr: The attribute to be renamed :type attr: str or tuple :param mapping: A dictionary of mappings between component names :type mapping: dict :param unnamed: A list of components that are not yet mapped. :type unnamed: dict :return: The attribute's new name or ``None`` if the mapping is incomplete :rtype: str >>> attr = ('before', '?c1', '?c2') >>> mapping = {'?c1': '?o1', '?c2':'?o2'} >>> bind_flat_attr(attr, mapping) ('before', '?o1', '?o2') >>> attr = ('ordered-list', ('cells', '?obj12'), '?obj10', '?obj11') >>> mapping = {'?obj12': '?o1', '?obj10':'?o2', '?obj11': '?o3'} >>> bind_flat_attr(attr, mapping) ('ordered-list', ('cells', '?o1'), '?o2', '?o3') If the mapping is incomplete then returns partially mapped attributes >>> attr = ('before', '?c1', '?c2') >>> mapping = {'?c1': 'o1'} >>> bind_flat_attr(attr, mapping) ('before', 'o1', '?c2') >>> bind_flat_attr(('<', ('a', '?o2'), ('a', '?o1')), {'?o1': '?c1'}) ('<', ('a', '?o2'), ('a', '?c1')) >>> bind_flat_attr(('<', ('a', '?o2'), ('a', '?o1')), ... {'?o1': '?c1', '?o2': '?c2'}) ('<', ('a', '?c2'), ('a', '?c1')) """ return tuple([bind_flat_attr(ele, mapping) if isinstance(ele, tuple) else mapping[ele] if ele in mapping else ele for ele in attr]) def contains_component(component, attr): """ Return ``True`` if the given component name is in the attribute, either as part of a hierarchical name or within a relations otherwise ``False``. :param component: A component name :type component: str :param attr: An attribute name :type atte: str :return: ``True`` if the component name exists inside the attribute name ``False`` otherwise :rtype: bool >>> contains_component('?c1', ('relation', '?c2', ('a', '?c1'))) True >>> contains_component('?c3', ('before', '?c1', '?c2')) False """ if isinstance(attr, tuple): for ele in attr: if contains_component(component, ele) is True: return True return attr == component def flat_match(target, base, initial_mapping=None): """ Given a base (usually concept) and target (instance or concept av table) this function returns a mapping that can be used to rename components in the target. Search is used to find a mapping that maximizes the expected number of correct guesses in the concept after incorporating the instance. The current approach is to refine the initially provided mapping using a local hill-climbing search. If no initial mapping is provided then one is generated using the Munkres / Hungarian matching on object-to-object assignment (no relations). This initialization approach is polynomial in the size of the base. :param target: An instance or concept.av_counts object to be mapped to the base concept. :type target: :ref:`Instance<instance-rep>` or av_counts obj from concept :param base: A concept to map the target to :type base: TrestleNode :param initial_mapping: An initial mapping to seed the local search :type initial_mapping: A mapping dict :return: a mapping for renaming components in the instance. :rtype: dict """ inames = frozenset(get_component_names(target)) cnames = frozenset(get_component_names(base.av_counts)) if(len(inames) == 0 or len(cnames) == 0): return {} if len(inames.intersection(cnames)) > 0: raise Exception("Objects in target and base must not collide. " "Consider running NameStandardizer first.") # TODO consider flipping target and base when one is larger than the other. if initial_mapping is None: initial_mapping = hungarian_mapping(inames, cnames, target, base) else: initial_mapping = frozenset([(a, v) for a, v in initial_mapping if a in inames and v in cnames]) unmapped = cnames - frozenset(dict(initial_mapping).values()) # print("MATCHING", initial_mapping, target, base) initial_cost = mapping_cost(initial_mapping, target, base) op_problem = StructureMappingOptProblem((initial_mapping, unmapped), initial_cost=initial_cost, extra=(target, base)) solution = next(hill_climbing(op_problem)) return dict(solution.state_node.state[0]) def hungarian_mapping(inames, cnames, target, base): """ Utilizes the hungarian/munkres matching algorithm to compute an initial mapping of inames to cnames. The base cost is the expected correct guesses if each object is matched to itself (i.e., a new object). Then the cost of each object-object match is evaluated by setting each individual object and computing the expected correct guesses. :param inames: the target component names :type inames: collection :param cnames: the base component names :type cnames: collection :param target: An instance or concept.av_counts object to be mapped to the base concept. :type target: :ref:`Instance<instance-rep>` or av_counts obj from concept :param base: A concept to map the target to :type base: TrestleNode :return: a mapping for renaming components in the instance. :rtype: frozenset """ cnames = list(cnames) inames = list(inames) cost_matrix = [] for o in inames: row = [] for c in cnames: nm = {} nm[o] = c cost = mapping_cost({o: c}, target, base) row.append(cost) unmapped_cost = mapping_cost({}, target, base) for other_o in inames: if other_o == o: row.append(unmapped_cost) else: row.append(float('inf')) cost_matrix.append(row) m = Munkres() indices = m.compute(cost_matrix) # comments for using scipy hungarian # indices = linear_sum_assignment(cost_matrix) mapping = {} # for i in range(len(indices[0])): # row = indices[0][i] # col = indices[1][i] for row, col in indices: if col >= len(cnames): mapping[inames[row]] = inames[row] else: mapping[inames[row]] = cnames[col] return frozenset(mapping.items()) def mapping_cost(mapping, target, base): """ Used to evaluate a mapping between a target and a base. This is performed by renaming the target using the mapping, adding it to the base and evaluating the expected number of correct guesses in the newly updated concept. :param mapping: the mapping of target items to base items :type mapping: frozenset or dict :param target: the target :type target: an instance or concept.av_counts :param base: the base :type base: a concept """ if isinstance(mapping, frozenset): mapping = dict(mapping) if not isinstance(mapping, dict): raise Exception("mapping must be dict or frozenset") renamed_target = rename_flat(target, mapping) # Need to ensure structure mapping is not used internally here. # (i.e., there is no infinite recrusion) temp_base = Cobweb3Node() temp_base.update_counts_from_node(base) temp_base.tree = base.tree # check if it is an av_counts table, then create concept to deal with it. if isinstance(next(iter(renamed_target.values())), dict): temp_target = Cobweb3Node() temp_target.av_counts = renamed_target temp_target.count = max([sum([renamed_target[attr][val].num if val == cv_key else renamed_target[attr][val] for val in renamed_target[attr]]) for attr in renamed_target]) temp_base.update_counts_from_node(temp_target) else: temp_base.increment_counts(renamed_target) return -temp_base.expected_correct_guesses() class StructureMappingOptProblem(Problem): """ A class for describing a structure mapping problem to be solved using the `py_search <http://py-search.readthedocs.io/>`_ library. This class defines the node_value, the successor, and goal_test methods used by the search library. Unlike StructureMappingProblem, this class uses a local search approach; i.e., given an initial mapping it tries to improve the mapping by permuting it. """ def goal_test(self, node, goal=None): """ This should always return False, so it never terminates early. """ return False def node_value(self, node): """ The value of a node (based on mapping_cost). """ # return node.cost() mapping, unmapped_cnames = node.state target, base = node.extra return mapping_cost(mapping, target, base) def swap_two(self, o1, o2, mapping, unmapped_cnames, target, base, node): """ returns the child node generated from swapping two mappings. """ new_mapping = {a: mapping[a] for a in mapping} if mapping[o2] == o2: new_mapping[o1] = o1 else: new_mapping[o1] = mapping[o2] if mapping[o1] == o1: new_mapping[o2] = o2 else: new_mapping[o2] = mapping[o1] new_mapping = frozenset(new_mapping.items()) return Node((new_mapping, unmapped_cnames), extra=node.extra) def swap_unnamed(self, o1, o2, mapping, unmapped_cnames, target, base, node): """ Returns the child node generated from assigning an unmapped component object to one of the instance objects. """ new_mapping = {a: mapping[a] for a in mapping} new_unmapped_cnames = set(unmapped_cnames) new_unmapped_cnames.remove(o2) if mapping[o1] != o1: new_unmapped_cnames.add(new_mapping[o1]) new_mapping[o1] = o2 new_mapping = frozenset(new_mapping.items()) return Node((new_mapping, frozenset(new_unmapped_cnames)), extra=node.extra) def random_successor(self, node): """ Similar to the successor function, but generates only a single random successor. """ mapping, unmapped_cnames = node.state target, base = node.extra mapping = dict(mapping) o1 = choice(list(mapping)) while mapping[o1] == o1 and len(unmapped_cnames) == 0: o1 = choice(list(mapping)) possible_flips = [v for v in mapping if (v != o1 and not (mapping[o1] == o1 or mapping[v] == v))] if random() <= len(possible_flips) / (len(possible_flips) + len(unmapped_cnames)): o2 = choice(possible_flips) return self.swap_two(o1, o2, mapping, unmapped_cnames, target, base, node) else: o2 = choice(list(unmapped_cnames)) return self.swap_unnamed(o1, o2, mapping, unmapped_cnames, target, base, node) def successors(self, node): """ An iterator that returns all successors. """ mapping, unmapped_cnames = node.state target, base = node.extra mapping = dict(mapping) for o1, o2 in combinations(mapping, 2): if o1 == o2 or (mapping[o1] == o1 and mapping[o2] == o2): continue yield self.swap_two(o1, o2, mapping, unmapped_cnames, target, base, node) for o1 in mapping: for o2 in unmapped_cnames: yield self.swap_unnamed(o1, o2, mapping, unmapped_cnames, target, base, node) def is_partial_match(iAttr, cAttr, mapping): """ Returns True if the instance attribute (iAttr) partially matches the concept attribute (cAttr) given the mapping. :param iAttr: An attribute in an instance :type iAttr: str or tuple :param cAttr: An attribute in a concept :type cAttr: str or tuple :param mapping: A mapping between between attribute names :type mapping: dict :param unnamed: A list of components that are not yet mapped. :type unnamed: dict :return: ``True`` if the instance attribute matches the concept attribute in the mapping otherwise ``False`` :rtype: bool >>> is_partial_match(('<', ('a', '?o2'), ('a', '?o1')), ... ('<', ('a', '?c2'), ('b', '?c1')), {'?o1': '?c1'}) False >>> is_partial_match(('<', ('a', '?o2'), ('a', '?o1')), ... ('<', ('a', '?c2'), ('a', '?c1')), {'?o1': '?c1'}) True >>> is_partial_match(('<', ('a', '?o2'), ('a', '?o1')), ... ('<', ('a', '?c2'), ('a', '?c1')), ... {'?o1': '?c1', '?o2': '?c2'}) True """ if type(iAttr) != type(cAttr): return False if isinstance(iAttr, tuple) and len(iAttr) != len(cAttr): return False if isinstance(iAttr, tuple): for i, v in enumerate(iAttr): if not is_partial_match(iAttr[i], cAttr[i], mapping): return False return True if iAttr[0] == '?' and iAttr in mapping: return mapping[iAttr] == cAttr if iAttr[0] == '?' and cAttr[0] == '?' and iAttr not in mapping: return True return iAttr == cAttr class StructureMapper(Preprocessor): """ Structure maps an instance that has been appropriately preprocessed (i.e., standardized apart, flattened, subcomponent processed, and lists processed out). Transform renames the instance based on this structure mapping, and return the renamed instance. :param base: A concept to structure map the instance to :type base: TrestleNode :param gensym: a function that returns unique object names (str) on each call :type gensym: function :return: A flattened and mapped copy of the instance :rtype: instance """ def __init__(self, base): self.base = base self.mapping = None self.reverse_mapping = None def get_mapping(self): """ Returns the currently established mapping. :return: The current mapping. :rtype: dict """ return {self.reverse_mapping[o]: o for o in self.reverse_mapping} def transform(self, target, initial_mapping=None): """ Transforms a provided target (either an instance or an av_counts table from a CobwebNode or Cobweb3Node). :param target: An instance or av_counts table to rename to bring into alignment with the provided base. :type target: instance or av_counts table (from CobwebNode or Cobweb3Node). :return: The renamed instance or av_counts table :rtype: instance or av_counts table """ self.mapping = flat_match(target, self.base, initial_mapping) self.reverse_mapping = {self.mapping[o]: o for o in self.mapping} return rename_flat(target, self.mapping) def undo_transform(self, target): """ Takes a transformed target and reverses the structure mapping using the mapping discovered by transform. :param target: A previously renamed instance or av_counts table to reverse the structure mapping on. :type target: previously structure mapped instance or av_counts table (from CobwebNode or Cobweb3Node). :return: An instance or concept av_counts table with original object names :rtype: dict """ if self.reverse_mapping is None: raise Exception("Must transform before undoing transform") return rename_flat(target, self.reverse_mapping)
36.099819
79
0.613896
f184ff2b8cb318f713241ef5bd309aed1f147681
1,847
py
Python
battery.py
xenbyte/i3blocks-battery
63d890a5983febb48f87c4778564f04878c7e767
[ "MIT" ]
null
null
null
battery.py
xenbyte/i3blocks-battery
63d890a5983febb48f87c4778564f04878c7e767
[ "MIT" ]
null
null
null
battery.py
xenbyte/i3blocks-battery
63d890a5983febb48f87c4778564f04878c7e767
[ "MIT" ]
1
2018-09-06T05:52:05.000Z
2018-09-06T05:52:05.000Z
#!/usr/bin/env python3 import subprocess battery = subprocess.check_output(["acpi"], universal_newlines=True) if not battery: output = '<span font="FontAwesome" color="#fff">\f12a Error</span>' else: battery_information = battery.split("\n")[0].split(", ") state = battery_information[0].split(":")[1] percent = int(battery_information[1].rstrip("%")) if state != " Full": time = battery_information[2].split(" ")[0] else: time = "FULL" class Status(object): color = "" icon = "" percent = "" time = "" def __init__(self, color, icon, percent, time): self.color = color self.icon = icon self.percent = str(percent) + "% " self.time = time def status_view(percent): if percent <= 3: return Status("#F30", "\uf244 ", percent, time) if percent <= 5: return Status("#F30", "\uf244 ", percent, time) if percent <= 15: return Status("#F30", "\uf243 ", percent, time) if percent <= 25: return Status("#FC0", "\uf243 ", percent, time) if percent <= 50: return Status("#FFF", "\uf242 ", percent, time) if percent <= 75: return Status("#FFF", "\uf241 ", percent, time) return Status("#FFF", "\uf240 ", percent, time) def state_view(state): if state == " Discharging": return "" else: return "\uf1e6" status = status_view(percent) template = '''<span font="FontAwesome"><span>{}</span><span color="{}">{}</span><span font="Roboto">{}<span>[{}]</span></span></span>''' output = template.format( state_view(state), status.color, status.icon, str(status.percent), status.time) print(output)
29.790323
140
0.537087
46fb6a0c92cf540ff01c051570736f0d412e859e
1,315
py
Python
api_version.py
AinsteinAI/wayv_air_api
dcda0ada9801ecc18f06cdcf5588b4a599dae327
[ "MIT" ]
1
2021-05-14T17:29:31.000Z
2021-05-14T17:29:31.000Z
api_version.py
AinsteinAI/wayv_air_api
dcda0ada9801ecc18f06cdcf5588b4a599dae327
[ "MIT" ]
1
2021-05-26T13:27:33.000Z
2021-05-26T14:56:53.000Z
api_version.py
AinsteinAI/wayv_air_api
dcda0ada9801ecc18f06cdcf5588b4a599dae327
[ "MIT" ]
null
null
null
''' api_version.py Copyright 2020, Ainstein Inc. All Rights Reserved This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <https://www.gnu.org/licenses/>. Contact: [email protected] This version number is specific to the code that is stored in the wayv_air_api repo, and NOT in the wayv_air. This version number should increment for any PR that changes code in the wayv_air_api repo. ''' VERSION_MAJOR = '1' # increment this when non-backwards-compatible changes are made VERSION_MINOR = '2' # increment this when backwards-compatible changes are made VERSION_BF = '0' # increment this when bugs are fixed class api_version(): def __init__(self): self.version = (VERSION_MAJOR + '.' + VERSION_MINOR + '.' + VERSION_BF)
37.571429
84
0.739924
a85104da172675d057533dfd154feae3347f1d7c
3,236
py
Python
configs/recognition/tsm/tsm_nl_dot_product_r50_1x1x8_50e_kinetics400_rgb.py
Naoki-Wake/mmaction2
a2032605db82509744a18d993c94a06feb1efd15
[ "Apache-2.0" ]
648
2021-06-24T19:33:09.000Z
2022-03-31T06:27:24.000Z
configs/recognition/tsm/tsm_nl_dot_product_r50_1x1x8_50e_kinetics400_rgb.py
jayleicn/mmaction2-1
0a6fde1abb8403f1f68b568f5b4694c6f828e27e
[ "Apache-2.0" ]
53
2021-07-01T03:07:52.000Z
2022-03-27T16:15:29.000Z
configs/recognition/tsm/tsm_nl_dot_product_r50_1x1x8_50e_kinetics400_rgb.py
jayleicn/mmaction2-1
0a6fde1abb8403f1f68b568f5b4694c6f828e27e
[ "Apache-2.0" ]
117
2021-06-25T01:22:32.000Z
2022-03-31T08:33:55.000Z
_base_ = [ '../../_base_/models/tsm_r50.py', '../../_base_/schedules/sgd_tsm_50e.py', '../../_base_/default_runtime.py' ] # model settings model = dict( backbone=dict( non_local=((0, 0, 0), (1, 0, 1, 0), (1, 0, 1, 0, 1, 0), (0, 0, 0)), non_local_cfg=dict( sub_sample=True, use_scale=False, norm_cfg=dict(type='BN3d', requires_grad=True), mode='dot_product'))) # dataset settings dataset_type = 'RawframeDataset' data_root = 'data/kinetics400/rawframes_train' data_root_val = 'data/kinetics400/rawframes_val' ann_file_train = 'data/kinetics400/kinetics400_train_list_rawframes.txt' ann_file_val = 'data/kinetics400/kinetics400_val_list_rawframes.txt' ann_file_test = 'data/kinetics400/kinetics400_val_list_rawframes.txt' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_bgr=False) train_pipeline = [ dict(type='SampleFrames', clip_len=1, frame_interval=1, num_clips=8), dict(type='RawFrameDecode'), dict(type='Resize', scale=(-1, 256)), dict( type='MultiScaleCrop', input_size=224, scales=(1, 0.875, 0.75, 0.66), random_crop=False, max_wh_scale_gap=1, num_fixed_crops=13), dict(type='Resize', scale=(224, 224), keep_ratio=False), dict(type='Flip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='FormatShape', input_format='NCHW'), dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]), dict(type='ToTensor', keys=['imgs', 'label']) ] val_pipeline = [ dict( type='SampleFrames', clip_len=1, frame_interval=1, num_clips=8, test_mode=True), dict(type='RawFrameDecode'), dict(type='Resize', scale=(-1, 256)), dict(type='CenterCrop', crop_size=224), dict(type='Flip', flip_ratio=0), dict(type='Normalize', **img_norm_cfg), dict(type='FormatShape', input_format='NCHW'), dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]), dict(type='ToTensor', keys=['imgs']) ] test_pipeline = [ dict( type='SampleFrames', clip_len=1, frame_interval=1, num_clips=8, test_mode=True), dict(type='RawFrameDecode'), dict(type='Resize', scale=(-1, 256)), dict(type='CenterCrop', crop_size=224), dict(type='Flip', flip_ratio=0), dict(type='Normalize', **img_norm_cfg), dict(type='FormatShape', input_format='NCHW'), dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]), dict(type='ToTensor', keys=['imgs']) ] data = dict( videos_per_gpu=8, workers_per_gpu=4, train=dict( type=dataset_type, ann_file=ann_file_train, data_prefix=data_root, pipeline=train_pipeline), val=dict( type=dataset_type, ann_file=ann_file_val, data_prefix=data_root_val, pipeline=val_pipeline), test=dict( type=dataset_type, ann_file=ann_file_test, data_prefix=data_root_val, pipeline=test_pipeline)) evaluation = dict( interval=5, metrics=['top_k_accuracy', 'mean_class_accuracy']) # runtime settings work_dir = './work_dirs/tsm_nl_gaussian_r50_1x1x8_50e_kinetics400_rgb/'
33.020408
78
0.637824
379f320cc8d5231addd140113393c1e4c9758dbd
7,335
py
Python
neural_compressor/ux/utils/workload/tuning.py
intel/neural-compressor
16a4a12045fcb468da4d33769aff2c1a5e2ba6ba
[ "Apache-2.0" ]
172
2021-09-14T18:34:17.000Z
2022-03-30T06:49:53.000Z
neural_compressor/ux/utils/workload/tuning.py
intel/lp-opt-tool
130eefa3586b38df6c0ff78cc8807ae273f6a63f
[ "Apache-2.0" ]
40
2021-09-14T02:26:12.000Z
2022-03-29T08:34:04.000Z
neural_compressor/ux/utils/workload/tuning.py
intel/neural-compressor
16a4a12045fcb468da4d33769aff2c1a5e2ba6ba
[ "Apache-2.0" ]
33
2021-09-15T07:27:25.000Z
2022-03-25T08:30:57.000Z
# -*- coding: utf-8 -*- # Copyright (c) 2021-2022 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuration tuning module.""" from typing import Any, Dict, List, Optional, Union from neural_compressor.ux.utils.exceptions import ClientErrorException from neural_compressor.ux.utils.json_serializer import JsonSerializer from neural_compressor.ux.utils.utils import ( parse_bool_value, parse_to_float_list, parse_to_string_list, ) class Strategy(JsonSerializer): """Configuration Strategy class.""" def __init__(self, data: Dict[str, Any] = {}) -> None: """Initialize configuration Strategy class.""" super().__init__() # [Required] One of neural_compressor.strategy.STRATEGIES self.name: str = data.get("name", "basic") self.sigopt_api_token: Optional[str] = data.get("sigopt_api_token", None) self.accuracy_weight: Optional[float] = data.get("accuracy_weight", None) self.latency_weight: Optional[float] = data.get("latency_weight", None) class MultiObjectives(JsonSerializer): """Configuration MultiObjectives class.""" def __init__(self, data: Dict[str, Any] = {}) -> None: """Initialize configuration MultiObjectives class.""" super().__init__() self._objective: List[str] = data.get("objective", []) self._weight: List[float] = data.get("weight", []) @property def objective(self) -> List[str]: """Get objectives.""" return self._objective @objective.setter def objective(self, value: Union[None, str, List[str]]) -> None: """Set inputs value.""" self._objective = parse_to_string_list(value) @property def weight(self) -> List[float]: """Get weights.""" return self._weight @weight.setter def weight(self, value: Union[None, float, List[float]]) -> None: """Set weights value.""" self._weight = parse_to_float_list(value) class AccCriterion(JsonSerializer): """Configuration AccCriterion class.""" def __init__(self, data: Dict[str, Any] = {}) -> None: """Initialize configuration AccCriterion class.""" super().__init__() self.relative: Optional[float] = data.get( "relative", None, ) # [Optional] (INT8-FP32)/FP32 self.absolute: Optional[float] = data.get( "absolute", None, ) # [Optional] INT8-FP32 # Set default accuracy criterion to relative if self.relative is None and self.absolute is None: self.relative = 0.1 class ExitPolicy(JsonSerializer): """Configuration ExitPolicy class.""" def __init__(self, data: Dict[str, Any] = {}) -> None: """Initialize Configuration ExitPolicy class.""" super().__init__() self.timeout: Optional[int] = data.get("timeout", None) self.max_trials: Optional[int] = data.get("max_trials", None) self.performance_only: Optional[bool] = data.get("performance_only", None) class Workspace(JsonSerializer): """Configuration Workspace class.""" def __init__(self, data: Dict[str, Any] = {}) -> None: """Initialize Configuration Workspace class.""" super().__init__() self.path: Optional[str] = data.get("path", None) # [Optional] self.resume: Optional[str] = data.get("resume", None) # [Optional] class Tuning(JsonSerializer): """Configuration Tuning class.""" def __init__(self, data: Dict[str, Any] = {}) -> None: """Initialize Configuration Tuning class.""" super().__init__() self.strategy: Strategy = Strategy() if data.get("strategy"): self.strategy = Strategy(data.get("strategy", {})) self.accuracy_criterion: AccCriterion = AccCriterion( data.get("accuracy_criterion", {}), ) self.multi_objectives: Optional[MultiObjectives] = None if data.get("multi_objectives"): self.multi_objectives = MultiObjectives(data.get("multi_objectives", {})) self.exit_policy: Optional[ExitPolicy] = None if data.get("exit_policy"): self.exit_policy = ExitPolicy(data.get("exit_policy", {})) self.random_seed: Optional[int] = data.get("random_seed", None) self.tensorboard: Optional[bool] = data.get("tensorboard", None) self.workspace: Optional[Workspace] = None if data.get("workspace", {}): self.workspace = Workspace(data.get("workspace", {})) def set_timeout(self, timeout: int) -> None: """Update tuning timeout in config.""" try: timeout = int(timeout) if timeout < 0: raise ValueError except ValueError: raise ClientErrorException( "The timeout value is not valid. " "Timeout should be non negative integer.", ) if self.exit_policy: self.exit_policy.timeout = timeout else: self.exit_policy = ExitPolicy({"timeout": timeout}) def set_max_trials(self, max_trials: int) -> None: """Update max tuning trials in config.""" try: max_trials = int(max_trials) if max_trials < 0: raise ValueError except ValueError: raise ClientErrorException( "The max trials value is not valid. " "Max trials should be non negative integer.", ) if self.exit_policy: self.exit_policy.max_trials = max_trials else: self.exit_policy = ExitPolicy({"max_trials": max_trials}) def set_performance_only(self, performance_only: Any) -> None: """Update performance only flag in config.""" try: performance_only = parse_bool_value(performance_only) except ValueError: raise ClientErrorException( "The performance_only flag value is not valid. " "Performance_ony should be a boolean.", ) if self.exit_policy: self.exit_policy.performance_only = performance_only else: self.exit_policy = ExitPolicy({"performance_only": performance_only}) def set_random_seed(self, random_seed: int) -> None: """Update random seed value in config.""" try: random_seed = int(random_seed) except ValueError: raise ClientErrorException( "The random seed value is not valid. " "Random seed should be an integer.", ) self.random_seed = random_seed def set_workspace(self, path: str) -> None: """Update tuning workspace path in config.""" if self.workspace is None: self.workspace = Workspace() self.workspace.path = path
35.780488
99
0.626994
c134de5205ad1bff48d4c2ab82d27fd640743916
3,239
py
Python
icees_api/trapi.py
davefol/icees-api
d2eb26a29f319efd56ad5216e661fa9ed62407b0
[ "MIT" ]
null
null
null
icees_api/trapi.py
davefol/icees-api
d2eb26a29f319efd56ad5216e661fa9ed62407b0
[ "MIT" ]
null
null
null
icees_api/trapi.py
davefol/icees-api
d2eb26a29f319efd56ad5216e661fa9ed62407b0
[ "MIT" ]
null
null
null
"""TRAPI FastAPI wrapper.""" import os from typing import Any, Dict, List, Optional from fastapi import FastAPI from fastapi.openapi.utils import get_openapi from starlette.middleware.cors import CORSMiddleware class TRAPI(FastAPI): """Translator Reasoner API - wrapper for FastAPI.""" required_tags = [ {"name": "translator"}, {"name": "trapi"}, ] def __init__( self, *args, contact: Optional[Dict[str, Any]] = None, terms_of_service: Optional[str] = None, translator_component: Optional[str] = None, translator_teams: Optional[List[str]] = None, trapi_operations: Optional[List[str]] = None, **kwargs, ): super().__init__( *args, root_path_in_servers=False, **kwargs, ) self.contact = contact self.terms_of_service = terms_of_service self.translator_component = translator_component self.translator_teams = translator_teams self.trapi_operations = trapi_operations CORS_OPTIONS = dict( allow_origins=['*'], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) self.add_middleware( CORSMiddleware, **CORS_OPTIONS, ) def openapi(self) -> Dict[str, Any]: """Build custom OpenAPI schema.""" if self.openapi_schema: return self.openapi_schema tags = self.required_tags if self.openapi_tags: tags += self.openapi_tags openapi_schema = get_openapi( title=self.title, version=self.version, openapi_version=self.openapi_version, description=self.description, routes=self.routes, tags=tags, ) openapi_schema["servers"] = self.servers openapi_schema["info"]["x-translator"] = { "component": self.translator_component, "team": self.translator_teams, "externalDocs": { "description": "The values for component and team are restricted according to this external JSON schema. See schema and examples at url", "url": "https://github.com/NCATSTranslator/translator_extensions/blob/production/x-translator/", }, "infores": os.getenv("ICEES_INFORES_CURIE", "infores:icees") } openapi_schema["info"]["x-trapi"] = { "version": "1.2.0", "externalDocs": { "description": "The values for version are restricted according to the regex in this external JSON schema. See schema and examples at url", "url": "https://github.com/NCATSTranslator/translator_extensions/blob/production/x-trapi/", }, "operations": [ "lookup", ], } if self.trapi_operations: openapi_schema["info"]["x-trapi"]["operations"] = self.trapi_operations openapi_schema["info"]["contact"] = self.contact openapi_schema["info"]["termsOfService"] = self.terms_of_service self.openapi_schema = openapi_schema return self.openapi_schema
34.094737
155
0.590923
ea7ac069b2fffdf21d2f341b488415c31c9e9888
7,650
py
Python
dynamix/correlator/cuda.py
kif/dynamix
163323ccb083bb069d88f3b51c0dfb3141f5fd37
[ "MIT" ]
3
2021-01-12T05:46:51.000Z
2021-04-13T15:05:42.000Z
dynamix/correlator/cuda.py
kif/dynamix
163323ccb083bb069d88f3b51c0dfb3141f5fd37
[ "MIT" ]
18
2019-08-23T08:42:36.000Z
2021-09-13T15:14:38.000Z
dynamix/correlator/cuda.py
kif/dynamix
163323ccb083bb069d88f3b51c0dfb3141f5fd37
[ "MIT" ]
6
2019-08-01T12:10:52.000Z
2021-12-09T14:55:02.000Z
import numpy as np from ..utils import nextpow2, updiv, get_next_power from .dense import MatMulCorrelator, FFTCorrelator try: from silx.math.fft.cufft import CUFFT import pycuda.gpuarray as garray from pycuda.compiler import SourceModule from pycuda.driver import Memcpy2D, Memcpy3D except ImportError: CUFFT = None try: import skcuda.linalg as cublas import skcuda.misc as skmisc except ImportError: cublas = None class CublasMatMulCorrelator(MatMulCorrelator): """ The CublasMatMulCorrelator is a CUDA-accelerated version of MatMulCorrelator. """ def __init__(self, shape, nframes, qmask=None, scale_factor=None, extra_options={}): """ Initialize a CUBLAS matrix multiplication correlator. Please refer to the documentation of BaseCorrelator for the documentation of each parameters. Extra options -------------- cublas_handle: int If provided, use this cublas handle instead of creating a new one. """ if cublas is None: raise ImportError("scikit-cuda is needed to use this correlator") super().__init__( shape, nframes, qmask=qmask, scale_factor=scale_factor, extra_options=extra_options ) self._init_cublas() self._compile_kernels() def _init_cublas(self): import pycuda.autoinit if "cublas_handle" in self.extra_options: handle = self.extra_options["cublas_handle"] else: handle = skmisc._global_cublas_handle if handle is None: cublas.init() # cublas handle + allocator handle = skmisc._global_cublas_handle self.cublas_handle = handle def _compile_kernels(self): mod = SourceModule( """ // Extract the upper diagonals of a square (N, N) matrix. __global__ void extract_upper_diags(float* matrix, float* diags, int N) { int x = blockDim.x * blockIdx.x + threadIdx.x; int y = blockDim.y * blockIdx.y + threadIdx.y; if ((x >= N) || (y >= N) || (y > x)) return; int pos = y*N+x; int my_diag = x-y; diags[my_diag * N + x] = matrix[pos]; } """ ) self.extract_diags_kernel = mod.get_function("extract_upper_diags") self._blocks = (32, 32, 1) self._grid = ( updiv(self.nframes, self._blocks[0]), updiv(self.nframes, self._blocks[1]), 1 ) self.d_diags = garray.zeros((self.nframes, self.nframes), dtype=np.float32) self.d_sumdiags1 = garray.zeros(self.nframes, dtype=np.float32) self.d_sumdiags2 = garray.zeros_like(self.d_sumdiags1) self._kern_args = [ None, self.d_diags, np.int32(self.nframes), ] def sum_diagonals(self, d_arr, d_out): self.d_diags.fill(0) self._kern_args[0] = d_arr.gpudata self.extract_diags_kernel(*self._kern_args, grid=self._grid, block=self._blocks) skmisc.sum(self.d_diags, axis=1, out=d_out) def _correlate_matmul_cublas(self, frames_flat, mask): arr = np.ascontiguousarray(frames_flat[:, mask], dtype=np.float32) npix = arr.shape[1] # Pre-allocating memory for all bins might save a bit of time, # but would take more memory d_arr = garray.to_gpu(arr) d_outer = cublas.dot(d_arr, d_arr, transb="T", handle=self.cublas_handle) d_means = skmisc.mean(d_arr, axis=1, keepdims=True) d_denom_mat = cublas.dot(d_means, d_means, transb="T", handle=self.cublas_handle) self.sum_diagonals(d_outer, self.d_sumdiags1) self.sum_diagonals(d_denom_mat, self.d_sumdiags2) self.d_sumdiags1 /= self.d_sumdiags2 self.d_sumdiags1 /= npix return self.d_sumdiags1.get() def correlate(self, frames): res = np.zeros((self.n_bins, self.nframes), dtype=np.float32) frames_flat = frames.reshape((self.nframes, -1)) for i, bin_val in enumerate(self.bins): mask = (self.qmask.ravel() == bin_val) res[i] = self._correlate_matmul_cublas(frames_flat, mask) return res class CUFFTCorrelator(FFTCorrelator): def __init__(self, shape, nframes, qmask=None, weights=None, scale_factor=None, precompute_fft_plans=False, extra_options={}): super().__init__( shape, nframes, qmask=qmask, weights=weights, scale_factor=scale_factor, precompute_fft_plans=precompute_fft_plans, extra_options=extra_options ) if CUFFT is None: raise ImportError("pycuda and scikit-cuda need to be installed") if skmisc._global_cublas_handle is None: cublas.init() self._allocate_cuda_arrays() self._compile_kernels() def _create_fft_plan(self, npix): return CUFFT(shape=(npix, self.Nf), dtype=np.float32, axes=(-1,)) def _allocate_cuda_arrays(self): self.d_sums = garray.zeros(self.Nf, np.float32) self.d_numerator = self.d_sums[self.nframes-1:self.nframes-1 + self.nframes] # view self.d_sums_denom_tmp = garray.zeros(self.Nf, np.float32) self.d_denom = garray.zeros(self.nframes, np.float32) def _compile_kernels(self): mod = SourceModule( """ // 1D correlation of a N samples array __global__ void corr1D(float* arr, float* out, int N, float scale_factor) { int i = blockDim.x * blockIdx.x + threadIdx.x; if (i >= N) return; float s = 0.0f; for (int j = i; j < N; j++) s += arr[j] * arr[j-i]; out[i] = s/scale_factor; } """ ) self.corr1D_kernel = mod.get_function("corr1D") self._blocks = (32, 1, 1) # tune ? self._grid = (updiv(self.nframes, self._blocks[0]), 1, 1) def _correlate_denom(self, npix): scale_factor = np.float32(npix) self.corr1D_kernel( self.d_sums_denom_tmp, self.d_denom, np.int32(self.nframes), scale_factor, grid=self._grid, block=self._blocks ) def _correlate_fft(self, frames_flat, cufft_plan): npix = frames_flat.shape[1] d_in = cufft_plan.data_in d_in.fill(0) f_out1 = cufft_plan.data_out f_out2 = garray.zeros_like(cufft_plan.data_out) # fft(pad(frames_flat), axis=1) d_in[:, :self.nframes] = frames_flat.T.astype("f") f_out1 = cufft_plan.fft(d_in, output=f_out1) # frames_flat.sum(axis=1) # skmisc.sum() only works on base data, not gpuarray views, # so we sum on the whole array and then extract the right subset. skmisc.sum(d_in, axis=0, out=self.d_sums_denom_tmp) # fft(pad(frames_flat[::-1]), axis=1) d_in.fill(0) d_in[:, :self.nframes] = frames_flat.T[:, ::-1].astype("f") f_out2 = cufft_plan.fft(d_in, output=f_out2) # product, ifft f_out1 *= f_out2 num = cufft_plan.ifft(f_out1, output=d_in) # numerator of g_2 skmisc.sum(num, axis=0, out=self.d_sums) # denominator of g_2: correlate(d_sums_denom) self._correlate_denom(npix) self.d_numerator /= self.d_denom res = self.d_numerator.get() return res
34.615385
91
0.597255
c8c2b1b8bb4f2e19ccaf5e090680b1f272e2a475
4,780
py
Python
libartipy/IO/input_output.py
Artisense-ai/libartipy
7a6a7736637c106e7e9c6763ec8c1dea64db4b01
[ "MIT" ]
5
2021-06-15T13:01:51.000Z
2021-12-04T04:26:08.000Z
libartipy/IO/input_output.py
Artisense-ai/libartipy
7a6a7736637c106e7e9c6763ec8c1dea64db4b01
[ "MIT" ]
null
null
null
libartipy/IO/input_output.py
Artisense-ai/libartipy
7a6a7736637c106e7e9c6763ec8c1dea64db4b01
[ "MIT" ]
3
2021-06-18T10:37:04.000Z
2021-11-15T05:55:29.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # Dedicated to reading/writing to files. # Author Dmytro Bobkov, 2019 import argparse import os from typing import List, Tuple, Any import matplotlib.pyplot as plt import numpy as np import cv2 def get_timestamp_from_keyframe_filename(filename: str) -> int: """ Extract timestamp from keyframe filename based on some naming conventions :param filename: :return: """ _, ext = os.path.splitext(filename) assert ext == ".txt" ts = get_timestamp_from_filename(filename) return ts def filename_sort(file_list: List[str]) -> List[str]: """ checks first two elements for same word prefix and sorts keyframe files by their timestamps whilst maintaining their absolute path :param file_list: list of filenames :return: sorted list of filenames """ assert len(file_list) > 1, 'for one element, cannot sort.' # split filename in the form KeyFrame_123.txt into KeyFrame and 123.txt filename = os.path.basename(file_list[0]) word_prefix = filename.split('_')[0] assert word_prefix in file_list[1] sorted_list = sorted(file_list, key=lambda fname: get_timestamp_from_keyframe_filename(fname)) assert len(sorted_list) == len(file_list) return sorted_list def convert_color_from_hex_to_rgb(value: str) -> List[int]: """ converts a hex encoded colors to rgb encoded colors :param value: hex encoded color :return: rgb value """ value = value.lstrip('#') lv = len(value) return list(tuple(int(value[i:i + lv // 3], 16) for i in range(0, lv, lv // 3))) def get_timestamp_from_filename(filename: str) -> int: """ :param filename: filepath :return: timestamp :raise AssertionError if conversion fails """ base = os.path.basename(filename) file_only, _ = os.path.splitext(base) parts = file_only.split("_") assert len(parts) > 0, "No TS in {}".format(file_only) numerical_part = parts[-1] # Timestamp on the last position in filename assert numerical_part.isdigit(), 'File {} does not contain number on the last position'.format(file_only) ts = int(numerical_part) # TODO(Dmytro) handle with exception except ValueError: return ts def data_to_16bit_png(filepath: str, img_array: np.array) -> str: """ Saves arrays to file as 16 bit png :param filepath: :param img_array: expects img_array to be np.uint16 :return: path to the file where it is written """ assert img_array.dtype == np.uint16, "Input array type is not np.uint16!" filepath = filepath + ".png" cv2.imwrite(filepath, img_array.astype(np.uint16)) return filepath def encode_data_image_to_16bit(data_image: np.ndarray, max_data_value: int = 120) -> np.ndarray: """ this method sets all data values above max_data_value to zero, scales it by the max_data_value and rescales the depth image to the uint16 range. :param data_image: :param max_data_value: :return: image data in 16-bit format """ # only consider depth values within max distance and normalize on that data_image[data_image > max_data_value] = 0 data_image = data_image / max_data_value # scale depth image to uint16 range data_image = data_image * np.iinfo(np.uint16).max return data_image.astype(np.uint16) def decode_data_image_from_16bit_file(fpath: str, max_data_value: int = 120) -> np.ndarray: """ this method performs inverse operation of encode_data_image, by unscaling uint16 range, and rescaling the data_image with max_data_value. :param fpath: filename :param max_data_value: maximum value of range :return: image data as array """ # read uint16 depht values unchanged from file data_image = cv2.imread(fpath, cv2.IMREAD_UNCHANGED) # undo uint16 range and scale with max depth data_image = data_image / np.iinfo(np.uint16).max data_image *= max_data_value return data_image def image_to_plasma_png(fname: str, img: np.array) -> None: """ saves images to file using the plasma color scheme :param fname: :param img: """ plt.imsave(fname + '.png', img, cmap='plasma') def str2bool(v: Any) -> bool: """ Converts multiple possible boolean string encryptions to pythonic True and False. :param v: string or boolean :return: true or false depending on the given value :raise ArgumentTypeError if conversion fails """ if isinstance(v, bool): return v if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.')
29.325153
109
0.683264
c4c8a4bc92dde7a48dfda4091995c104303397a4
2,456
py
Python
launcher/config.py
jt6562/XX-Net
7b78e4820a3c78c3ba3e75b3917129d17f00e9fc
[ "BSD-2-Clause" ]
2
2021-07-09T03:41:31.000Z
2021-10-04T17:54:36.000Z
launcher/config.py
jt6562/XX-Net
7b78e4820a3c78c3ba3e75b3917129d17f00e9fc
[ "BSD-2-Clause" ]
null
null
null
launcher/config.py
jt6562/XX-Net
7b78e4820a3c78c3ba3e75b3917129d17f00e9fc
[ "BSD-2-Clause" ]
1
2019-06-13T06:33:37.000Z
2019-06-13T06:33:37.000Z
import os from instances import xlog import yaml from distutils.version import LooseVersion current_path = os.path.dirname(os.path.abspath(__file__)) root_path = os.path.abspath( os.path.join(current_path, os.pardir)) data_path = os.path.join(root_path, 'data') config_path = os.path.join(data_path, 'launcher', 'config.yaml') config = {} def load(): global config, config_path try: config = yaml.load(file(config_path, 'r')) #print yaml.dump(config) except Exception as exc: print "Error in configuration file:", exc def save(): global config, config_path try: yaml.dump(config, file(config_path, "w")) except Exception as e: xlog.warn("save config %s fail %s", config_path, e) def get(path, default_val=""): global config try: value = default_val cmd = "config" for p in path: cmd += '["%s"]' % p value = eval(cmd) return value except: return default_val def _set(m, k_list, v): k0 = k_list[0] if len(k_list) == 1: m[k0] = v return if k0 not in m: m[k0] = {} _set(m[k0], k_list[1:], v) def set(path, val): global config _set(config, path, val) def recheck_module_path(): global config need_save_config = False modules = ["gae_proxy", "launcher", "php_proxy", "x_tunnel"] for module in modules: if module not in ["launcher", "php_proxy", "x_tunnel"]: if not os.path.isdir(os.path.join(root_path, module)): del config[module] continue if get(["modules", module, "auto_start"], -1) == -1: set(["modules", module, "auto_start"], 1) if get(["modules", "launcher", "control_port"], 0) == 0: set(["modules", "launcher", "control_port"], 8085) set(["modules", "launcher", "allow_remote_connect"], 0) if get(["modules", "launcher", "proxy"], 0) == 0: # default enable PAC on startup. set(["modules", "launcher", "proxy"], "pac") #if get(["modules", "gae_proxy", "control_port"], 0) == 0: # set(["modules", "gae_proxy", "control_port"], 8084) if get(["modules", "php_proxy", "control_port"], 0) == 0: set(["modules", "php_proxy", "control_port"], 8083) return need_save_config def init(): if os.path.isfile(config_path): load() if recheck_module_path(): save() init()
25.319588
67
0.585098
82819dface5824078c96fbef0e10da078e11e5b2
11,987
py
Python
vumi/transports/mtech_ussd/tests/test_mtech_ussd.py
apopheniac/vumi
e04bf32a0cf09292f03dfe8628798adff512b709
[ "BSD-3-Clause" ]
null
null
null
vumi/transports/mtech_ussd/tests/test_mtech_ussd.py
apopheniac/vumi
e04bf32a0cf09292f03dfe8628798adff512b709
[ "BSD-3-Clause" ]
null
null
null
vumi/transports/mtech_ussd/tests/test_mtech_ussd.py
apopheniac/vumi
e04bf32a0cf09292f03dfe8628798adff512b709
[ "BSD-3-Clause" ]
null
null
null
from twisted.internet.defer import inlineCallbacks from twisted.trial.unittest import TestCase from vumi.transports.tests.utils import TransportTestCase from vumi.utils import http_request_full from vumi.message import TransportUserMessage from vumi.transports.mtech_ussd import MtechUssdTransport from vumi.transports.mtech_ussd.mtech_ussd import MtechUssdResponse class TestMtechUssdTransport(TransportTestCase): timeout = 1 transport_name = 'mtech_ussd' transport_class = MtechUssdTransport @inlineCallbacks def setUp(self): yield super(TestMtechUssdTransport, self).setUp() self.config = { 'transport_type': 'ussd', 'ussd_string_prefix': '*120*666#', 'web_path': "/foo", 'web_host': "localhost", 'web_port': 0, 'username': 'testuser', 'password': 'testpass', } self.transport = yield self.get_transport(self.config) self.transport_url = self.transport.get_transport_url().rstrip('/') self.url = "%s%s" % (self.transport_url, self.config['web_path']) yield self.transport.session_manager.redis._purge_all() # just in case def make_ussd_request_full(self, session_id, **kwargs): lines = [ '<?xml version="1.0" encoding="UTF-8"?>', '<page version="2.0">', ' <session_id>%s</session_id>' % (session_id,), ] for k, v in kwargs.items(): lines.append(' <%s>%s</%s>' % (k, v, k)) lines.append('</page>') data = '\n'.join(lines) return http_request_full(self.url, data, method='POST') def make_ussd_request(self, session_id, **kwargs): return self.make_ussd_request_full(session_id, **kwargs).addCallback( lambda r: r.delivered_body) def reply_to_message(self, *args, **kw): d = self.wait_for_dispatched_messages(1) def reply(r): msg = TransportUserMessage(**r[0].payload) self.dispatch(msg.reply(*args, **kw)) return msg return d.addCallback(reply) @inlineCallbacks def test_empty_request(self): response = yield http_request_full(self.url, "", method='POST') self.assertEqual(response.code, 400) @inlineCallbacks def test_bad_request(self): response = yield http_request_full(self.url, "blah", method='POST') self.assertEqual(response.code, 400) @inlineCallbacks def test_inbound_new_continue(self): sid = 'a41739890287485d968ea66e8b44bfd3' response_d = self.make_ussd_request( sid, mobile_number='2348085832481', page_id='0', data='testmenu', gate='gateid') msg = yield self.reply_to_message("OK\n1 < 2") self.assertEqual(msg['transport_name'], self.transport_name) self.assertEqual(msg['transport_type'], "ussd") self.assertEqual(msg['transport_metadata'], {"session_id": sid}) self.assertEqual(msg['session_event'], TransportUserMessage.SESSION_NEW) self.assertEqual(msg['from_addr'], '2348085832481') # self.assertEqual(msg['to_addr'], '*120*666#') self.assertEqual(msg['content'], 'testmenu') response = yield response_d correct_response = ''.join([ "<?xml version='1.0' encoding='UTF-8'?>", '<page version="2.0">', '<session_id>a41739890287485d968ea66e8b44bfd3</session_id>', '<div>OK<br />1 &lt; 2</div>', '<navigation>', '<link accesskey="*" pageId="indexX" />', '</navigation>', '</page>', ]) self.assertEqual(response, correct_response) @inlineCallbacks def test_inbound_resume_continue(self): sid = 'a41739890287485d968ea66e8b44bfd3' yield self.transport.save_session(sid, '2348085832481', '*120*666#') response_d = self.make_ussd_request(sid, page_id="indexX", data="foo") msg = yield self.reply_to_message("OK") self.assertEqual(msg['transport_name'], self.transport_name) self.assertEqual(msg['transport_type'], "ussd") self.assertEqual(msg['transport_metadata'], {"session_id": sid}) self.assertEqual(msg['session_event'], TransportUserMessage.SESSION_RESUME) self.assertEqual(msg['from_addr'], '2348085832481') self.assertEqual(msg['to_addr'], '*120*666#') self.assertEqual(msg['content'], 'foo') response = yield response_d correct_response = ''.join([ "<?xml version='1.0' encoding='UTF-8'?>", '<page version="2.0">', '<session_id>a41739890287485d968ea66e8b44bfd3</session_id>', '<div>OK</div>', '<navigation>', '<link accesskey="*" pageId="indexX" />', '</navigation>', '</page>', ]) self.assertEqual(response, correct_response) @inlineCallbacks def test_nack(self): msg = self.mkmsg_out() yield self.dispatch(msg) [nack] = yield self.wait_for_dispatched_events(1) self.assertEqual(nack['user_message_id'], msg['message_id']) self.assertEqual(nack['sent_message_id'], msg['message_id']) self.assertEqual(nack['nack_reason'], 'Missing in_reply_to, content or session_id') @inlineCallbacks def test_inbound_missing_session(self): sid = 'a41739890287485d968ea66e8b44bfd3' response = yield self.make_ussd_request_full( sid, page_id="indexX", data="foo") self.assertEqual(400, response.code) self.assertEqual('', response.delivered_body) @inlineCallbacks def test_inbound_new_and_resume(self): sid = 'a41739890287485d968ea66e8b44bfd3' response_d = self.make_ussd_request( sid, mobile_number='2348085832481', page_id='0', data='testmenu', gate='gateid') msg = yield self.reply_to_message("OK\n1 < 2") self.assertEqual(msg['transport_name'], self.transport_name) self.assertEqual(msg['transport_type'], "ussd") self.assertEqual(msg['transport_metadata'], {"session_id": sid}) self.assertEqual(msg['session_event'], TransportUserMessage.SESSION_NEW) self.assertEqual(msg['from_addr'], '2348085832481') # self.assertEqual(msg['to_addr'], '*120*666#') self.assertEqual(msg['content'], 'testmenu') response = yield response_d correct_response = ''.join([ "<?xml version='1.0' encoding='UTF-8'?>", '<page version="2.0">', '<session_id>a41739890287485d968ea66e8b44bfd3</session_id>', '<div>OK<br />1 &lt; 2</div>', '<navigation>', '<link accesskey="*" pageId="indexX" />', '</navigation>', '</page>', ]) self.assertEqual(response, correct_response) self.clear_all_dispatched() response_d = self.make_ussd_request(sid, page_id="indexX", data="foo") msg = yield self.reply_to_message("OK") self.assertEqual(msg['transport_name'], self.transport_name) self.assertEqual(msg['transport_type'], "ussd") self.assertEqual(msg['transport_metadata'], {"session_id": sid}) self.assertEqual(msg['session_event'], TransportUserMessage.SESSION_RESUME) self.assertEqual(msg['from_addr'], '2348085832481') self.assertEqual(msg['to_addr'], 'gateid') self.assertEqual(msg['content'], 'foo') response = yield response_d correct_response = ''.join([ "<?xml version='1.0' encoding='UTF-8'?>", '<page version="2.0">', '<session_id>a41739890287485d968ea66e8b44bfd3</session_id>', '<div>OK</div>', '<navigation>', '<link accesskey="*" pageId="indexX" />', '</navigation>', '</page>', ]) self.assertEqual(response, correct_response) @inlineCallbacks def test_inbound_resume_close(self): sid = 'a41739890287485d968ea66e8b44bfd3' yield self.transport.save_session(sid, '2348085832481', '*120*666#') response_d = self.make_ussd_request(sid, page_id="indexX", data="foo") msg = yield self.reply_to_message("OK", False) self.assertEqual(msg['transport_name'], self.transport_name) self.assertEqual(msg['transport_type'], "ussd") self.assertEqual(msg['transport_metadata'], {"session_id": sid}) self.assertEqual(msg['session_event'], TransportUserMessage.SESSION_RESUME) self.assertEqual(msg['from_addr'], '2348085832481') self.assertEqual(msg['to_addr'], '*120*666#') self.assertEqual(msg['content'], 'foo') response = yield response_d correct_response = ''.join([ "<?xml version='1.0' encoding='UTF-8'?>", '<page version="2.0">', '<session_id>a41739890287485d968ea66e8b44bfd3</session_id>', '<div>OK</div>', '</page>', ]) self.assertEqual(response, correct_response) @inlineCallbacks def test_inbound_cancel(self): sid = 'a41739890287485d968ea66e8b44bfd3' yield self.transport.save_session(sid, '2348085832481', '*120*666#') response = yield self.make_ussd_request(sid, status="1") correct_response = ''.join([ "<?xml version='1.0' encoding='UTF-8'?>", '<page version="2.0">', '<session_id>a41739890287485d968ea66e8b44bfd3</session_id>', '</page>', ]) self.assertEqual(response, correct_response) class TestMtechUssdResponse(TestCase): def setUp(self): self.mur = MtechUssdResponse("sid123") def assert_message_xml(self, *lines): xml_str = ''.join( ["<?xml version='1.0' encoding='UTF-8'?>"] + list(lines)) self.assertEqual(self.mur.to_xml(), xml_str) def test_empty_response(self): self.assert_message_xml( '<page version="2.0">', '<session_id>sid123</session_id>', '</page>') def test_free_text(self): self.mur.add_text("Please enter your name") self.mur.add_freetext_option() self.assert_message_xml( '<page version="2.0">', '<session_id>sid123</session_id>', '<div>Please enter your name</div>', '<navigation><link accesskey="*" pageId="indexX" /></navigation>', '</page>') def test_menu_options(self): self.mur.add_text("Please choose:") self.mur.add_menu_item('chicken', '1') self.mur.add_menu_item('beef', '2') self.assert_message_xml( '<page version="2.0">', '<session_id>sid123</session_id>', '<div>Please choose:</div>', '<navigation>', '<link accesskey="1" pageId="index1">chicken</link>', '<link accesskey="2" pageId="index2">beef</link>', '</navigation>', '</page>') def test_menu_options_title(self): self.mur.add_title("LUNCH") self.mur.add_text("Please choose:") self.mur.add_menu_item('chicken', '1') self.mur.add_menu_item('beef', '2') self.assert_message_xml( '<page version="2.0">', '<session_id>sid123</session_id>', '<title>LUNCH</title>', '<div>Please choose:</div>', '<navigation>', '<link accesskey="1" pageId="index1">chicken</link>', '<link accesskey="2" pageId="index2">beef</link>', '</navigation>', '</page>')
39.301639
79
0.586719
e60c91968a1fb9fa82bc36be22677bc037376821
2,320
py
Python
tests/test_integration_unet_2d.py
function2-llx/MONAI
4cddaa830b61b88ec78e089bb5f21e05bb1a78f4
[ "Apache-2.0" ]
3
2020-06-22T20:59:14.000Z
2021-04-09T21:24:45.000Z
tests/test_integration_unet_2d.py
scf819/MONAI
2fef7ff5c064a9ff6b6d6b4f2323180afed99934
[ "Apache-2.0" ]
null
null
null
tests/test_integration_unet_2d.py
scf819/MONAI
2fef7ff5c064a9ff6b6d6b4f2323180afed99934
[ "Apache-2.0" ]
1
2020-06-22T19:22:59.000Z
2020-06-22T19:22:59.000Z
# Copyright (c) MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import torch from ignite.engine import create_supervised_trainer from torch.utils.data import DataLoader, Dataset from monai.data import create_test_image_2d from monai.losses import DiceLoss from monai.networks.nets import BasicUNet, UNet from tests.utils import DistTestCase, TimedCall, skip_if_quick def run_test(net_name="basicunet", batch_size=64, train_steps=100, device="cuda:0"): class _TestBatch(Dataset): def __getitem__(self, _unused_id): im, seg = create_test_image_2d(128, 128, noise_max=1, num_objs=4, num_seg_classes=1) return im[None], seg[None].astype(np.float32) def __len__(self): return train_steps if net_name == "basicunet": net = BasicUNet(spatial_dims=2, in_channels=1, out_channels=1, features=(4, 8, 8, 16, 16, 32)) elif net_name == "unet": net = UNet( spatial_dims=2, in_channels=1, out_channels=1, channels=(4, 8, 16, 32), strides=(2, 2, 2), num_res_units=2 ) net.to(device) loss = DiceLoss(sigmoid=True) opt = torch.optim.Adam(net.parameters(), 1e-4) src = DataLoader(_TestBatch(), batch_size=batch_size) trainer = create_supervised_trainer(net, opt, loss, device, False) trainer.run(src, 1) loss = trainer.state.output return loss @skip_if_quick class TestIntegrationUnet2D(DistTestCase): @TimedCall(seconds=20, daemon=False) def test_unet_training(self): for n in ["basicunet", "unet"]: loss = run_test(net_name=n, device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu:0")) print(loss) self.assertGreaterEqual(0.85, loss) if __name__ == "__main__": unittest.main()
35.692308
118
0.705603