text
stringlengths
1
2.21k
source
stringlengths
1
131
Apollo is said to have been the lover of all nine Muses, and not being able to choose one of them, decided to remain unwed. He fathered the Corybantes by the Muse Thalia, Orpheus by Calliope, Linus of Thrace by Calliope or Urania and Hymenaios (Hymen) by one of the Muses. Cyrene was a Thessalian princess whom Apollo loved. In her honor, he built the city Cyrene and made her its ruler. She was later granted longevity by Apollo who turned her into a nymph. The couple had two sons, Aristaeus, and Idmon. Evadne was a nymph daughter of Poseidon and a lover of Apollo. She bore him a son, Iamos. During the time of the childbirth, Apollo sent Eileithyia, the goddess of childbirth to assist her.
Apollo
Evadne was a nymph daughter of Poseidon and a lover of Apollo. She bore him a son, Iamos. During the time of the childbirth, Apollo sent Eileithyia, the goddess of childbirth to assist her. Rhoeo, a princess of the island of Naxos was loved by Apollo. Out of affection for her, Apollo turned her sisters into goddesses. On the island Delos she bore Apollo a son named Anius. Not wanting to have the child, she entrusted the infant to Apollo and left. Apollo raised and educated the child on his own. Ourea, a daughter of Poseidon, fell in love with Apollo when he and Poseidon were serving the Trojan king Laomedon. They both united on the day the walls of Troy were built. She bore to Apollo a son, whom Apollo named Ileus, after the city of his birth, Ilion (Troy). Ileus was very dear to Apollo.
Apollo
Thero, daughter of Phylas, a maiden as beautiful as the moonbeams, was loved by the radiant Apollo, and she loved him in return. By their union, she became mother of Chaeron, who was famed as "the tamer of horses". He later built the city Chaeronea. Hyrie or Thyrie was the mother of Cycnus. Apollo turned both the mother and son into swans when they jumped into a lake and tried to kill themselves. Hecuba was the wife of King Priam of Troy, and Apollo had a son with her named Troilus. An oracle prophesied that Troy would not be defeated as long as Troilus reached the age of twenty alive. He was ambushed and killed by Achilleus, and Apollo avenged his death by killing Achilles. After the sack of Troy, Hecuba was taken to Lycia by Apollo.
Apollo
Coronis was daughter of Phlegyas, King of the Lapiths. While pregnant with Asclepius, Coronis fell in love with Ischys, son of Elatus and slept with him. When Apollo found out about her infidelity through his prophetic powers, he sent his sister, Artemis, to kill Coronis. Apollo rescued the baby by cutting open Koronis' belly and gave it to the centaur Chiron to raise. Dryope, the daughter of Dryops, was impregnated by Apollo in the form of a snake. She gave birth to a son named Amphissus. In Euripides' play Ion, Apollo fathered Ion by Creusa, wife of Xuthus. He used his powers to conceal her pregnancy from her father. Later, when Creusa left Ion to die in the wild, Apollo asked Hermes to save the child and bring him to the oracle at Delphi, where he was raised by a priestess. Male lovers
Apollo
Male lovers Hyacinth (or Hyacinthus), a beautiful and athletic Spartan prince, was one of Apollo's favourite lovers. The pair was practicing throwing the discus when a discus thrown by Apollo was blown off course by the jealous Zephyrus and struck Hyacinthus in the head, killing him instantly. Apollo is said to be filled with grief. Out of Hyacinthus' blood, Apollo created a flower named after him as a memorial to his death, and his tears stained the flower petals with the interjection , meaning alas. He was later resurrected and taken to heaven. The festival Hyacinthia was a national celebration of Sparta, which commemorated the death and rebirth of Hyacinthus. Another male lover was Cyparissus, a descendant of Heracles. Apollo gave him a tame deer as a companion but Cyparissus accidentally killed it with a javelin as it lay asleep in the undergrowth. Cyparissus was so saddened by its death that he asked Apollo to let his tears fall forever. Apollo granted the request by turning him into the Cypress named after him, which was said to be a sad tree because the sap forms droplets like tears on the trunk.
Apollo
Admetus, the king of Pherae, was also Apollo's lover. During his exile, which lasted either for one year or nine years, Apollo served Admetus as a herdsman. The romantic nature of their relationship was first described by Callimachus of Alexandria, who wrote that Apollo was "fired with love" for Admetus. Plutarch lists Admetus as one of Apollo's lovers and says that Apollo served Admetus because he doted upon him. Latin poet Ovid in his Ars Amatoria said that even though he was a god, Apollo forsook his pride and stayed in as a servant for the sake of Admetus. Tibullus desrcibes Apollo's love to the king as servitium amoris (slavery of love) and asserts that Apollo became his servant not by force but by choice. He would also make cheese and serve it to Admetus. His domestic actions caused embarrassment to his family.
Apollo
When Admetus wanted to marry princess Alcestis, Apollo provided a chariot pulled by a lion and a boar he had tamed. This satisfied Alcestis' father and he let Admetus marry his daughter. Further, Apollo saved the king from Artemis' wrath and also convinced the Moirai to postpone Admetus' death once. Branchus, a shepherd, one day came across Apollo in the woods. Captivated by the god's beauty, he kissed Apollo. Apollo requited his affections and wanting to reward him, bestowed prophetic skills on him. His descendants, the Branchides, were an influential clan of prophets. Other male lovers of Apollo include:
Apollo
Other male lovers of Apollo include: Adonis, who is said to have been the lover of both Apollo and Aphrodite. He behaved as a man with Aphrodite and as a woman with Apollo. Atymnius, otherwise known as a beloved of Sarpedon Boreas, the god of North winds Helenus, the son of Priam and a Trojan Prince, was a lover of Apollo and received from him an ivory bow with which he later wounded Achilles in the hand. Hippolytus of Sicyon (not the same as Hippolytus, the son of Theseus) Hymenaios, the son of Magnes Iapis, to whom Apollo taught the art of healing Phorbas, the dragon slayer (probably the son of Triopas) Children Apollo sired many children, from mortal women and nymphs as well as the goddesses. His children grew up to be physicians, musicians, poets, seers or archers. Many of his sons founded new cities and became kings. They were all usually very beautiful.
Apollo
Asclepius is the most famous son of Apollo. His skills as a physician surpassed that of Apollo's. Zeus killed him for bringing back the dead, but upon Apollo's request, he was resurrected as a god. Aristaeus was placed under the care of Chiron after his birth. He became the god of beekeeping, cheese making, animal husbandry and more. He was ultimately given immortality for the benefits he bestowed upon the humanity. The Corybantes were spear-clashing, dancing demigods. The sons of Apollo who participated in the Trojan War include the Trojan princes Hector and Troilus, as well as Tenes, the king of Tenedos, all three of whom were killed by Achilles over the course of the war.
Apollo
The sons of Apollo who participated in the Trojan War include the Trojan princes Hector and Troilus, as well as Tenes, the king of Tenedos, all three of whom were killed by Achilles over the course of the war. Apollo's children who became musicians and bards include Orpheus, Linus, Ialemus, Hymenaeus, Philammon, Eumolpus and Eleuther. Apollo fathered 3 daughters, Apollonis, Borysthenis and Cephisso, who formed a group of minor Muses, the "Musa Apollonides". They were nicknamed Nete, Mese and Hypate after the highest, middle and lowest strings of his lyre. Phemonoe was a seer and a poetess who was the inventor of Hexameter. Apis, Idmon, Iamus, Tenerus, Mopsus, Galeus, Telmessus and others were gifted seers. Anius, Pythaeus and Ismenus lived as high priests. Most of them were trained by Apollo himself.
Apollo
Arabus, Delphos, Dryops, Miletos, Tenes, Epidaurus, Ceos, Lycoras, Syrus, Pisus, Marathus, Megarus, Patarus, Acraepheus, Cicon, Chaeron and many other sons of Apollo, under the guidance of his words, founded eponymous cities. He also had a son named Chrysorrhoas who was a mechanic artist. His other daughters include Eurynome, Chariclo wife of Chiron, Eurydice the wife of Orpheus, Eriopis, famous for her beautiful hair, Melite the heroine, Pamphile the silk weaver, Parthenos, and by some accounts, Phoebe, Hilyra and Scylla. Apollo turned Parthenos into a constellation after her early death. Additionally, Apollo fostered and educated Chiron, the centaur who later became the greatest teacher and educated many demigods, including Apollo's sons. Apollo also fostered Carnus, the son of Zeus and Europa. Failed love attempts
Apollo
Additionally, Apollo fostered and educated Chiron, the centaur who later became the greatest teacher and educated many demigods, including Apollo's sons. Apollo also fostered Carnus, the son of Zeus and Europa. Failed love attempts Marpessa was kidnapped by Idas but was loved by Apollo as well. Zeus made her choose between them, and she chose Idas on the grounds that Apollo, being immortal, would tire of her when she grew old. Sinope, a nymph, was approached by the amorous Apollo. She made him promise that he would grant to her whatever she would ask for, and then cleverly asked him to let her stay a virgin. Apollo kept his promise and went back. Bolina was admired by Apollo but she refused him and jumped into the sea. To avoid her death, Apollo turned her into a nymph and let her go. Castalia was a nymph whom Apollo loved. She fled from him and dove into the spring at Delphi, at the base of Mt. Parnassos, which was then named after her. Water from this spring was sacred; it was used to clean the Delphian temples and inspire the priestesses.
Apollo
Cassandra, was a daughter of Hecuba and Priam. Apollo wished to court her. Cassandra promised to return his love on one condition - he should give her the power to see the future. Apollo fulfilled her wish, but she went back on her word and rejected him soon after. Angered that she broke her promise, Apollo cursed her that even though she would see the future, no one would ever believe her prophecies. Hestia, the goddess of the hearth, rejected both Apollo's and Poseidon's marriage proposals and swore that she would always stay unmarried. Female counterparts Artemis Artemis as the sister of Apollo, is thea apollousa, that is, she as a female divinity represented the same idea that Apollo did as a male divinity. In the pre-Hellenic period, their relationship was described as the one between husband and wife, and there seems to have been a tradition which actually described Artemis as the wife of Apollo. However, this relationship was never sexual but spiritual, which is why they both are seen being unmarried in the Hellenic period.
Apollo
Artemis, like her brother, is armed with a bow and arrows. She is the cause of sudden deaths of women. She also is the protector of the young, especially girls. Though she has nothing to do with oracles, music or poetry, she sometimes led the female chorus on Olympus while Apollo sang. The laurel (daphne) was sacred to both. Artemis Daphnaia had her temple among the Lacedemonians, at a place called Hypsoi. Apollo Daphnephoros had a temple in Eretria, a "place where the citizens are to take the oaths". In later times when Apollo was regarded as identical with the sun or Helios, Artemis was naturally regarded as Selene or the moon. Hecate
Apollo
Hecate Hecate, the goddess of witchcraft and magic, is the chthonic counterpart of Apollo. They both are cousins, since their mothers - Leto and Asteria - are sisters. One of Apollo's epithets, Hecatos, is the masculine form of Hecate, and both the names mean "working from afar". While Apollo presided over the prophetic powers and magic of light and heaven, Hecate presided over the prophetic powers and magic of night and chthonian darkness. If Hecate is the "gate-keeper", Apollo Agyieus is the "door-keeper". Hecate is the goddess of crossroads and Apollo is the god and protector of streets. The oldest evidence found for Hecate's worship is at Apollo's temple in Miletos. There, Hecate was taken to be Apollo's sister counterpart in the absence of Artemis. Hecate's lunar nature makes her the goddess of the waning moon and contrasts and complements, at the same time, Apollo's solar nature. Athena
Apollo
Athena As a deity of knowledge and great power, Apollo was seen being the male counterpart of Athena. Being Zeus' favorite children, they were given more powers and duties. Apollo and Athena often took up the role as protectors of cities, and were patrons of some of the important cities. Athena was the principle goddess of Athens, Apollo was the principle god of Sparta. As patrons of arts, Apollo and Athena were companions of the Muses, the former a much more frequent companion than the latter. Apollo was sometimes called the son of Athena and Hephaestus. In the Trojan war, as Zeus' executive, Apollo is seen holding the aegis like Athena usually does. Apollo's decisions were usually approved by his sister Athena, and they both worked to establish the law and order set forth by Zeus.
Apollo
In the Trojan war, as Zeus' executive, Apollo is seen holding the aegis like Athena usually does. Apollo's decisions were usually approved by his sister Athena, and they both worked to establish the law and order set forth by Zeus. Apollo in the Oresteia In Aeschylus' Oresteia trilogy, Clytemnestra kills her husband, King Agamemnon because he had sacrificed their daughter Iphigenia to proceed forward with the Trojan war. Apollo gives an order through the Oracle at Delphi that Agamemnon's son, Orestes, is to kill Clytemnestra and Aegisthus, her lover. Orestes and Pylades carry out the revenge, and consequently Orestes is pursued by the Erinyes or Furies (female personifications of vengeance).
Apollo
Apollo and the Furies argue about whether the matricide was justified; Apollo holds that the bond of marriage is sacred and Orestes was avenging his father, whereas the Erinyes say that the bond of blood between mother and son is more meaningful than the bond of marriage. They invade his temple, and he drives them away. He says that the matter should be brought before Athena. Apollo promises to protect Orestes, as Orestes has become Apollo's supplicant. Apollo advocates Orestes at the trial, and ultimately Athena rules in favor of Apollo. Roman Apollo The Roman worship of Apollo was adopted from the Greeks. As a quintessentially Greek god, Apollo had no direct Roman equivalent, although later Roman poets often referred to him as Phoebus. There was a tradition that the Delphic oracle was consulted as early as the period of the kings of Rome during the reign of Tarquinius Superbus.
Apollo
On the occasion of a pestilence in the 430s BCE, Apollo's first temple at Rome was established in the Flaminian fields, replacing an older cult site there known as the "Apollinare". During the Second Punic War in 212 BCE, the Ludi Apollinares ("Apollonian Games") were instituted in his honor, on the instructions of a prophecy attributed to one Marcius. In the time of Augustus, who considered himself under the special protection of Apollo and was even said to be his son, his worship developed and he became one of the chief gods of Rome. After the battle of Actium, which was fought near a sanctuary of Apollo, Augustus enlarged Apollo's temple, dedicated a portion of the spoils to him, and instituted quinquennial games in his honour. He also erected a new temple to the god on the Palatine hill. Sacrifices and prayers on the Palatine to Apollo and Diana formed the culmination of the Secular Games, held in 17 BCE to celebrate the dawn of a new era.
Apollo
Festivals The chief Apollonian festival was the Pythian Games held every four years at Delphi and was one of the four great Panhellenic Games. Also of major importance was the Delia held every four years on Delos. Athenian annual festivals included the Boedromia, Metageitnia, Pyanepsia, and Thargelia. Spartan annual festivals were the Carneia and the Hyacinthia. Thebes every nine years held the Daphnephoria. Attributes and symbols Apollo's most common attributes were the bow and arrow. Other attributes of his included the kithara (an advanced version of the common lyre), the plectrum and the sword. Another common emblem was the sacrificial tripod, representing his prophetic powers. The Pythian Games were held in Apollo's honor every four years at Delphi. The bay laurel plant was used in expiatory sacrifices and in making the crown of victory at these games.
Apollo
The palm tree was also sacred to Apollo because he had been born under one in Delos. Animals sacred to Apollo included wolves, dolphins, roe deer, swans, cicadas (symbolizing music and song), ravens, hawks, crows (Apollo had hawks and crows as his messengers), snakes (referencing Apollo's function as the god of prophecy), mice and griffins, mythical eagle–lion hybrids of Eastern origin. Homer and Porphyry wrote that Apollo had a hawk as his messenger. In many myths Apollo is transformed into a hawk. In addition, Claudius Aelianus wrote that in Ancient Egypt people believed that hawks were sacred to the god and that according to the ministers of Apollo in Egypt there were certain men called "hawk-keepers" (ἱερακοβοσκοί) who fed and tended the hawks belonging to the god. Eusebius wrote that the second appearance of the moon is held sacred in the city of Apollo in Egypt and that the city's symbol is a man with a hawklike face (Horus). Claudius Aelianus wrote that Egyptians called Apollo Horus in their own language.
Apollo
As god of colonization, Apollo gave oracular guidance on colonies, especially during the height of colonization, 750–550 BCE. According to Greek tradition, he helped Cretan or Arcadian colonists found the city of Troy. However, this story may reflect a cultural influence which had the reverse direction: Hittite cuneiform texts mention an Asia Minor god called Appaliunas or Apalunas in connection with the city of Wilusa attested in Hittite inscriptions, which is now generally regarded as being identical with the Greek Ilion by most scholars. In this interpretation, Apollo's title of Lykegenes can simply be read as "born in Lycia", which effectively severs the god's supposed link with wolves (possibly a folk etymology).
Apollo
In literary contexts, Apollo represents harmony, order, and reason—characteristics contrasted with those of Dionysus, god of wine, who represents ecstasy and disorder. The contrast between the roles of these gods is reflected in the adjectives Apollonian and Dionysian. However, the Greeks thought of the two qualities as complementary: the two gods are brothers, and when Apollo at winter left for Hyperborea, he would leave the Delphic oracle to Dionysus. This contrast appears to be shown on the two sides of the Borghese Vase. Apollo is often associated with the Golden Mean. This is the Greek ideal of moderation and a virtue that opposes gluttony. Apollo in the arts Apollo is a common theme in Greek and Roman art and also in the art of the Renaissance. The earliest Greek word for a statue is "delight" (, agalma), and the sculptors tried to create forms which would inspire such guiding vision. Greek art puts into Apollo the highest degree of power and beauty that can be imagined. The sculptors derived this from observations on human beings, but they also embodied in concrete form, issues beyond the reach of ordinary thought.
Apollo
The naked bodies of the statues are associated with the cult of the body that was essentially a religious activity. The muscular frames and limbs combined with slim waists indicate the Greek desire for health, and the physical capacity which was necessary in the hard Greek environment. The statues of Apollo embody beauty, balance and inspire awe before the beauty of the world. Archaic sculpture Numerous free-standing statues of male youths from Archaic Greece exist, and were once thought to be representations of Apollo, though later discoveries indicated that many represented mortals. In 1895, V. I. Leonardos proposed the term kouros ("male youth") to refer to those from Keratea; this usage was later expanded by Henri Lechat in 1904 to cover all statues of this format.
Apollo
The earliest examples of life-sized statues of Apollo may be two figures from the Ionic sanctuary on the island of Delos. Such statues were found across the Greek speaking world, the preponderance of these were found at the sanctuaries of Apollo with more than one hundred from the sanctuary of Apollo Ptoios, Boeotia alone. Significantly more rare are the life-sized bronze statues. One of the few originals which survived into the present day—so rare that its discovery in 1959 was described as "a miracle" by Ernst Homann-Wedeking—is the masterpiece bronze, Piraeus Apollo. It was found in Piraeus, a port city close to Athens, and is believed to have come from north-eastern Peloponnesus. It is the only surviving large-scale Peloponnesian statue. Classical sculpture The famous Apollo of Mantua and its variants are early forms of the Apollo Citharoedus statue type, in which the god holds the cithara, a sophisticated seven-stringed variant of the lyre, in his left arm. While none of the Greek originals have survived, several Roman copies from approximately the late 1st or early 2nd century exist.
Apollo
Other notable forms are the Apollo Citharoedus and the Apollo Barberini. Hellenistic Greece-Rome Apollo as a handsome beardless young man, is often depicted with a cithara (as Apollo Citharoedus) or bow in his hand, or reclining on a tree (the Apollo Lykeios and Apollo Sauroctonos types). The Apollo Belvedere is a marble sculpture that was rediscovered in the late 15th century; for centuries it epitomized the ideals of Classical Antiquity for Europeans, from the Renaissance through the 19th century. The marble is a Hellenistic or Roman copy of a bronze original by the Greek sculptor Leochares, made between 350 and 325 BCE.
Apollo
The life-size so-called "Adonis" found in 1780 on the site of a villa suburbana near the Via Labicana in the Roman suburb of Centocelle is identified as an Apollo by modern scholars. In the late 2nd century CE floor mosaic from El Djem, Roman Thysdrus, he is identifiable as Apollo Helios by his effulgent halo, though now even a god's divine nakedness is concealed by his cloak, a mark of increasing conventions of modesty in the later Empire. Another haloed Apollo in mosaic, from Hadrumentum, is in the museum at Sousse. The conventions of this representation, head tilted, lips slightly parted, large-eyed, curling hair cut in locks grazing the neck, were developed in the 3rd century BCE to depict Alexander the Great. Some time after this mosaic was executed, the earliest depictions of Christ would also be beardless and haloed. Modern reception Apollo often appears in modern and popular culture due to his status as the god of music, dance and poetry. Postclassical art and literature
Apollo
Modern reception Apollo often appears in modern and popular culture due to his status as the god of music, dance and poetry. Postclassical art and literature Dance and music Apollo has featured in dance and music in modern culture. Percy Bysshe Shelley composed a "Hymn of Apollo" (1820), and the god's instruction of the Muses formed the subject of Igor Stravinsky's Apollon musagète (1927–1928). In 1978, the Canadian band Rush released an album with songs "Apollo: Bringer of Wisdom"/"Dionysus: Bringer of Love". Books Apollo been portrayed in modern literature, such as when Charles Handy, in Gods of Management (1978) uses Greek gods as a metaphor to portray various types of organizational culture. Apollo represents a 'role' culture where order, reason, and bureaucracy prevail. In 2016, author Rick Riordan published the first book in the Trials of Apollo series, publishing four other books in the series in 2017, 2018, 2019 and 2020.
Apollo
Film Apollo has been depicted in modern films—for instance, by Keith David in the 1997 animated feature film Hercules, by Luke Evans in the 2010 action film Clash of the Titans, and by Dimitri Lekkos in the 2010 film Percy Jackson & the Olympians: The Lightning Thief. Video games Apollo has appeared in many modern video games. Apollo appears as a minor character in Santa Monica Studio's 2010 action-adventure game God of War III with his bow being used by Peirithous. He also appears in the 2014 Hi-Rez Studios Multiplayer Online Battle Arena game Smite as a playable character. Psychology and philosophy In philosophical discussion of the arts, a distinction is sometimes made between the Apollonian and Dionysian impulses where the former is concerned with imposing intellectual order and the latter with chaotic creativity. Friedrich Nietzsche argued that a fusion of the two was most desirable. Psychologist Carl Jung's Apollo archetype represents what he saw as the disposition in people to over-intellectualise and maintain emotional distance. Spaceflight
Apollo
Spaceflight In spaceflight, the 1960s and 1970s NASA program for orbiting and landing astronauts on the Moon was named after Apollo, by NASA manager Abe Silverstein: "Apollo riding his chariot across the Sun was appropriate to the grand scale of the proposed program." Genealogy See also Family tree of the Greek gods Dryad Epirus Phoebus (disambiguation) Sibylline oracles Tegyra Temple of Apollo (disambiguation) Notes References Sources Primary sources
Apollo
Aelian, On Animals, Volume II: Books 6-11. Translated by A. F. Scholfield. Loeb Classical Library 447. Cambridge, MA: Harvard University Press, 1958. Aeschylus, The Eumenides in Aeschylus, with an English translation by Herbert Weir Smyth, Ph. D. in two volumes, Vol 2, Cambridge, Massachusetts, Harvard University Press, 1926, Online version at the Perseus Digital Library. Antoninus Liberalis, The Metamorphoses of Antoninus Liberalis translated by Francis Celoria (Routledge 1992). Online version at the Topos Text Project. Apollodorus, Apollodorus, The Library, with an English Translation by Sir James George Frazer, F.B.A., F.R.S. in 2 Volumes. Cambridge, MA, Harvard University Press; London, William Heinemann Ltd. 1921. Online version at the Perseus Digital Library.
Apollo
Apollonius of Rhodes, Apollonius Rhodius: the Argonautica, translated by Robert Cooper Seaton, W. Heinemann, 1912. Internet Archive. Callimachus, Callimachus and Lycophron with an English Translation by A. W. Mair; Aratus, with an English Translation by G. R. Mair, London: W. Heinemann, New York: G. P. Putnam 1921. Online version at Harvard University Press. Internet Archive. Cicero, Marcus Tullius, De Natura Deorum in Cicero in Twenty-eight Volumes, XIX De Natura Deorum; Academica, with an english translation by H. Rackham, Cambridge, Massachusetts: Harvard University Press; London: William Heinemann, Ltd, 1967. Internet Archive.
Apollo
Diodorus Siculus, Library of History, Volume III: Books 4.59-8, translated by C. H. Oldfather, Loeb Classical Library No. 340. Cambridge, Massachusetts, Harvard University Press, 1939. . Online version at Harvard University Press. Online version by Bill Thayer. Herodotus, Herodotus, with an English translation by A. D. Godley. Cambridge. Harvard University Press. 1920. Online version available at The Perseus Digital Library. Hesiod, Theogony, in The Homeric Hymns and Homerica with an English Translation by Hugh G. Evelyn-White, Cambridge, MA., Harvard University Press; London, William Heinemann Ltd. 1914. Online version at the Perseus Digital Library. Homeric Hymn 3 to Apollo in The Homeric Hymns and Homerica with an English Translation by Hugh G. Evelyn-White, Cambridge, MA., Harvard University Press; London, William Heinemann Ltd. 1914. Online version at the Perseus Digital Library.
Apollo
Homeric Hymn 4 to Hermes, in The Homeric Hymns and Homerica with an English Translation by Hugh G. Evelyn-White, Cambridge, Massachusetts, Harvard University Press; London, William Heinemann Ltd. 1914. Online version at the Perseus Digital Library. Homer, The Iliad with an English Translation by A.T. Murray, PhD in two volumes. Cambridge, MA., Harvard University Press; London, William Heinemann, Ltd. 1924. Online version at the Perseus Digital Library. Homer; The Odyssey with an English Translation by A.T. Murray, PH.D. in two volumes. Cambridge, MA., Harvard University Press; London, William Heinemann, Ltd. 1919. Online version at the Perseus Digital Library. Hyginus, Gaius Julius, De Astronomica, in The Myths of Hyginus, edited and translated by Mary A. Grant, Lawrence: University of Kansas Press, 1960. Online version at ToposText.
Apollo
Hyginus, Gaius Julius, Fabulae, in The Myths of Hyginus, edited and translated by Mary A. Grant, Lawrence: University of Kansas Press, 1960. Online version at ToposText. Livy, The History of Rome, Books I and II With An English Translation. Cambridge. Cambridge, Mass., Harvard University Press; London, William Heinemann, Ltd. 1919. Nonnus, Dionysiaca; translated by Rouse, W H D, I Books I-XV. Loeb Classical Library No. 344, Cambridge, Massachusetts, Harvard University Press; London, William Heinemann Ltd. 1940. Internet Archive Nonnus, Dionysiaca; translated by Rouse, W H D, II Books XVI-XXXV. Loeb Classical Library No. 345, Cambridge, Massachusetts, Harvard University Press; London, William Heinemann Ltd. 1940. Internet Archive Statius, Thebaid. Translated by Mozley, J H. Loeb Classical Library Volumes. Cambridge, Massachusetts, Harvard University Press; London, William Heinemann Ltd. 1928.
Apollo
Statius, Thebaid. Translated by Mozley, J H. Loeb Classical Library Volumes. Cambridge, Massachusetts, Harvard University Press; London, William Heinemann Ltd. 1928. Strabo, The Geography of Strabo. Edition by H.L. Jones. Cambridge, Mass.: Harvard University Press; London: William Heinemann, Ltd. 1924. Online version at the Perseus Digital Library. Sophocles, Oedipus Rex Palaephatus, On Unbelievable Tales 46. Hyacinthus (330 BCE) Ovid, Metamorphoses, Brookes More, Boston, Cornhill Publishing Co. 1922. Online version at the Perseus Digital Library. 10. 162–219 (1–8 CE)
Apollo
Pausanias, Pausanias Description of Greece with an English Translation by W.H.S. Jones, Litt.D., and H.A. Ormerod, M.A., in 4 Volumes. Cambridge, MA, Harvard University Press; London, William Heinemann Ltd. 1918. Online version at the Perseus Digital Library. Philostratus the Elder, Imagines, in Philostratus the Elder, Imagines. Philostratus the Younger, Imagines. Callistratus, Descriptions. Translated by Arthur Fairbanks. Loeb Classical Library No. 256. Cambridge, Massachusetts: Harvard University Press, 1931. . Online version at Harvard University Press. Internet Archive 1926 edition. i.24 Hyacinthus (170–245 CE)
Apollo
Philostratus the Younger, Imagines, in Philostratus the Elder, Imagines. Philostratus the Younger, Imagines. Callistratus, Descriptions. Translated by Arthur Fairbanks. Loeb Classical Library No. 256. Cambridge, Massachusetts: Harvard University Press, 1931. . Online version at Harvard University Press. Internet Archive 1926 edition. 14. Hyacinthus (170–245 CE) Pindar, Odes, Diane Arnson Svarlien. 1990. Online version at the Perseus Digital Library. Plutarch. Lives, Volume I: Theseus and Romulus. Lycurgus and Numa. Solon and Publicola. Translated by Bernadotte Perrin. Loeb Classical Library No. 46. Cambridge, Massachusetts: Harvard University Press, 1914. . Online version at Harvard University Press. Numa at the Perseus Digital Library.
Apollo
Pseudo-Plutarch, De fluviis, in Plutarch's morals, Volume V, edited and translated by William Watson Goodwin, Boston: Little, Brown & Co., 1874. Online version at the Perseus Digital Library. Lucian, Dialogues of the Dead. Dialogues of the Sea-Gods. Dialogues of the Gods. Dialogues of the Courtesans, translated by M. D. MacLeod, Loeb Classical Library No. 431, Cambridge, Massachusetts, Harvard University Press, 1961. . Online version at Harvard University Press. Internet Archive. First Vatican Mythographer, 197. Thamyris et Musae Tzetzes, John, Chiliades, editor Gottlieb Kiessling, F.C.G. Vogel, 1826. Google Books. (English translation: Book I by Ana Untila; Books II–IV, by Gary Berkowitz; Books V–VI by Konstantino Ramiotis; Books VII–VIII by Vasiliki Dogani; Books IX–X by Jonathan Alexander; Books XII–XIII by Nikolaos Giallousis. Internet Archive).
Apollo
Valerius Flaccus, Argonautica, translated by J. H. Mozley, Loeb Classical Library No. 286. Cambridge, Massachusetts, Harvard University Press; London, William Heinemann Ltd. 1928. . Online version at Harvard University Press. Online translated text available at theoi.com. Vergil, Aeneid. Theodore C. Williams. trans. Boston. Houghton Mifflin Co. 1910. Online version at the Perseus Digital Library.
Apollo
Secondary sources
Apollo
Athanassakis, Apostolos N., and Benjamin M. Wolkow, The Orphic Hymns, Johns Hopkins University Press; owlerirst Printing edition (May 29, 2013). . Google Books. M. Bieber, 1964. Alexander the Great in Greek and Roman Art. Chicago. Hugh Bowden, 2005. Classical Athens and the Delphic Oracle: Divination and Democracy. Cambridge University Press. Walter Burkert, 1985. Greek Religion (Harvard University Press) III.2.5 passim Fontenrose, Joseph Eddy, Python: A Study of Delphic Myth and Its Origins, University of California Press, 1959. . Gantz, Timothy, Early Greek Myth: A Guide to Literary and Artistic Sources, Johns Hopkins University Press, 1996, Two volumes: (Vol. 1), (Vol. 2). Miranda J. Green, 1997. Dictionary of Celtic Myth and Legend, Thames and Hudson.
Apollo
Miranda J. Green, 1997. Dictionary of Celtic Myth and Legend, Thames and Hudson. Grimal, Pierre, The Dictionary of Classical Mythology, Wiley-Blackwell, 1996. . Hard, Robin, The Routledge Handbook of Greek Mythology: Based on H.J. Rose's "Handbook of Greek Mythology", Psychology Press, 2004, . Google Books. Karl Kerenyi, 1953. Apollon: Studien über Antiken Religion und Humanität revised edition. Kerényi, Karl 1951, The Gods of the Greeks, Thames and Hudson, London. Mertens, Dieter; Schutzenberger, Margareta. Città e monumenti dei Greci d'Occidente: dalla colonizzazione alla crisi di fine V secolo a.C.. Roma L'Erma di Bretschneider, 2006. . Martin Nilsson, 1955. Die Geschichte der Griechische Religion, vol. I. C.H. Beck.
Apollo
Martin Nilsson, 1955. Die Geschichte der Griechische Religion, vol. I. C.H. Beck. Parada, Carlos, Genealogical Guide to Greek Mythology, Jonsered, Paul Åströms Förlag, 1993. . Pauly–Wissowa, Realencyclopädie der klassischen Altertumswissenschaft: II, "Apollon". The best repertory of cult sites (Burkert). Peck, Harry Thurston, Harpers Dictionary of Classical Antiquities, New York. Harper and Brothers. 1898. Online version at the Perseus Digital Library. Pfeiff, K.A., 1943. Apollon: Wandlung seines Bildes in der griechischen Kunst. Traces the changing iconography of Apollo. D.S.Robertson (1945) A handbook of Greek and Roman Architecture Cambridge University Press Smith, William; Dictionary of Greek and Roman Biography and Mythology, London (1873). "Apollo"
Apollo
D.S.Robertson (1945) A handbook of Greek and Roman Architecture Cambridge University Press Smith, William; Dictionary of Greek and Roman Biography and Mythology, London (1873). "Apollo" Smith, William, A Dictionary of Greek and Roman Antiquities. William Smith, LLD. William Wayte. G. E. Marindin. Albemarle Street, London. John Murray. 1890. Online version at the Perseus Digital Library. Spivey Nigel (1997) Greek art Phaedon Press Ltd.
Apollo
External links Apollo at the Greek Mythology Link, by Carlos Parada The Warburg Institute Iconographic Database: ca 1650 images of Apollo Beauty gods Health gods Knowledge gods Light deities Maintenance deities Music and singing gods Oracular gods Solar gods Greek gods Roman gods Dragonslayers Mythological Greek archers Mythological rapists Homosexuality and bisexuality deities Divine twins Deities in the Iliad Metamorphoses characters Characters in Greek mythology LGBT themes in Greek mythology Children of Zeus Characters in the Odyssey Characters in the Argonautica
Apollo
Algae (; singular alga ) is an informal term for a large and diverse group of photosynthetic eukaryotic organisms. It is a polyphyletic grouping that includes species from multiple distinct clades. Included organisms range from unicellular microalgae, such as Chlorella, Prototheca and the diatoms, to multicellular forms, such as the giant kelp, a large brown alga which may grow up to in length. Most are aquatic and autotrophic (they generate food internally) and lack many of the distinct cell and tissue types, such as stomata, xylem and phloem that are found in land plants. The largest and most complex marine algae are called seaweeds, while the most complex freshwater forms are the Charophyta, a division of green algae which includes, for example, Spirogyra and stoneworts.
Algae
No definition of algae is generally accepted. One definition is that algae "have chlorophyll as their primary photosynthetic pigment and lack a sterile covering of cells around their reproductive cells". Likewise, the colorless Prototheca under Chlorophyta are all devoid of any chlorophyll. Although cyanobacteria are often referred to as "blue-green algae", most authorities exclude all prokaryotes from the definition of algae. Algae constitute a polyphyletic group since they do not include a common ancestor, and although their plastids seem to have a single origin, from cyanobacteria, they were acquired in different ways. Green algae are examples of algae that have primary chloroplasts derived from endosymbiotic cyanobacteria. Diatoms and brown algae are examples of algae with secondary chloroplasts derived from an endosymbiotic red alga. Algae exhibit a wide range of reproductive strategies, from simple asexual cell division to complex forms of sexual reproduction.
Algae
Algae lack the various structures that characterize land plants, such as the phyllids (leaf-like structures) of bryophytes, rhizoids of nonvascular plants, and the roots, leaves, and other organs found in tracheophytes (vascular plants). Most are phototrophic, although some are mixotrophic, deriving energy both from photosynthesis and uptake of organic carbon either by osmotrophy, myzotrophy, or phagotrophy. Some unicellular species of green algae, many golden algae, euglenids, dinoflagellates, and other algae have become heterotrophs (also called colorless or apochlorotic algae), sometimes parasitic, relying entirely on external energy sources and have limited or no photosynthetic apparatus. Some other heterotrophic organisms, such as the apicomplexans, are also derived from cells whose ancestors possessed plastids, but are not traditionally considered as algae. Algae have photosynthetic machinery ultimately derived from cyanobacteria that produce oxygen as a by-product of photosynthesis, unlike other photosynthetic bacteria such as purple and green sulfur bacteria. Fossilized filamentous algae from the Vindhya basin have been dated back to 1.6
Algae
from cyanobacteria that produce oxygen as a by-product of photosynthesis, unlike other photosynthetic bacteria such as purple and green sulfur bacteria. Fossilized filamentous algae from the Vindhya basin have been dated back to 1.6 to 1.7 billion years ago.
Algae
Because of the wide range of types of algae, they have increasing different industrial and traditional applications in human society. Traditional seaweed farming practices have existed for thousands of years and have strong traditions in East Asia food cultures. More modern algaculture applications extend the food traditions for other applications include cattle feed, using algae for bioremediation or pollution control, transforming sunlight into algae fuels or other chemicals used in industrial processes, and in medical and scientific applications. A 2020 review, found that these applications of algae could play an important role in carbon sequestration in order to mitigate climate change while providing valuable value-add products for global economies. Etymology and study The singular is the Latin word for 'seaweed' and retains that meaning in English. The etymology is obscure. Although some speculate that it is related to Latin , 'be cold', no reason is known to associate seaweed with temperature. A more likely source is , 'binding, entwining'.
Algae
The Ancient Greek word for 'seaweed' was (), which could mean either the seaweed (probably red algae) or a red dye derived from it. The Latinization, , meant primarily the cosmetic rouge. The etymology is uncertain, but a strong candidate has long been some word related to the Biblical (), 'paint' (if not that word itself), a cosmetic eye-shadow used by the ancient Egyptians and other inhabitants of the eastern Mediterranean. It could be any color: black, red, green, or blue. Accordingly, the modern study of marine and freshwater algae is called either phycology or algology, depending on whether the Greek or Latin root is used. The name fucus appears in a number of taxa. Classifications The committee on the International Code of Botanical Nomenclature has recommended certain suffixes for use in the classification of algae. These are -phyta for division, -phyceae for class, -phycideae for subclass, -ales for order, -inales for suborder, -aceae for family, -oidease for subfamily, a Greek-based name for genus, and a Latin-based name for species. Algal characteristics basic to primary classification
Algae
Algal characteristics basic to primary classification The primary classification of algae is based on certain morphological features. The chief among these are (a) pigment constitution of the cell, (b) chemical nature of stored food materials, (c) kind, number, point of insertion and relative length of the flagella on the motile cell, (d) chemical composition of cell wall and (e) presence or absence of a definitely organized nucleus in the cell or any other significant details of cell structure. History of classification of algae Although Carolus Linnaeus (1754) included algae along with lichens in his 25th class Cryptogamia, he did not elaborate further on the classification of algae.
Algae
Jean Pierre Étienne Vaucher (1803) was perhaps the first to propose a system of classification of algae, and he recognized three groups, Conferves, Ulves, and Tremelles. While Johann Heinrich Friedrich Link (1820) classified algae on the basis of the colour of the pigment and structure, William Henry Harvey (1836) proposed a system of classification on the basis of the habitat and the pigment. J. G. Agardh (1849–1898) divided algae into six orders: Diatomaceae, Nostochineae, Confervoideae, Ulvaceae, Floriadeae and Fucoideae. Around 1880, algae along with fungi were grouped under Thallophyta, a division created by Eichler (1836). Encouraged by this, Adolf Engler and Karl A. E. Prantl (1912) proposed a revised scheme of classification of algae and included fungi in algae as they were of opinion that fungi have been derived from algae. The scheme proposed by Engler and Prantl is summarised as follows:
Algae
Schizophyta Phytosarcodina Flagellata Dinoflagellata Bacillariophyta Conjugatae Chlorophyceae Charophyta Phaeophyceae Rhodophyceae Eumycetes (Fungi) The algae contain chloroplasts that are similar in structure to cyanobacteria. Chloroplasts contain circular DNA like that in cyanobacteria and are interpreted as representing reduced endosymbiotic cyanobacteria. However, the exact origin of the chloroplasts is different among separate lineages of algae, reflecting their acquisition during different endosymbiotic events. The table below describes the composition of the three major groups of algae. Their lineage relationships are shown in the figure in the upper right. Many of these groups contain some members that are no longer photosynthetic. Some retain plastids, but not chloroplasts, while others have lost plastids entirely. Phylogeny based on plastid not nucleocytoplasmic genealogy:
Algae
Phylogeny based on plastid not nucleocytoplasmic genealogy: Linnaeus, in Species Plantarum (1753), the starting point for modern botanical nomenclature, recognized 14 genera of algae, of which only four are currently considered among algae. In Systema Naturae, Linnaeus described the genera Volvox and Corallina, and a species of Acetabularia (as Madrepora), among the animals. In 1768, Samuel Gottlieb Gmelin (1744–1774) published the Historia Fucorum, the first work dedicated to marine algae and the first book on marine biology to use the then new binomial nomenclature of Linnaeus. It included elaborate illustrations of seaweed and marine algae on folded leaves.
Algae
W. H. Harvey (1811–1866) and Lamouroux (1813) were the first to divide macroscopic algae into four divisions based on their pigmentation. This is the first use of a biochemical criterion in plant systematics. Harvey's four divisions are: red algae (Rhodospermae), brown algae (Melanospermae), green algae (Chlorospermae), and Diatomaceae. At this time, microscopic algae were discovered and reported by a different group of workers (e.g., O. F. Müller and Ehrenberg) studying the Infusoria (microscopic organisms). Unlike macroalgae, which were clearly viewed as plants, microalgae were frequently considered animals because they are often motile. Even the nonmotile (coccoid) microalgae were sometimes merely seen as stages of the lifecycle of plants, macroalgae, or animals.
Algae
Although used as a taxonomic category in some pre-Darwinian classifications, e.g., Linnaeus (1753), de Jussieu (1789), Horaninow (1843), Agassiz (1859), Wilson & Cassin (1864), in further classifications, the "algae" are seen as an artificial, polyphyletic group.
Algae
Throughout the 20th century, most classifications treated the following groups as divisions or classes of algae: cyanophytes, rhodophytes, chrysophytes, xanthophytes, bacillariophytes, phaeophytes, pyrrhophytes (cryptophytes and dinophytes), euglenophytes, and chlorophytes. Later, many new groups were discovered (e.g., Bolidophyceae), and others were splintered from older groups: charophytes and glaucophytes (from chlorophytes), many heterokontophytes (e.g., synurophytes from chrysophytes, or eustigmatophytes from xanthophytes), haptophytes (from chrysophytes), and chlorarachniophytes (from xanthophytes).
Algae
With the abandonment of plant-animal dichotomous classification, most groups of algae (sometimes all) were included in Protista, later also abandoned in favour of Eukaryota. However, as a legacy of the older plant life scheme, some groups that were also treated as protozoans in the past still have duplicated classifications (see ambiregnal protists).
Algae
Some parasitic algae (e.g., the green algae Prototheca and Helicosporidium, parasites of metazoans, or Cephaleuros, parasites of plants) were originally classified as fungi, sporozoans, or protistans of incertae sedis, while others (e.g., the green algae Phyllosiphon and Rhodochytrium, parasites of plants, or the red algae Pterocladiophila and Gelidiocolax mammillatus, parasites of other red algae, or the dinoflagellates Oodinium, parasites of fish) had their relationship with algae conjectured early. In other cases, some groups were originally characterized as parasitic algae (e.g., Chlorochytrium), but later were seen as endophytic algae. Some filamentous bacteria (e.g., Beggiatoa) were originally seen as algae. Furthermore, groups like the apicomplexans are also parasites derived from ancestors that possessed plastids, but are not included in any group traditionally seen as algae.
Algae
Relationship to land plants The first land plants probably evolved from shallow freshwater charophyte algae much like Chara almost 500 million years ago. These probably had an isomorphic alternation of generations and were probably filamentous. Fossils of isolated land plant spores suggest land plants may have been around as long as 475 million years ago. Morphology A range of algal morphologies is exhibited, and convergence of features in unrelated groups is common. The only groups to exhibit three-dimensional multicellular thalli are the reds and browns, and some chlorophytes. Apical growth is constrained to subsets of these groups: the florideophyte reds, various browns, and the charophytes. The form of charophytes is quite different from those of reds and browns, because they have distinct nodes, separated by internode 'stems'; whorls of branches reminiscent of the horsetails occur at the nodes. Conceptacles are another polyphyletic trait; they appear in the coralline algae and the Hildenbrandiales, as well as the browns.
Algae
Most of the simpler algae are unicellular flagellates or amoeboids, but colonial and nonmotile forms have developed independently among several of the groups. Some of the more common organizational levels, more than one of which may occur in the lifecycle of a species, are Colonial: small, regular groups of motile cells Capsoid: individual non-motile cells embedded in mucilage Coccoid: individual non-motile cells with cell walls Palmelloid: nonmotile cells embedded in mucilage Filamentous: a string of nonmotile cells connected together, sometimes branching Parenchymatous: cells forming a thallus with partial differentiation of tissues
Algae
In three lines, even higher levels of organization have been reached, with full tissue differentiation. These are the brown algae,—some of which may reach 50 m in length (kelps)—the red algae, and the green algae. The most complex forms are found among the charophyte algae (see Charales and Charophyta), in a lineage that eventually led to the higher land plants. The innovation that defines these nonalgal plants is the presence of female reproductive organs with protective cell layers that protect the zygote and developing embryo. Hence, the land plants are referred to as the Embryophytes.
Algae
Turfs The term algal turf is commonly used but poorly defined. Algal turfs are thick, carpet-like beds of seaweed that retain sediment and compete with foundation species like corals and kelps, and they are usually less than 15 cm tall. Such a turf may consist of one or more species, and will generally cover an area in the order of a square metre or more. Some common characteristics are listed: Algae that form aggregations that have been described as turfs include diatoms, cyanobacteria, chlorophytes, phaeophytes and rhodophytes. Turfs are often composed of numerous species at a wide range of spatial scales, but monospecific turfs are frequently reported. Turfs can be morphologically highly variable over geographic scales and even within species on local scales and can be difficult to identify in terms of the constituent species. Turfs have been defined as short algae, but this has been used to describe height ranges from less than 0.5 cm to more than 10 cm. In some regions, the descriptions approached heights which might be described as canopies (20 to 30 cm).
Algae
Physiology Many algae, particularly members of the Characeae species, have served as model experimental organisms to understand the mechanisms of the water permeability of membranes, osmoregulation, turgor regulation, salt tolerance, cytoplasmic streaming, and the generation of action potentials. Phytohormones are found not only in higher plants, but in algae, too. Symbiotic algae Some species of algae form symbiotic relationships with other organisms. In these symbioses, the algae supply photosynthates (organic substances) to the host organism providing protection to the algal cells. The host organism derives some or all of its energy requirements from the algae. Examples are: Lichens
Algae
Lichens Lichens are defined by the International Association for Lichenology to be "an association of a fungus and a photosynthetic symbiont resulting in a stable vegetative body having a specific structure". The fungi, or mycobionts, are mainly from the Ascomycota with a few from the Basidiomycota. In nature they do not occur separate from lichens. It is unknown when they began to associate. One mycobiont associates with the same phycobiont species, rarely two, from the green algae, except that alternatively, the mycobiont may associate with a species of cyanobacteria (hence "photobiont" is the more accurate term). A photobiont may be associated with many different mycobionts or may live independently; accordingly, lichens are named and classified as fungal species. The association is termed a morphogenesis because the lichen has a form and capabilities not possessed by the symbiont species alone (they can be experimentally isolated). The photobiont possibly triggers otherwise latent genes in the mycobiont.
Algae
Trentepohlia is an example of a common green alga genus worldwide that can grow on its own or be lichenised. Lichen thus share some of the habitat and often similar appearance with specialized species of algae (aerophytes) growing on exposed surfaces such as tree trunks and rocks and sometimes discoloring them. Coral reefs
Algae
Coral reefs Coral reefs are accumulated from the calcareous exoskeletons of marine invertebrates of the order Scleractinia (stony corals). These animals metabolize sugar and oxygen to obtain energy for their cell-building processes, including secretion of the exoskeleton, with water and carbon dioxide as byproducts. Dinoflagellates (algal protists) are often endosymbionts in the cells of the coral-forming marine invertebrates, where they accelerate host-cell metabolism by generating sugar and oxygen immediately available through photosynthesis using incident light and the carbon dioxide produced by the host. Reef-building stony corals (hermatypic corals) require endosymbiotic algae from the genus Symbiodinium to be in a healthy condition. The loss of Symbiodinium from the host is known as coral bleaching, a condition which leads to the deterioration of a reef. Sea sponges
Algae
Sea sponges Endosymbiontic green algae live close to the surface of some sponges, for example, breadcrumb sponges (Halichondria panicea). The alga is thus protected from predators; the sponge is provided with oxygen and sugars which can account for 50 to 80% of sponge growth in some species.
Algae
Lifecycle Rhodophyta, Chlorophyta, and Heterokontophyta, the three main algal divisions, have lifecycles which show considerable variation and complexity. In general, an asexual phase exists where the seaweed's cells are diploid, a sexual phase where the cells are haploid, followed by fusion of the male and female gametes. Asexual reproduction permits efficient population increases, but less variation is possible. Commonly, in sexual reproduction of unicellular and colonial algae, two specialized, sexually compatible, haploid gametes make physical contact and fuse to form a zygote. To ensure a successful mating, the development and release of gametes is highly synchronized and regulated; pheromones may play a key role in these processes. Sexual reproduction allows for more variation and provides the benefit of efficient recombinational repair of DNA damages during meiosis, a key stage of the sexual cycle. However, sexual reproduction is more costly than asexual reproduction. Meiosis has been shown to occur in many different species of algae. Numbers
Algae
Numbers The Algal Collection of the US National Herbarium (located in the National Museum of Natural History) consists of approximately 320,500 dried specimens, which, although not exhaustive (no exhaustive collection exists), gives an idea of the order of magnitude of the number of algal species (that number remains unknown). Estimates vary widely. For example, according to one standard textbook, in the British Isles the UK Biodiversity Steering Group Report estimated there to be 20,000 algal species in the UK. Another checklist reports only about 5,000 species. Regarding the difference of about 15,000 species, the text concludes: "It will require many detailed field surveys before it is possible to provide a reliable estimate of the total number of species ..."
Algae
Regional and group estimates have been made, as well: 5,000–5,500 species of red algae worldwide "some 1,300 in Australian Seas" 400 seaweed species for the western coastline of South Africa, and 212 species from the coast of KwaZulu-Natal. Some of these are duplicates, as the range extends across both coasts, and the total recorded is probably about 500 species. Most of these are listed in List of seaweeds of South Africa. These exclude phytoplankton and crustose corallines. 669 marine species from California (US) 642 in the check-list of Britain and Ireland and so on, but lacking any scientific basis or reliable sources, these numbers have no more credibility than the British ones mentioned above. Most estimates also omit microscopic algae, such as phytoplankton. The most recent estimate suggests 72,500 algal species worldwide.
Algae
The most recent estimate suggests 72,500 algal species worldwide. Distribution The distribution of algal species has been fairly well studied since the founding of phytogeography in the mid-19th century. Algae spread mainly by the dispersal of spores analogously to the dispersal of Plantae by seeds and spores. This dispersal can be accomplished by air, water, or other organisms. Due to this, spores can be found in a variety of environments: fresh and marine waters, air, soil, and in or on other organisms. Whether a spore is to grow into an organism depends on the combination of the species and the environmental conditions where the spore lands. The spores of freshwater algae are dispersed mainly by running water and wind, as well as by living carriers. However, not all bodies of water can carry all species of algae, as the chemical composition of certain water bodies limits the algae that can survive within them. Marine spores are often spread by ocean currents. Ocean water presents many vastly different habitats based on temperature and nutrient availability, resulting in phytogeographic zones, regions, and provinces.
Algae
To some degree, the distribution of algae is subject to floristic discontinuities caused by geographical features, such as Antarctica, long distances of ocean or general land masses. It is, therefore, possible to identify species occurring by locality, such as "Pacific algae" or "North Sea algae". When they occur out of their localities, hypothesizing a transport mechanism is usually possible, such as the hulls of ships. For example, Ulva reticulata and U. fasciata travelled from the mainland to Hawaii in this manner. Mapping is possible for select species only: "there are many valid examples of confined distribution patterns." For example, Clathromorphum is an arctic genus and is not mapped far south of there. However, scientists regard the overall data as insufficient due to the "difficulties of undertaking such studies." Ecology
Algae
Ecology Algae are prominent in bodies of water, common in terrestrial environments, and are found in unusual environments, such as on snow and ice. Seaweeds grow mostly in shallow marine waters, under deep; however, some such as Navicula pennata have been recorded to a depth of . A type of algae, Ancylonema nordenskioeldii, was found in Greenland in areas known as the 'Dark Zone', which caused an increase in the rate of melting ice sheet. Same algae was found in the Italian Alps, after pink ice appeared on parts of the Presena glacier. The various sorts of algae play significant roles in aquatic ecology. Microscopic forms that live suspended in the water column (phytoplankton) provide the food base for most marine food chains. In very high densities (algal blooms), these algae may discolor the water and outcompete, poison, or asphyxiate other life forms.
Algae
Algae can be used as indicator organisms to monitor pollution in various aquatic systems. In many cases, algal metabolism is sensitive to various pollutants. Due to this, the species composition of algal populations may shift in the presence of chemical pollutants. To detect these changes, algae can be sampled from the environment and maintained in laboratories with relative ease. On the basis of their habitat, algae can be categorized as: aquatic (planktonic, benthic, marine, freshwater, lentic, lotic), terrestrial, aerial (subaerial), lithophytic, halophytic (or euryhaline), psammon, thermophilic, cryophilic, epibiont (epiphytic, epizoic), endosymbiont (endophytic, endozoic), parasitic, calcifilic or lichenic (phycobiont).
Algae
Cultural associations In classical Chinese, the word is used both for "algae" and (in the modest tradition of the imperial scholars) for "literary talent". The third island in Kunming Lake beside the Summer Palace in Beijing is known as the Zaojian Tang Dao, which thus simultaneously means "Island of the Algae-Viewing Hall" and "Island of the Hall for Reflecting on Literary Talent". Cultivation Seaweed farming Bioreactors Uses Agar Agar, a gelatinous substance derived from red algae, has a number of commercial uses. It is a good medium on which to grow bacteria and fungi, as most microorganisms cannot digest agar. Alginates Alginic acid, or alginate, is extracted from brown algae. Its uses range from gelling agents in food, to medical dressings. Alginic acid also has been used in the field of biotechnology as a biocompatible medium for cell encapsulation and cell immobilization. Molecular cuisine is also a user of the substance for its gelling properties, by which it becomes a delivery vehicle for flavours.
Algae
Between 100,000 and 170,000 wet tons of Macrocystis are harvested annually in New Mexico for alginate extraction and abalone feed. Energy source To be competitive and independent from fluctuating support from (local) policy on the long run, biofuels should equal or beat the cost level of fossil fuels. Here, algae-based fuels hold great promise, directly related to the potential to produce more biomass per unit area in a year than any other form of biomass. The break-even point for algae-based biofuels is estimated to occur by 2025. Fertilizer For centuries, seaweed has been used as a fertilizer; George Owen of Henllys writing in the 16th century referring to drift weed in South Wales: Today, algae are used by humans in many ways; for example, as fertilizers, soil conditioners, and livestock feed. Aquatic and microscopic species are cultured in clear tanks or ponds and are either harvested or used to treat effluents pumped through the ponds. Algaculture on a large scale is an important type of aquaculture in some places. Maerl is commonly used as a soil conditioner.
Algae
Nutrition Naturally growing seaweeds are an important source of food, especially in Asia, leading some to label them as superfoods. They provide many vitamins including: A, B1, B2, B6, niacin, and C, and are rich in iodine, potassium, iron, magnesium, and calcium. In addition, commercially cultivated microalgae, including both algae and cyanobacteria, are marketed as nutritional supplements, such as spirulina, Chlorella and the vitamin-C supplement from Dunaliella, high in beta-carotene.
Algae
Algae are national foods of many nations: China consumes more than 70 species, including fat choy, a cyanobacterium considered a vegetable; Japan, over 20 species such as nori and aonori; Ireland, dulse; Chile, cochayuyo. Laver is used to make laver bread in Wales, where it is known as ; in Korea, . It is also used along the west coast of North America from California to British Columbia, in Hawaii and by the Māori of New Zealand. Sea lettuce and badderlocks are salad ingredients in Scotland, Ireland, Greenland, and Iceland. Algae is being considered a potential solution for world hunger problem.
Algae
Two popular forms of algae are used in cuisine: Chlorella: This form of alga is found in freshwater and contains photosynthetic pigments in its chloroplast. It is high in iron, zinc, magnesium, vitamin B2 and Omega-3 Fatty acids. Furthermore, it contains all nine of the essential amino acids the body does not produce on its own Spirulina: Known otherwise as a cyanobacterium (a prokaryote, incorrectly referred to as a "blue-green alga"), contains 10% more protein than Chlorella as well as more thiamine and copper.
Algae
The oils from some algae have high levels of unsaturated fatty acids. For example, Parietochloris incisa is very high in arachidonic acid, where it reaches up to 47% of the triglyceride pool. Some varieties of algae favored by vegetarianism and veganism contain the long-chain, essential omega-3 fatty acids, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Fish oil contains the omega-3 fatty acids, but the original source is algae (microalgae in particular), which are eaten by marine life such as copepods and are passed up the food chain. Algae have emerged in recent years as a popular source of omega-3 fatty acids for vegetarians who cannot get long-chain EPA and DHA from other vegetarian sources such as flaxseed oil, which only contains the short-chain alpha-linolenic acid (ALA).
Algae
Pollution control Sewage can be treated with algae, reducing the use of large amounts of toxic chemicals that would otherwise be needed. Algae can be used to capture fertilizers in runoff from farms. When subsequently harvested, the enriched algae can be used as fertilizer. Aquaria and ponds can be filtered using algae, which absorb nutrients from the water in a device called an algae scrubber, also known as an algae turf scrubber.
Algae
Agricultural Research Service scientists found that 60–90% of nitrogen runoff and 70–100% of phosphorus runoff can be captured from manure effluents using a horizontal algae scrubber, also called an algal turf scrubber (ATS). Scientists developed the ATS, which consists of shallow, 100-foot raceways of nylon netting where algae colonies can form, and studied its efficacy for three years. They found that algae can readily be used to reduce the nutrient runoff from agricultural fields and increase the quality of water flowing into rivers, streams, and oceans. Researchers collected and dried the nutrient-rich algae from the ATS and studied its potential as an organic fertilizer. They found that cucumber and corn seedlings grew just as well using ATS organic fertilizer as they did with commercial fertilizers. Algae scrubbers, using bubbling upflow or vertical waterfall versions, are now also being used to filter aquaria and ponds.
Algae
Polymers Various polymers can be created from algae, which can be especially useful in the creation of bioplastics. These include hybrid plastics, cellulose-based plastics, poly-lactic acid, and bio-polyethylene. Several companies have begun to produce algae polymers commercially, including for use in flip-flops and in surf boards. Bioremediation The alga Stichococcus bacillaris has been seen to colonize silicone resins used at archaeological sites; biodegrading the synthetic substance. Pigments The natural pigments (carotenoids and chlorophylls) produced by algae can be used as alternatives to chemical dyes and coloring agents. The presence of some individual algal pigments, together with specific pigment concentration ratios, are taxon-specific: analysis of their concentrations with various analytical methods, particularly high-performance liquid chromatography, can therefore offer deep insight into the taxonomic composition and relative abundance of natural algae populations in sea water samples. Stabilizing substances Carrageenan, from the red alga Chondrus crispus, is used as a stabilizer in milk products. Additional images See also
Algae
Stabilizing substances Carrageenan, from the red alga Chondrus crispus, is used as a stabilizer in milk products. Additional images See also AlgaeBase AlgaePARC Eutrophication Iron fertilization Marimo algae Microbiofuels Microphyte Photobioreactor Phycotechnology Plant Toxoid – anatoxin References Bibliography General . Regional Britain and Ireland Australia New Zealand Europe Arctic Greenland Faroe Islands . Canary Islands Morocco South Africa North America External links – a database of all algal names including images, nomenclature, taxonomy, distribution, bibliography, uses, extracts EnAlgae Endosymbiotic events Polyphyletic groups
Algae
The abacus (plural abaci or abacuses), also called a counting frame, is a calculating tool which has been used since ancient times. It was used in the ancient Near East, Europe, China, and Russia, centuries before the adoption of the Hindu-Arabic numeral system. The exact origin of the abacus has not yet emerged. It consists of rows of movable beads, or similar objects, strung on a wire. They represent digits. One of the two numbers is set up, and the beads are manipulated to perform an operation such as addition, or even a square or cubic root. In their earliest designs, the rows of beads could be loose on a flat surface or sliding in grooves. Later the beads were made to slide on rods and built into a frame, allowing faster manipulation. Abacuses are still made, often as a bamboo frame with beads sliding on wires. In the ancient world, particularly before the introduction of positional notation, abacuses were a practical calculating tool. The abacus is still used to teach the fundamentals of mathematics to some children, e.g., in post-Soviet states.
Abacus
Designs such as the Japanese soroban have been used for practical calculations of up to multi-digit numbers. Any particular abacus design supports multiple methods to perform calculations, including the four basic operations and square and cube roots. Some of these methods work with non-natural numbers (numbers such as and ). Although calculators and computers are commonly used today instead of abacuses, abacuses remain in everyday use in some countries. Merchants, traders, and clerks in some parts of Eastern Europe, Russia, China, and Africa use abacuses. The abacus remains in common use as a scoring system in non-electronic table games. Others may use an abacus due to visual impairment that prevents the use of a calculator.
Abacus
Etymology The word abacus dates to at least AD 1387 when a Middle English work borrowed the word from Latin that described a sandboard abacus. The Latin word is derived from ancient Greek (abax) which means something without a base, and colloquially, any piece of rectangular material. Alternatively, without reference to ancient texts on etymology, it has been suggested that it means "a square tablet strewn with dust", or "drawing-board covered with dust (for the use of mathematics)" (the exact shape of the Latin perhaps reflects the genitive form of the Greek word, (abakos). While the table strewn with dust definition is popular, some argue evidence is insufficient for that conclusion. Greek probably borrowed from a Northwest Semitic language like Phoenician, evidenced by a cognate with the Hebrew word ʾābāq (), or “dust” (in the post-Biblical sense "sand used as a writing surface"). Both abacuses and abaci (soft or hard "c") are used as plurals. The user of an abacus is called an abacist. History
Abacus
Both abacuses and abaci (soft or hard "c") are used as plurals. The user of an abacus is called an abacist. History Mesopotamia The Sumerian abacus appeared between 2700–2300 BC. It held a table of successive columns which delimited the successive orders of magnitude of their sexagesimal (base 60) number system. Some scholars point to a character in Babylonian cuneiform that may have been derived from a representation of the abacus. It is the belief of Old Babylonian scholars, such as Ettore Carruccio, that Old Babylonians "may have used the abacus for the operations of addition and subtraction; however, this primitive device proved difficult to use for more complex calculations". Egypt Greek historian Herodotus mentioned the abacus in Ancient Egypt. He wrote that the Egyptians manipulated the pebbles from right to left, opposite in direction to the Greek left-to-right method. Archaeologists have found ancient disks of various sizes that are thought to have been used as counters. However, wall depictions of this instrument are yet to be discovered.
Abacus
Persia At around 600 BC, Persians first began to use the abacus, during the Achaemenid Empire. Under the Parthian, Sassanian, and Iranian empires, scholars concentrated on exchanging knowledge and inventions with the countries around them – India, China, and the Roman Empire- which is how the abacus may have been exported to other countries. Greece
Abacus
Greece The earliest archaeological evidence for the use of the Greek abacus dates to the 5th century BC. Demosthenes (384 BC–322 BC) complained that the need to use pebbles for calculations was too difficult. A play by Alexis from the 4th century BC mentions an abacus and pebbles for accounting, and both Diogenes and Polybius use the abacus as a metaphor for human behavior, stating "that men that sometimes stood for more and sometimes for less" like the pebbles on an abacus. The Greek abacus was a table of wood or marble, pre-set with small counters in wood or metal for mathematical calculations. This Greek abacus saw use in Achaemenid Persia, the Etruscan civilization, Ancient Rome, and the Western Christian world until the French Revolution.
Abacus
A tablet found on the Greek island Salamis in 1846 AD (the Salamis Tablet) dates to 300 BC, making it the oldest counting board discovered so far. It is a slab of white marble in length, wide, and thick, on which are 5 groups of markings. In the tablet's center is a set of 5 parallel lines equally divided by a vertical line, capped with a semicircle at the intersection of the bottom-most horizontal line and the single vertical line. Below these lines is a wide space with a horizontal crack dividing it. Below this crack is another group of eleven parallel lines, again divided into two sections by a line perpendicular to them, but with the semicircle at the top of the intersection; the third, sixth and ninth of these lines are marked with a cross where they intersect with the vertical line. Also from this time frame, the Darius Vase was unearthed in 1851. It was covered with pictures, including a "treasurer" holding a wax tablet in one hand while manipulating counters on a table with the other. China The earliest known written documentation of the Chinese abacus dates to the 2nd century BC.
Abacus
China The earliest known written documentation of the Chinese abacus dates to the 2nd century BC. The Chinese abacus, also known as the suanpan (算盤/算盘, lit. "calculating tray"), is typically tall and comes in various widths, depending on the operator. It usually has more than seven rods. There are two beads on each rod in the upper deck and five beads each in the bottom one. The beads are usually rounded and made of hardwood. The beads are counted by moving them up or down towards the beam; beads moved toward the beam are counted, while those moved away from it are not. One of the top beads is 5, while one of the bottom beads is 1. Each rod has a number under it, showing the place value. The suanpan can be reset to the starting position instantly by a quick movement along the horizontal axis to spin all the beads away from the horizontal beam at the center.
Abacus
The prototype of the Chinese abacus appeared during the Han Dynasty, and the beads are oval. The Song Dynasty and earlier used the 1:4 type or four-beads abacus similar to the modern abacus including the shape of the beads commonly known as Japanese-style abacus. In the early Ming Dynasty, the abacus began to appear in a 1:5 ratio. The upper deck had one bead and the bottom had five beads. In the late Ming Dynasty, the abacus styles appeared in a 2:5 ratio. The upper deck had two beads, and the bottom had five. Various calculation techniques were devised for Suanpan enabling efficient calculations. Some schools teach students how to use it. In the long scroll Along the River During the Qingming Festival painted by Zhang Zeduan during the Song dynasty (960–1297), a suanpan is clearly visible beside an account book and doctor's prescriptions on the counter of an apothecary's (Feibao).
Abacus
The similarity of the Roman abacus to the Chinese one suggests that one could have inspired the other, given evidence of a trade relationship between the Roman Empire and China. However, no direct connection has been demonstrated, and the similarity of the abacuses may be coincidental, both ultimately arising from counting with five fingers per hand. Where the Roman model (like most modern Korean and Japanese) has 4 plus 1 bead per decimal place, the standard suanpan has 5 plus 2. Incidentally, this allows use with a hexadecimal numeral system (or any base up to 18) which may have been used for traditional Chinese measures of weight. (Instead of running on wires as in the Chinese, Korean, and Japanese models, the Roman model used grooves, presumably making arithmetic calculations much slower.) Another possible source of the suanpan is Chinese counting rods, which operated with a decimal system but lacked the concept of zero as a placeholder. The zero was probably introduced to the Chinese in the Tang dynasty (618–907) when travel in the Indian Ocean and the Middle East would have provided direct contact with India, allowing them to acquire the concept of zero and the decimal point from Indian merchants and mathematicians.
Abacus
Rome The normal method of calculation in ancient Rome, as in Greece, was by moving counters on a smooth table. Originally pebbles (calculi) were used. Later, and in medieval Europe, jetons were manufactured. Marked lines indicated units, fives, tens, etc. as in the Roman numeral system. This system of 'counter casting' continued into the late Roman empire and in medieval Europe and persisted in limited use into the nineteenth century. Due to Pope Sylvester II's reintroduction of the abacus with modifications, it became widely used in Europe again during the 11th century This abacus used beads on wires, unlike the traditional Roman counting boards, which meant the abacus could be used much faster and was more easily moved. Writing in the 1st century BC, Horace refers to the wax abacus, a board covered with a thin layer of black wax on which columns and figures were inscribed using a stylus.
Abacus
Writing in the 1st century BC, Horace refers to the wax abacus, a board covered with a thin layer of black wax on which columns and figures were inscribed using a stylus. One example of archaeological evidence of the Roman abacus, shown nearby in reconstruction, dates to the 1st century AD. It has eight long grooves containing up to five beads in each and eight shorter grooves having either one or no beads in each. The groove marked I indicates units, X tens, and so on up to millions. The beads in the shorter grooves denote fives –five units, five tens, etc., essentially in a bi-quinary coded decimal system, related to the Roman numerals. The short grooves on the right may have been used for marking Roman "ounces" (i.e. fractions). India
Abacus
India The Abhidharmakośabhāṣya of Vasubandhu (316-396), a Sanskrit work on Buddhist philosophy, says that the second-century CE philosopher Vasumitra said that "placing a wick (Sanskrit vartikā) on the number one (ekāṅka) means it is a one while placing the wick on the number hundred means it is called a hundred, and on the number one thousand means it is a thousand". It is unclear exactly what this arrangement may have been. Around the 5th century, Indian clerks were already finding new ways of recording the contents of the abacus. Hindu texts used the term śūnya (zero) to indicate the empty column on the abacus. Japan In Japan, the abacus is called soroban (, lit. "counting tray"). It was imported from China in the 14th century. It was probably in use by the working class a century or more before the ruling class adopted it, as the class structure obstructed such changes. The 1:4 abacus, which removes the seldom-used second and fifth bead became popular in the 1940s.
Abacus