id
stringclasses 1
value | instruction
stringlengths 29
13k
| trajectory
listlengths 2
406
| length
int64 2
406
| public_tests
listlengths 1
7
| generated_tests
listlengths 0
100
|
|---|---|---|---|---|---|
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"a,b=map(int,input().split());\n",
"a,b=map(int,input().split());print(('P'*(a%3==0 or b%3==0 or(a+b)%3==0)or'Imp')+'ossible')\n"
] | 3
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"a,b=map(int,input().split())\n",
"a,b=map(int,input().split())\nprint(\"Possible\") if a*b%3==0 or (a+b)%3==0 else print(\"Impossible\")\n"
] | 3
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"A, B = map(int, input().split())\n",
"A, B = map(int, input().split())\nprint('Possible' if (A % 3) * (B % 3) * ((A + B) % 3) == 0 else 'Impossible')\n"
] | 3
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"A,B = (int(T) for T in input().split())\n",
"A,B = (int(T) for T in input().split())\nprint(['Impossible','Possible'][any(T%3==0 for T in [A,B,A+B])])\n"
] | 3
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"A,B = map(int, input().split())\n",
"A,B = map(int, input().split())\n\nprint('Possible' if A*B*(A + B)%3 == 0 else 'Impossible')\n"
] | 3
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"a, b = map(int, input().split())\n",
"a, b = map(int, input().split())\nprint(\"Possible\" if (a + b) % 3 == 0 or a % 3 == 0 or b % 3 == 0 else \"Impossible\")\n"
] | 3
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"a,s=map(int,input().split())\n",
"a,s=map(int,input().split())\nif a%3==0 or s%3==0 or (a+s)%3==0:\n print(\"Possible\")\n",
"a,s=map(int,input().split())\nif a%3==0 or s%3==0 or (a+s)%3==0:\n print(\"Possible\")\nelse:\n print(\"Impossible\")\n"
] | 4
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"A,B = map(lambda x:int(x)%3,input().split())\n",
"A,B = map(lambda x:int(x)%3,input().split())\nprint(\"Possible\" if A*B*(A+B-3)==0 else \"Impossible\")\n"
] | 3
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"a, b = map(int, input().split())\n",
"a, b = map(int, input().split())\nprint(\"Possible\" if (a%3)*(b%3)*((a+b)%3)==0 else \"Impossible\")\n"
] | 3
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"a, b = map(int, input().split(\" \"))\n",
"a, b = map(int, input().split(\" \"))\n\nprint(\"Possible\" if any(map(lambda x: x%3 == 0, (a, b, a+b))) else \"Impossible\")\n"
] | 3
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"A,B=map(int,input().split())\n",
"A,B=map(int,input().split())\nif (A%3)*(B%3)*((A+B)%3)==0:\n print('Possible')\n",
"A,B=map(int,input().split())\nif (A%3)*(B%3)*((A+B)%3)==0:\n print('Possible')\nelse:\n print('Impossible')\n"
] | 4
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"a,b=map(int,input().split())\n",
"a,b=map(int,input().split())\nif (a*b*(a+b))%3==0:\n print('Possible')\n",
"a,b=map(int,input().split())\nif (a*b*(a+b))%3==0:\n print('Possible')\nelse:\n print('Impossible')\n"
] | 4
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"A,B=map(int,input().split(' '))\n",
"A,B=map(int,input().split(' '))\nmsg = 'Possible' if (A%3)*(B%3)*((A+B)%3)==0 else 'Impossible'\n",
"A,B=map(int,input().split(' '))\nmsg = 'Possible' if (A%3)*(B%3)*((A+B)%3)==0 else 'Impossible'\nprint(msg)\n"
] | 4
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"a, b = map(int, input().split())\n",
"a, b = map(int, input().split())\nprint('Possible' if (a%3)*(b%3)*((a+b)%3)==0 else 'Impossible')\n"
] | 3
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"a,b = map(int,input().split())\n",
"a,b = map(int,input().split())\nprint(['Impossible','Possible'][a%3 == 0 or b%3 == 0 or (a+b) %3 == 0])\n"
] | 3
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"A, B = [ int(i) for i in input().split() ]\n",
"A, B = [ int(i) for i in input().split() ]\nprint(\"Impossible\" if A%3 and B%3 and (A+B)%3 else \"Possible\")\n"
] | 3
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"a,b=map(int,input().split())\n",
"a,b=map(int,input().split())\nprint('Possible') if (a+b)%3==0 or a%3==0 or b%3==0 else print('Impossible')\n"
] | 3
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"A, B = map(int,input().split())\n",
"A, B = map(int,input().split())\nif (A+B)%3==0 or A%3==0 or B%3==0: print('Possible')\n",
"A, B = map(int,input().split())\nif (A+B)%3==0 or A%3==0 or B%3==0: print('Possible')\nelse: print('Impossible')\n"
] | 4
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"a,b=map(int,input().split())\n",
"a,b=map(int,input().split())\nif a%3!=0 and b%3!=0 and (a+b)%3!=0:\n print('Impossible')\n",
"a,b=map(int,input().split())\nif a%3!=0 and b%3!=0 and (a+b)%3!=0:\n print('Impossible')\nelse:\n print('Possible')\n"
] | 4
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"a, b = map(int, input().split())\n",
"a, b = map(int, input().split())\nprint(\"Possible\" if (a*b*(a+b))%3==0 else \"Impossible\")\n"
] | 3
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"a, b = map(int, input().split())\n",
"a, b = map(int, input().split())\n\nprint('Possible' if (a+b)%3 == 0 or a%3 == 0 or b%3 == 0 else 'Impossible')\n"
] | 3
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"l = list(map(int, input().split()))\n",
"l = list(map(int, input().split()))\nprint([\"P\",\"Imp\"][all(map(lambda x: min(x%3, 1), [sum(l)]+l))]+\"ossible\")\n"
] | 3
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"A, B = map(int, input().split())\n",
"A, B = map(int, input().split())\nif 0 in [A%3, B%3, (A+B)%3]:\n print('Possible')\n",
"A, B = map(int, input().split())\nif 0 in [A%3, B%3, (A+B)%3]:\n print('Possible')\nelse:\n print('Impossible')\n"
] | 4
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"a, b = map(int, input().split())\n",
"a, b = map(int, input().split())\nif a%3 and b%3 and (a+b)%3:\n print(\"Impossible\")\n",
"a, b = map(int, input().split())\nif a%3 and b%3 and (a+b)%3:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n"
] | 4
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"a,b= map(int, input().split())\n",
"a,b= map(int, input().split())\nif (a+b)%3 == 0 or a%3 == 0 or b%3 ==0:\n print('Possible')\n",
"a,b= map(int, input().split())\nif (a+b)%3 == 0 or a%3 == 0 or b%3 ==0:\n print('Possible')\nelse:\n print('Impossible')\n"
] | 4
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"a,b=map(int,input().split())\n",
"a,b=map(int,input().split())\nif (a+b)*a*b%3:\n print(\"Impossible\")\n",
"a,b=map(int,input().split())\nif (a+b)*a*b%3:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n"
] | 4
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"A,B = map(int,input().split())\n",
"A,B = map(int,input().split())\nif 0 in [A%3, B%3,(A+B)%3]:\n print(\"Possible\")\n",
"A,B = map(int,input().split())\nif 0 in [A%3, B%3,(A+B)%3]:\n print(\"Possible\")\nelse:\n print(\"Impossible\")\n"
] | 4
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"A, B = map(int, input().split())\n",
"A, B = map(int, input().split())\n\nif A%3 and B%3 and (A+B)%3:\n print(\"Impossible\")\n",
"A, B = map(int, input().split())\n\nif A%3 and B%3 and (A+B)%3:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n"
] | 4
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"a, b = [int(x) for x in input().split()]\n",
"a, b = [int(x) for x in input().split()]\nprint(\"Possible\") if a%3==0 or b%3==0 or (a+b)%3==0 else print(\"Impossible\")\n"
] | 3
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"a,b =map(int,input().split())\n",
"a,b =map(int,input().split())\nprint('Possible' if a*b*(a+b)%3==0 else 'Impossible')\n"
] | 3
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"a,b = map(int,input().split())\n",
"a,b = map(int,input().split())\nprint('Possible') if (a%3 == 0 or b%3 == 0 or (a+b)%3 == 0) else print('Impossible')\n"
] | 3
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"a, b = (int(i) for i in input().split())\n",
"a, b = (int(i) for i in input().split())\nprint(\"Possible\" if a%3 == 0 or b%3 == 0 or (a+b)%3 == 0 else \"Impossible\")\n"
] | 3
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"a,b=map(int,input().split())\n",
"a,b=map(int,input().split())\nprint( \"Possible\" if any((a%3==0, b%3==0, (a+b)%3==0)) else \"Impossible\")\n"
] | 3
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"A,B=map(int,input().split(' '))\n",
"A,B=map(int,input().split(' '))\nif (A+B)%3 and A%3 and B%3:\n print('Impossible')\n",
"A,B=map(int,input().split(' '))\nif (A+B)%3 and A%3 and B%3:\n print('Impossible')\nelse:\n print('Possible')\n"
] | 4
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"A,B=map(int,input().split())\n",
"A,B=map(int,input().split())\nprint('Possible' if (A+B)%3 == 0 or A%3 == 0 or B%3 == 0 else 'Impossible')\n"
] | 3
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"a,b=map(int,input().split())\n",
"a,b=map(int,input().split())\nans='Impossible'\n",
"a,b=map(int,input().split())\nans='Impossible'\nif a%3==0 or b%3==0 or (a+b)%3 ==0:\n ans=\"Possible\"\n",
"a,b=map(int,input().split())\nans='Impossible'\nif a%3==0 or b%3==0 or (a+b)%3 ==0:\n ans=\"Possible\"\nprint(ans)\n"
] | 5
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"A, B = list(map(int,input().split()))\n",
"A, B = list(map(int,input().split()))\nprint('Impossible' if (A*B*(A+B))%3 else 'Possible')\n"
] | 3
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"a, b = map(int,input().split())\n",
"a, b = map(int,input().split())\nif a*b*(a+b) % 3 ==0:\n print('Possible')\n",
"a, b = map(int,input().split())\nif a*b*(a+b) % 3 ==0:\n print('Possible')\nelse:\n print('Impossible')\n"
] | 4
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"A,B=map(int,input().split());\n",
"A,B=map(int,input().split());print(['Impossible','Possible'][any([1 for i in [A,B,A+B] if i%3==0])])\n"
] | 3
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"a,b=map(int,input().split())\n",
"a,b=map(int,input().split())\nprint('Impossible' if a%3!=0 and b%3!=0 and (a+b)%3!=0 else 'Possible')\n"
] | 3
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"A, B = list(map(int, input().split()))\n",
"A, B = list(map(int, input().split()))\nprint('Possible' if A%3==0 or B%3==0 or (A+B)%3==0 else 'Impossible')\n"
] | 3
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"x,y = map(int,input().split())\nz = x+y\n",
"x,y = map(int,input().split())\nz = x+y\nprint('Possible' if x%3==0 or y%3==0 or z%3==0 else 'Impossible')\n"
] | 3
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"#067_A\n",
"#067_A\na,b=map(int,input().split())\n",
"#067_A\na,b=map(int,input().split())\nprint('Impossible' if a%3!=0 and b%3!=0 and (a+b)%3!=0 else 'Possible')\n"
] | 4
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"#67a\n",
"#67a\na,b=map(int,input().split())\n",
"#67a\na,b=map(int,input().split())\nprint('Possible' if (a%3==0 or b%3==0 or (a+b)%3==0) else 'Impossible')\n"
] | 4
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"a,b=map(int,input().split())\n",
"a,b=map(int,input().split())\nprint(\"Impossible\" if a*b*(a+b)%3 else \"Possible\")\n"
] | 3
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"n, m = list(map(int, input().split()))\n",
"n, m = list(map(int, input().split()))\nprint('Impossible' if n%3 and m%3 and (n+m)%3 else 'Possible')\n"
] | 3
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"a,b=map(int,input().split())\n",
"a,b=map(int,input().split())\nprint(\"Impossible\" if a%3 and b%3 and (a+b)%3 else \"Possible\")\n"
] | 3
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"a,b=map(int,input().split())\n",
"a,b=map(int,input().split())\nprint(('im'*((a%3 and b%3 and (a+b)%3)>0)+'possible').capitalize())\n"
] | 3
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"a,b=map(int,input().split())\n",
"a,b=map(int,input().split())\nprint(['Possible','Impossible'][(a*b*(a+b))%3>0])\n"
] | 3
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"a,b = map(int,input().split())\n",
"a,b = map(int,input().split())\nif (a*b)%3 ==0 or (a+b)%3==0:\n print(\"Possible\")\n",
"a,b = map(int,input().split())\nif (a*b)%3 ==0 or (a+b)%3==0:\n print(\"Possible\")\nelse: print(\"Impossible\")\n"
] | 4
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"a,b=map(int,input().split());\n",
"a,b=map(int,input().split());print('IPmopsossisbilbel e'[0 in[(a+b)%3,a%3,b%3]::2])\n"
] | 3
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"ans='Impossible'\n",
"ans='Impossible'\na,b=map(int,input().split())\n",
"ans='Impossible'\na,b=map(int,input().split())\nif a%3==0 or b%3==0 or (a+b)%3==0:\n ans='Possible'\n",
"ans='Impossible'\na,b=map(int,input().split())\nif a%3==0 or b%3==0 or (a+b)%3==0:\n ans='Possible'\nprint(ans)\n"
] | 5
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"a,b=map(int, input().split())\n",
"a,b=map(int, input().split())\nprint('Possible' if (a*b*(a+b))%3==0 else 'Impossible')\n"
] | 3
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"A, B = map(int, input().split())\n",
"A, B = map(int, input().split())\n\nprint(\"Possible\" if (A+B)%3==0 or A%3==0 or B%3==0 else \"Impossible\")\n"
] | 3
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"print(f\"{eval(input().replace(*' *'))%3%2*'Imp'or'P'}ossible\")\n"
] | 2
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"A,B = map(int,input().split())\n",
"A,B = map(int,input().split())\nli = [A%3,B%3,(A+B)%3]\n",
"A,B = map(int,input().split())\nli = [A%3,B%3,(A+B)%3]\nif 0 in li: print('Possible')\n",
"A,B = map(int,input().split())\nli = [A%3,B%3,(A+B)%3]\nif 0 in li: print('Possible')\nelse: print('Impossible')\n"
] | 5
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"a, b = map(int, input().split())\n",
"a, b = map(int, input().split())\nprint([\"Impossible\", \"Possible\"][a % 3 == 0 or b % 3 == 0 or (a + b) % 3 == 0])\n"
] | 3
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"f=lambda x:x%3==0\n",
"f=lambda x:x%3==0\na,b=map(int,input().split())\n",
"f=lambda x:x%3==0\na,b=map(int,input().split())\nprint(['Impossible','Possible'][f(a)or f(b)or f(a+b)])\n"
] | 4
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"a, b = map(int, input().split())\n",
"a, b = map(int, input().split())\nprint('Possible' if not a % 3 or not b % 3 or not (a + b) % 3 else \"Impossible\")\n"
] | 3
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"A,B=map(int,input().split());\n",
"A,B=map(int,input().split());s='ossible'\n",
"A,B=map(int,input().split());s='ossible'\nif A%3*B%3*(A+B)%3==0:print('P'+s)\n",
"A,B=map(int,input().split());s='ossible'\nif A%3*B%3*(A+B)%3==0:print('P'+s)\nelse:print('Imp'+s)\n"
] | 5
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"a,b=map(int,input().split());\n",
"a,b=map(int,input().split());print(['Imp','P'][a%3==0 or b%3==0 or (a+b)%3==0]+'ossible')\n"
] | 3
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"a,b=map(int,input().split());\n",
"a,b=map(int,input().split());print([\"P\",\"Imp\"][a%3==b%3>0]+\"ossible\")\n"
] | 3
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"n,m=map(int,input().split())\n",
"n,m=map(int,input().split())\nif n%3==0 or m%3==0 or (n+m)%3==0:print(\"Possible\")\n",
"n,m=map(int,input().split())\nif n%3==0 or m%3==0 or (n+m)%3==0:print(\"Possible\")\nelse:print(\"Impossible\")\n"
] | 4
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"a,b=map(int,input().split())\n",
"a,b=map(int,input().split())\nprint('Impossible' if a%3 and b%3 and (a+b)%3 else 'Possible')\n"
] | 3
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"A,B=map(int,input().split())\n",
"A,B=map(int,input().split())\nprint('Possible' if (A%3==0 or B%3==0 or (A+B)%3==0) else 'Impossible')\n"
] | 3
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"a,b=map(int,input().split())\n",
"a,b=map(int,input().split())\nprint('Possible' if (((a+b)%3==0)or(a%3==0)or(b%3==0)) else 'Impossible')\n"
] | 3
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"a,b=map(int,input().split())\n",
"a,b=map(int,input().split())\nprint([\"Possible\",\"Impossible\"][a%3==b%3 and (a%3==1 or a%3==2)])\n"
] | 3
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"a,b=[int(s) for s in input().split()]\n",
"a,b=[int(s) for s in input().split()]\nif a*b*(a+b)%3==0:\n print('Possible')\n",
"a,b=[int(s) for s in input().split()]\nif a*b*(a+b)%3==0:\n print('Possible')\nelse:\n print('Impossible')\n"
] | 4
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
Snuke is giving cookies to his three goats.
He has two cookie tins. One contains A cookies, and the other contains B cookies. He can thus give A cookies, B cookies or A+B cookies to his goats (he cannot open the tins).
Your task is to determine whether Snuke can give cookies to his three goats so that each of them can have the same number of cookies.
Constraints
* 1 \leq A,B \leq 100
* Both A and B are integers.
Input
Input is given from Standard Input in the following format:
A B
Output
If it is possible to give cookies so that each of the three goats can have the same number of cookies, print `Possible`; otherwise, print `Impossible`.
Examples
Input
4 5
Output
Possible
Input
1 1
Output
Impossible
|
[
"\n",
"A,B=map(int,input().split())\n",
"A,B=map(int,input().split())\nprint('Possible') if A%3==0 or B%3==0 or(A+B)%3==0 else print('Impossible')\n"
] | 3
|
[
{
"input": "4 5",
"output": "Possible"
},
{
"input": "1 1",
"output": "Impossible"
}
] |
[
{
"input": "4 0",
"output": "Possible\n"
},
{
"input": "-1 2",
"output": "Impossible\n"
},
{
"input": "1 2",
"output": "Possible\n"
},
{
"input": "7 0",
"output": "Possible\n"
},
{
"input": "0 2",
"output": "Possible\n"
},
{
"input": "7 -1",
"output": "Possible\n"
},
{
"input": "7 -2",
"output": "Impossible\n"
},
{
"input": "-1 4",
"output": "Possible\n"
},
{
"input": "7 -4",
"output": "Possible\n"
},
{
"input": "-1 8",
"output": "Impossible\n"
},
{
"input": "5 -4",
"output": "Impossible\n"
},
{
"input": "-1 14",
"output": "Impossible\n"
},
{
"input": "8 -4",
"output": "Impossible\n"
},
{
"input": "-1 28",
"output": "Possible\n"
},
{
"input": "5 0",
"output": "Possible\n"
},
{
"input": "-2 28",
"output": "Impossible\n"
},
{
"input": "5 -1",
"output": "Impossible\n"
},
{
"input": "-2 40",
"output": "Impossible\n"
},
{
"input": "0 -1",
"output": "Possible\n"
},
{
"input": "-3 40",
"output": "Possible\n"
},
{
"input": "-1 -1",
"output": "Impossible\n"
},
{
"input": "-3 57",
"output": "Possible\n"
},
{
"input": "-1 -2",
"output": "Possible\n"
},
{
"input": "-2 57",
"output": "Possible\n"
},
{
"input": "-2 -2",
"output": "Impossible\n"
},
{
"input": "-2 81",
"output": "Possible\n"
},
{
"input": "0 -2",
"output": "Possible\n"
},
{
"input": "-2 29",
"output": "Possible\n"
},
{
"input": "-2 0",
"output": "Possible\n"
},
{
"input": "-3 29",
"output": "Possible\n"
},
{
"input": "-2 1",
"output": "Impossible\n"
},
{
"input": "-3 4",
"output": "Possible\n"
},
{
"input": "-1 1",
"output": "Possible\n"
},
{
"input": "-5 4",
"output": "Impossible\n"
},
{
"input": "0 8",
"output": "Possible\n"
},
{
"input": "-8 4",
"output": "Impossible\n"
},
{
"input": "0 6",
"output": "Possible\n"
},
{
"input": "-13 4",
"output": "Possible\n"
},
{
"input": "-1 6",
"output": "Possible\n"
},
{
"input": "-13 0",
"output": "Possible\n"
},
{
"input": "-1 7",
"output": "Possible\n"
},
{
"input": "-1 0",
"output": "Possible\n"
},
{
"input": "-2 2",
"output": "Possible\n"
},
{
"input": "0 0",
"output": "Possible\n"
},
{
"input": "1 0",
"output": "Possible\n"
},
{
"input": "2 0",
"output": "Possible\n"
},
{
"input": "1 3",
"output": "Possible\n"
},
{
"input": "2 -1",
"output": "Impossible\n"
},
{
"input": "2 2",
"output": "Impossible\n"
},
{
"input": "2 -2",
"output": "Possible\n"
},
{
"input": "2 3",
"output": "Possible\n"
},
{
"input": "3 -2",
"output": "Possible\n"
},
{
"input": "2 6",
"output": "Possible\n"
},
{
"input": "4 -2",
"output": "Impossible\n"
},
{
"input": "2 9",
"output": "Possible\n"
},
{
"input": "1 -2",
"output": "Impossible\n"
},
{
"input": "4 9",
"output": "Possible\n"
},
{
"input": "1 -4",
"output": "Possible\n"
},
{
"input": "2 14",
"output": "Impossible\n"
},
{
"input": "1 -3",
"output": "Possible\n"
},
{
"input": "2 17",
"output": "Impossible\n"
},
{
"input": "1 -1",
"output": "Possible\n"
},
{
"input": "2 1",
"output": "Possible\n"
},
{
"input": "4 1",
"output": "Impossible\n"
},
{
"input": "4 2",
"output": "Possible\n"
},
{
"input": "3 1",
"output": "Possible\n"
},
{
"input": "7 2",
"output": "Possible\n"
},
{
"input": "4 -1",
"output": "Possible\n"
},
{
"input": "7 1",
"output": "Impossible\n"
},
{
"input": "6 -1",
"output": "Possible\n"
},
{
"input": "6 1",
"output": "Possible\n"
},
{
"input": "6 -2",
"output": "Possible\n"
},
{
"input": "6 0",
"output": "Possible\n"
},
{
"input": "9 -2",
"output": "Possible\n"
},
{
"input": "-2 -1",
"output": "Possible\n"
},
{
"input": "9 -1",
"output": "Possible\n"
},
{
"input": "-3 -2",
"output": "Possible\n"
},
{
"input": "11 -1",
"output": "Impossible\n"
},
{
"input": "-1 -4",
"output": "Impossible\n"
},
{
"input": "12 -1",
"output": "Possible\n"
},
{
"input": "-1 -6",
"output": "Possible\n"
},
{
"input": "23 -1",
"output": "Impossible\n"
},
{
"input": "-2 -6",
"output": "Possible\n"
},
{
"input": "23 0",
"output": "Possible\n"
},
{
"input": "-4 -6",
"output": "Possible\n"
},
{
"input": "23 -2",
"output": "Possible\n"
},
{
"input": "-4 -10",
"output": "Impossible\n"
},
{
"input": "15 -2",
"output": "Possible\n"
},
{
"input": "-4 -18",
"output": "Possible\n"
},
{
"input": "15 -3",
"output": "Possible\n"
},
{
"input": "-5 -18",
"output": "Possible\n"
},
{
"input": "0 -3",
"output": "Possible\n"
},
{
"input": "-5 -6",
"output": "Possible\n"
},
{
"input": "1 -6",
"output": "Possible\n"
},
{
"input": "0 -6",
"output": "Possible\n"
},
{
"input": "0 -4",
"output": "Possible\n"
},
{
"input": "0 -11",
"output": "Possible\n"
},
{
"input": "2 -4",
"output": "Impossible\n"
},
{
"input": "0 -17",
"output": "Possible\n"
},
{
"input": "-1 -5",
"output": "Possible\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"N, L = map(int, input().split())\n",
"N, L = map(int, input().split())\na = [int(x) for x in input().split()]\n",
"N, L = map(int, input().split())\na = [int(x) for x in input().split()]\n\nans = False\n",
"N, L = map(int, input().split())\na = [int(x) for x in input().split()]\n\nans = False\nfor i in range(N-1):\n if a[i] + a[i+1] >= L:\n ans = True\n break\n",
"N, L = map(int, input().split())\na = [int(x) for x in input().split()]\n\nans = False\nfor i in range(N-1):\n if a[i] + a[i+1] >= L:\n ans = True\n break\nif ans:\n print('Possible')\n",
"N, L = map(int, input().split())\na = [int(x) for x in input().split()]\n\nans = False\nfor i in range(N-1):\n if a[i] + a[i+1] >= L:\n ans = True\n break\nif ans:\n print('Possible')\n for j in range(i):\n print(j+1)\n",
"N, L = map(int, input().split())\na = [int(x) for x in input().split()]\n\nans = False\nfor i in range(N-1):\n if a[i] + a[i+1] >= L:\n ans = True\n break\nif ans:\n print('Possible')\n for j in range(i):\n print(j+1)\n for j in range(N-2, i-1, -1):\n print(j+1)\n",
"N, L = map(int, input().split())\na = [int(x) for x in input().split()]\n\nans = False\nfor i in range(N-1):\n if a[i] + a[i+1] >= L:\n ans = True\n break\nif ans:\n print('Possible')\n for j in range(i):\n print(j+1)\n for j in range(N-2, i-1, -1):\n print(j+1)\nelse:\n print('Impossible')\n"
] | 9
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"ans = []\n",
"N, L = [int(_) for _ in input().split()]\n\n\nans = []\n",
"N, L = [int(_) for _ in input().split()]\nA = [int(_) for _ in input().split()]\n\nans = []\n",
"N, L = [int(_) for _ in input().split()]\nA = [int(_) for _ in input().split()]\nl, i = max((A[i] + A[i - 1], i) for i in range(1, N))\nans = []\n",
"N, L = [int(_) for _ in input().split()]\nA = [int(_) for _ in input().split()]\nl, i = max((A[i] + A[i - 1], i) for i in range(1, N))\nans = []\nif l >= L:\n print('Possible')\n",
"N, L = [int(_) for _ in input().split()]\nA = [int(_) for _ in input().split()]\nl, i = max((A[i] + A[i - 1], i) for i in range(1, N))\nans = []\nif l >= L:\n print('Possible')\n if i < N - 1:\n ans += list(range(N - 1, i, -1))\n",
"N, L = [int(_) for _ in input().split()]\nA = [int(_) for _ in input().split()]\nl, i = max((A[i] + A[i - 1], i) for i in range(1, N))\nans = []\nif l >= L:\n print('Possible')\n if i < N - 1:\n ans += list(range(N - 1, i, -1))\n ans += list(range(1, i + 1))\n",
"N, L = [int(_) for _ in input().split()]\nA = [int(_) for _ in input().split()]\nl, i = max((A[i] + A[i - 1], i) for i in range(1, N))\nans = []\nif l >= L:\n print('Possible')\n if i < N - 1:\n ans += list(range(N - 1, i, -1))\n ans += list(range(1, i + 1))\n else:\n ans += list(range(1, i + 1))\n",
"N, L = [int(_) for _ in input().split()]\nA = [int(_) for _ in input().split()]\nl, i = max((A[i] + A[i - 1], i) for i in range(1, N))\nans = []\nif l >= L:\n print('Possible')\n if i < N - 1:\n ans += list(range(N - 1, i, -1))\n ans += list(range(1, i + 1))\n else:\n ans += list(range(1, i + 1))\n print(*ans, sep='\\n')\n",
"N, L = [int(_) for _ in input().split()]\nA = [int(_) for _ in input().split()]\nl, i = max((A[i] + A[i - 1], i) for i in range(1, N))\nans = []\nif l >= L:\n print('Possible')\n if i < N - 1:\n ans += list(range(N - 1, i, -1))\n ans += list(range(1, i + 1))\n else:\n ans += list(range(1, i + 1))\n print(*ans, sep='\\n')\nelse:\n print('Impossible')\n"
] | 11
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"# coding: utf-8\n# Your code here!\n\n\nindex=0\n",
"# coding: utf-8\n# Your code here!\nN,L=map(int,input().split())\n\n\nindex=0\n",
"# coding: utf-8\n# Your code here!\nN,L=map(int,input().split())\nl=list(map(int,input().split()))\n\nindex=0\n",
"# coding: utf-8\n# Your code here!\nN,L=map(int,input().split())\nl=list(map(int,input().split()))\njudge=\"Impossible\"\nindex=0\n",
"# coding: utf-8\n# Your code here!\nN,L=map(int,input().split())\nl=list(map(int,input().split()))\njudge=\"Impossible\"\nindex=0\n\nfor i in range(N-1):\n if (l[i]+l[i+1])>=L:\n judge=\"Possible\"\n index=i\n break\n",
"# coding: utf-8\n# Your code here!\nN,L=map(int,input().split())\nl=list(map(int,input().split()))\njudge=\"Impossible\"\nindex=0\n\nfor i in range(N-1):\n if (l[i]+l[i+1])>=L:\n judge=\"Possible\"\n index=i\n break\n\nprint(judge)\n",
"# coding: utf-8\n# Your code here!\nN,L=map(int,input().split())\nl=list(map(int,input().split()))\njudge=\"Impossible\"\nindex=0\n\nfor i in range(N-1):\n if (l[i]+l[i+1])>=L:\n judge=\"Possible\"\n index=i\n break\n\nprint(judge)\nif judge==\"Impossible\":\n exit()\n",
"# coding: utf-8\n# Your code here!\nN,L=map(int,input().split())\nl=list(map(int,input().split()))\njudge=\"Impossible\"\nindex=0\n\nfor i in range(N-1):\n if (l[i]+l[i+1])>=L:\n judge=\"Possible\"\n index=i\n break\n\nprint(judge)\nif judge==\"Impossible\":\n exit()\n\nfor i in range(0,index):\n print(i+1)\n",
"# coding: utf-8\n# Your code here!\nN,L=map(int,input().split())\nl=list(map(int,input().split()))\njudge=\"Impossible\"\nindex=0\n\nfor i in range(N-1):\n if (l[i]+l[i+1])>=L:\n judge=\"Possible\"\n index=i\n break\n\nprint(judge)\nif judge==\"Impossible\":\n exit()\n\nfor i in range(0,index):\n print(i+1)\n\nfor i in range(index+2,N)[::-1]:\n print(i)\n",
"# coding: utf-8\n# Your code here!\nN,L=map(int,input().split())\nl=list(map(int,input().split()))\njudge=\"Impossible\"\nindex=0\n\nfor i in range(N-1):\n if (l[i]+l[i+1])>=L:\n judge=\"Possible\"\n index=i\n break\n\nprint(judge)\nif judge==\"Impossible\":\n exit()\n\nfor i in range(0,index):\n print(i+1)\n\nfor i in range(index+2,N)[::-1]:\n print(i)\n\nprint(index+1)\n"
] | 11
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"piv = -1\nb_s = []\n",
"n, l = [int(v) for v in input().split()]\n\n\npiv = -1\nb_s = []\n",
"n, l = [int(v) for v in input().split()]\na_s = [int(v) for v in input().split()]\n\npiv = -1\nb_s = []\n",
"n, l = [int(v) for v in input().split()]\na_s = [int(v) for v in input().split()]\n\npiv = -1\nb_s = []\nfor i in range(n - 1):\n a2 = a_s[i] + a_s[i + 1]\n",
"n, l = [int(v) for v in input().split()]\na_s = [int(v) for v in input().split()]\n\npiv = -1\nb_s = []\nfor i in range(n - 1):\n a2 = a_s[i] + a_s[i + 1]\n b_s.append(a2)\n",
"n, l = [int(v) for v in input().split()]\na_s = [int(v) for v in input().split()]\n\npiv = -1\nb_s = []\nfor i in range(n - 1):\n a2 = a_s[i] + a_s[i + 1]\n b_s.append(a2)\n if a2 >= l:\n piv = i\n",
"n, l = [int(v) for v in input().split()]\na_s = [int(v) for v in input().split()]\n\npiv = -1\nb_s = []\nfor i in range(n - 1):\n a2 = a_s[i] + a_s[i + 1]\n b_s.append(a2)\n if a2 >= l:\n piv = i\n\nif piv == -1:\n print(\"Impossible\")\n",
"n, l = [int(v) for v in input().split()]\na_s = [int(v) for v in input().split()]\n\npiv = -1\nb_s = []\nfor i in range(n - 1):\n a2 = a_s[i] + a_s[i + 1]\n b_s.append(a2)\n if a2 >= l:\n piv = i\n\nif piv == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n",
"n, l = [int(v) for v in input().split()]\na_s = [int(v) for v in input().split()]\n\npiv = -1\nb_s = []\nfor i in range(n - 1):\n a2 = a_s[i] + a_s[i + 1]\n b_s.append(a2)\n if a2 >= l:\n piv = i\n\nif piv == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(piv):\n print(i + 1)\n",
"n, l = [int(v) for v in input().split()]\na_s = [int(v) for v in input().split()]\n\npiv = -1\nb_s = []\nfor i in range(n - 1):\n a2 = a_s[i] + a_s[i + 1]\n b_s.append(a2)\n if a2 >= l:\n piv = i\n\nif piv == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(piv):\n print(i + 1)\n for i in range(n-2, piv - 1, -1):\n print(i + 1)\n"
] | 11
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"from collections import deque\n",
"from collections import deque\nN, L = map(int, input().split())\n",
"from collections import deque\nN, L = map(int, input().split())\nc = list(map(int, input().split()))\n",
"from collections import deque\nN, L = map(int, input().split())\nc = list(map(int, input().split()))\nfor i in range(len(c)-1):\n if c[i] + c[i+1] >= L:\n pos = i + 1\n break\n",
"from collections import deque\nN, L = map(int, input().split())\nc = list(map(int, input().split()))\nfor i in range(len(c)-1):\n if c[i] + c[i+1] >= L:\n pos = i + 1\n break\nelse:\n \n exit()\n",
"from collections import deque\nN, L = map(int, input().split())\nc = list(map(int, input().split()))\nfor i in range(len(c)-1):\n if c[i] + c[i+1] >= L:\n pos = i + 1\n break\nelse:\n print(\"Impossible\")\n exit()\n",
"from collections import deque\nN, L = map(int, input().split())\nc = list(map(int, input().split()))\nfor i in range(len(c)-1):\n if c[i] + c[i+1] >= L:\n pos = i + 1\n break\nelse:\n print(\"Impossible\")\n exit()\n\nprint(\"Possible\")\n",
"from collections import deque\nN, L = map(int, input().split())\nc = list(map(int, input().split()))\nfor i in range(len(c)-1):\n if c[i] + c[i+1] >= L:\n pos = i + 1\n break\nelse:\n print(\"Impossible\")\n exit()\n\nprint(\"Possible\")\nfor i in range(1,pos):\n print(i)\n",
"from collections import deque\nN, L = map(int, input().split())\nc = list(map(int, input().split()))\nfor i in range(len(c)-1):\n if c[i] + c[i+1] >= L:\n pos = i + 1\n break\nelse:\n print(\"Impossible\")\n exit()\n\nprint(\"Possible\")\nfor i in range(1,pos):\n print(i)\nfor i in range(len(c) -1, pos, -1):\n print(i)\n",
"from collections import deque\nN, L = map(int, input().split())\nc = list(map(int, input().split()))\nfor i in range(len(c)-1):\n if c[i] + c[i+1] >= L:\n pos = i + 1\n break\nelse:\n print(\"Impossible\")\n exit()\n\nprint(\"Possible\")\nfor i in range(1,pos):\n print(i)\nfor i in range(len(c) -1, pos, -1):\n print(i)\nprint(pos)\n"
] | 11
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"# 和がl以上のものがあれば、それを残してあとを端から落としていくのでよい\n\n# print(ss)\ncnt = 0\n",
"n,l = map(int, input().split())\n\n# 和がl以上のものがあれば、それを残してあとを端から落としていくのでよい\n\n# print(ss)\ncnt = 0\n",
"n,l = map(int, input().split())\nAs = list(map(int, input().split()))\n# 和がl以上のものがあれば、それを残してあとを端から落としていくのでよい\n\n# print(ss)\ncnt = 0\n",
"n,l = map(int, input().split())\nAs = list(map(int, input().split()))\n# 和がl以上のものがあれば、それを残してあとを端から落としていくのでよい\nss = [As[i]+As[i+1] for i in range(n-1)]\n# print(ss)\ncnt = 0\n",
"n,l = map(int, input().split())\nAs = list(map(int, input().split()))\n# 和がl以上のものがあれば、それを残してあとを端から落としていくのでよい\nss = [As[i]+As[i+1] for i in range(n-1)]\n# print(ss)\ncnt = 0\nfor i,s in enumerate(ss):\n if s >= l:\n cnt = i + 1\n",
"n,l = map(int, input().split())\nAs = list(map(int, input().split()))\n# 和がl以上のものがあれば、それを残してあとを端から落としていくのでよい\nss = [As[i]+As[i+1] for i in range(n-1)]\n# print(ss)\ncnt = 0\nfor i,s in enumerate(ss):\n if s >= l:\n cnt = i + 1\nif cnt == 0:\n \n exit()\n",
"n,l = map(int, input().split())\nAs = list(map(int, input().split()))\n# 和がl以上のものがあれば、それを残してあとを端から落としていくのでよい\nss = [As[i]+As[i+1] for i in range(n-1)]\n# print(ss)\ncnt = 0\nfor i,s in enumerate(ss):\n if s >= l:\n cnt = i + 1\nif cnt == 0:\n print(\"Impossible\")\n exit()\n",
"n,l = map(int, input().split())\nAs = list(map(int, input().split()))\n# 和がl以上のものがあれば、それを残してあとを端から落としていくのでよい\nss = [As[i]+As[i+1] for i in range(n-1)]\n# print(ss)\ncnt = 0\nfor i,s in enumerate(ss):\n if s >= l:\n cnt = i + 1\nif cnt == 0:\n print(\"Impossible\")\n exit()\nprint(\"Possible\")\n",
"n,l = map(int, input().split())\nAs = list(map(int, input().split()))\n# 和がl以上のものがあれば、それを残してあとを端から落としていくのでよい\nss = [As[i]+As[i+1] for i in range(n-1)]\n# print(ss)\ncnt = 0\nfor i,s in enumerate(ss):\n if s >= l:\n cnt = i + 1\nif cnt == 0:\n print(\"Impossible\")\n exit()\nprint(\"Possible\")\nfor i in range(1,cnt):\n print(i)\n",
"n,l = map(int, input().split())\nAs = list(map(int, input().split()))\n# 和がl以上のものがあれば、それを残してあとを端から落としていくのでよい\nss = [As[i]+As[i+1] for i in range(n-1)]\n# print(ss)\ncnt = 0\nfor i,s in enumerate(ss):\n if s >= l:\n cnt = i + 1\nif cnt == 0:\n print(\"Impossible\")\n exit()\nprint(\"Possible\")\nfor i in range(1,cnt):\n print(i)\nfor i in range(n-1, cnt, -1):\n print(i)\n",
"n,l = map(int, input().split())\nAs = list(map(int, input().split()))\n# 和がl以上のものがあれば、それを残してあとを端から落としていくのでよい\nss = [As[i]+As[i+1] for i in range(n-1)]\n# print(ss)\ncnt = 0\nfor i,s in enumerate(ss):\n if s >= l:\n cnt = i + 1\nif cnt == 0:\n print(\"Impossible\")\n exit()\nprint(\"Possible\")\nfor i in range(1,cnt):\n print(i)\nfor i in range(n-1, cnt, -1):\n print(i)\nprint(cnt)\n"
] | 12
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"n, l = map(int, input().split())\n",
"n, l = map(int, input().split())\nalist = list(map(int, input().split()))\n",
"n, l = map(int, input().split())\nalist = list(map(int, input().split()))\n\npreva = alist[0]\n",
"n, l = map(int, input().split())\nalist = list(map(int, input().split()))\n\npreva = alist[0]\nis_possible = False\n",
"n, l = map(int, input().split())\nalist = list(map(int, input().split()))\n\npreva = alist[0]\nis_possible = False\nfor i, a in enumerate(alist[1:]):\n if preva + a >= l:\n \n break\n",
"n, l = map(int, input().split())\nalist = list(map(int, input().split()))\n\npreva = alist[0]\nis_possible = False\nfor i, a in enumerate(alist[1:]):\n if preva + a >= l:\n is_possible = True\n break\n",
"n, l = map(int, input().split())\nalist = list(map(int, input().split()))\n\npreva = alist[0]\nis_possible = False\nfor i, a in enumerate(alist[1:]):\n if preva + a >= l:\n is_possible = True\n break\n preva = a\n",
"n, l = map(int, input().split())\nalist = list(map(int, input().split()))\n\npreva = alist[0]\nis_possible = False\nfor i, a in enumerate(alist[1:]):\n if preva + a >= l:\n is_possible = True\n break\n preva = a\n\nif not is_possible:\n print('Impossible')\n",
"n, l = map(int, input().split())\nalist = list(map(int, input().split()))\n\npreva = alist[0]\nis_possible = False\nfor i, a in enumerate(alist[1:]):\n if preva + a >= l:\n is_possible = True\n break\n preva = a\n\nif not is_possible:\n print('Impossible')\nelse:\n print('Possible')\n",
"n, l = map(int, input().split())\nalist = list(map(int, input().split()))\n\npreva = alist[0]\nis_possible = False\nfor i, a in enumerate(alist[1:]):\n if preva + a >= l:\n is_possible = True\n break\n preva = a\n\nif not is_possible:\n print('Impossible')\nelse:\n print('Possible')\n for j in range(1, i+1):\n print(j)\n",
"n, l = map(int, input().split())\nalist = list(map(int, input().split()))\n\npreva = alist[0]\nis_possible = False\nfor i, a in enumerate(alist[1:]):\n if preva + a >= l:\n is_possible = True\n break\n preva = a\n\nif not is_possible:\n print('Impossible')\nelse:\n print('Possible')\n for j in range(1, i+1):\n print(j)\n for j in range(n-1, i+1, -1):\n print(j)\n",
"n, l = map(int, input().split())\nalist = list(map(int, input().split()))\n\npreva = alist[0]\nis_possible = False\nfor i, a in enumerate(alist[1:]):\n if preva + a >= l:\n is_possible = True\n break\n preva = a\n\nif not is_possible:\n print('Impossible')\nelse:\n print('Possible')\n for j in range(1, i+1):\n print(j)\n for j in range(n-1, i+1, -1):\n print(j)\n print(i + 1)\n"
] | 13
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"st = -1\n",
"n, L = map(int, input().split())\n\nst = -1\n",
"n, L = map(int, input().split())\na = list(map(int, input().split()))\nst = -1\n",
"n, L = map(int, input().split())\na = list(map(int, input().split()))\nst = -1\nfor i in range(n-1):\n if a[i] + a[i+1] >= L:\n st = i\n break\n",
"n, L = map(int, input().split())\na = list(map(int, input().split()))\nst = -1\nfor i in range(n-1):\n if a[i] + a[i+1] >= L:\n st = i\n break\nif st < 0:\n print(\"Impossible\")\n",
"n, L = map(int, input().split())\na = list(map(int, input().split()))\nst = -1\nfor i in range(n-1):\n if a[i] + a[i+1] >= L:\n st = i\n break\nif st < 0:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n",
"n, L = map(int, input().split())\na = list(map(int, input().split()))\nst = -1\nfor i in range(n-1):\n if a[i] + a[i+1] >= L:\n st = i\n break\nif st < 0:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(st):\n print(i+1)\n",
"n, L = map(int, input().split())\na = list(map(int, input().split()))\nst = -1\nfor i in range(n-1):\n if a[i] + a[i+1] >= L:\n st = i\n break\nif st < 0:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(st):\n print(i+1)\n for i in range(n-2, st, -1):\n print(i+1)\n",
"n, L = map(int, input().split())\na = list(map(int, input().split()))\nst = -1\nfor i in range(n-1):\n if a[i] + a[i+1] >= L:\n st = i\n break\nif st < 0:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(st):\n print(i+1)\n for i in range(n-2, st, -1):\n print(i+1)\n print(st+1)\n"
] | 10
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"cnt=0\n",
"n,l=map(int,input().split())\n\ncnt=0\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\ncnt=0\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\ncnt=0\nflag=False\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\ncnt=0\nflag=False\nfor i in range(0,n-1):\n if not flag:\n if a[i]+a[i+1]>=l:\n cnt=i+1\n flag=True\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\ncnt=0\nflag=False\nfor i in range(0,n-1):\n if not flag:\n if a[i]+a[i+1]>=l:\n cnt=i+1\n flag=True\n\nif not flag:\n \n exit()\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\ncnt=0\nflag=False\nfor i in range(0,n-1):\n if not flag:\n if a[i]+a[i+1]>=l:\n cnt=i+1\n flag=True\n\nif not flag:\n print(\"Impossible\")\n exit()\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\ncnt=0\nflag=False\nfor i in range(0,n-1):\n if not flag:\n if a[i]+a[i+1]>=l:\n cnt=i+1\n flag=True\n\nif not flag:\n print(\"Impossible\")\n exit()\n\nans=[cnt]\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\ncnt=0\nflag=False\nfor i in range(0,n-1):\n if not flag:\n if a[i]+a[i+1]>=l:\n cnt=i+1\n flag=True\n\nif not flag:\n print(\"Impossible\")\n exit()\n\nans=[cnt]\n\nfor i in range(cnt-1,0,-1):\n ans.append(i)\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\ncnt=0\nflag=False\nfor i in range(0,n-1):\n if not flag:\n if a[i]+a[i+1]>=l:\n cnt=i+1\n flag=True\n\nif not flag:\n print(\"Impossible\")\n exit()\n\nans=[cnt]\n\nfor i in range(cnt-1,0,-1):\n ans.append(i)\nfor i in range(cnt+1,n):\n ans.append(i)\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\ncnt=0\nflag=False\nfor i in range(0,n-1):\n if not flag:\n if a[i]+a[i+1]>=l:\n cnt=i+1\n flag=True\n\nif not flag:\n print(\"Impossible\")\n exit()\n\nans=[cnt]\n\nfor i in range(cnt-1,0,-1):\n ans.append(i)\nfor i in range(cnt+1,n):\n ans.append(i)\nans=ans[::-1]\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\ncnt=0\nflag=False\nfor i in range(0,n-1):\n if not flag:\n if a[i]+a[i+1]>=l:\n cnt=i+1\n flag=True\n\nif not flag:\n print(\"Impossible\")\n exit()\n\nans=[cnt]\n\nfor i in range(cnt-1,0,-1):\n ans.append(i)\nfor i in range(cnt+1,n):\n ans.append(i)\nans=ans[::-1]\nprint(\"Possible\")\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\ncnt=0\nflag=False\nfor i in range(0,n-1):\n if not flag:\n if a[i]+a[i+1]>=l:\n cnt=i+1\n flag=True\n\nif not flag:\n print(\"Impossible\")\n exit()\n\nans=[cnt]\n\nfor i in range(cnt-1,0,-1):\n ans.append(i)\nfor i in range(cnt+1,n):\n ans.append(i)\nans=ans[::-1]\nprint(\"Possible\")\nfor i in range(len(ans)):\n print(ans[i])\n"
] | 14
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"n,l = map(int,input().split())\n",
"n,l = map(int,input().split())\na = [0]+list(map(int,input().split()))\n",
"n,l = map(int,input().split())\na = [0]+list(map(int,input().split()))\nll = None\n",
"n,l = map(int,input().split())\na = [0]+list(map(int,input().split()))\nll = None\nfor i in range(1,n):\n if a[i]+a[i+1] >= l:\n ll = i\n break\n",
"n,l = map(int,input().split())\na = [0]+list(map(int,input().split()))\nll = None\nfor i in range(1,n):\n if a[i]+a[i+1] >= l:\n ll = i\n break\n\nif not ll:\n print('Impossible')\n",
"n,l = map(int,input().split())\na = [0]+list(map(int,input().split()))\nll = None\nfor i in range(1,n):\n if a[i]+a[i+1] >= l:\n ll = i\n break\n\nif not ll:\n print('Impossible')\nelse:\n print('Possible')\n",
"n,l = map(int,input().split())\na = [0]+list(map(int,input().split()))\nll = None\nfor i in range(1,n):\n if a[i]+a[i+1] >= l:\n ll = i\n break\n\nif not ll:\n print('Impossible')\nelse:\n print('Possible')\n for i in range(1,ll):\n print(i)\n",
"n,l = map(int,input().split())\na = [0]+list(map(int,input().split()))\nll = None\nfor i in range(1,n):\n if a[i]+a[i+1] >= l:\n ll = i\n break\n\nif not ll:\n print('Impossible')\nelse:\n print('Possible')\n for i in range(1,ll):\n print(i)\n for i in range(n-1,ll,-1):\n print(i)\n",
"n,l = map(int,input().split())\na = [0]+list(map(int,input().split()))\nll = None\nfor i in range(1,n):\n if a[i]+a[i+1] >= l:\n ll = i\n break\n\nif not ll:\n print('Impossible')\nelse:\n print('Possible')\n for i in range(1,ll):\n print(i)\n for i in range(n-1,ll,-1):\n print(i)\n print(ll)\n"
] | 10
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"N,L = map(int,input().split())\n\nx = N\n",
"N,L = map(int,input().split())\na = list(map(int,input().split()))\nx = N\n",
"N,L = map(int,input().split())\na = list(map(int,input().split()))\nx = N\nfor i in range(1,N):\n if a[i] + a[i-1] >= L:\n x = i\n",
"N,L = map(int,input().split())\na = list(map(int,input().split()))\nx = N\nfor i in range(1,N):\n if a[i] + a[i-1] >= L:\n x = i\nif x == N:\n \n exit()\n",
"N,L = map(int,input().split())\na = list(map(int,input().split()))\nx = N\nfor i in range(1,N):\n if a[i] + a[i-1] >= L:\n x = i\nif x == N:\n print('Impossible')\n exit()\n",
"N,L = map(int,input().split())\na = list(map(int,input().split()))\nx = N\nfor i in range(1,N):\n if a[i] + a[i-1] >= L:\n x = i\nif x == N:\n print('Impossible')\n exit()\nprint('Possible')\n",
"N,L = map(int,input().split())\na = list(map(int,input().split()))\nx = N\nfor i in range(1,N):\n if a[i] + a[i-1] >= L:\n x = i\nif x == N:\n print('Impossible')\n exit()\nprint('Possible')\nfor i in range(1,x):\n print(i)\n",
"N,L = map(int,input().split())\na = list(map(int,input().split()))\nx = N\nfor i in range(1,N):\n if a[i] + a[i-1] >= L:\n x = i\nif x == N:\n print('Impossible')\n exit()\nprint('Possible')\nfor i in range(1,x):\n print(i)\nfor i in range(N-1,x-1,-1):\n print(i)\n"
] | 9
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"N,L = map(int,input().split())\n\n\nans = []\ni=0\nj=N-1\n",
"N,L = map(int,input().split())\n*A, = map(int,input().split())\n\n\nans = []\ni=0\nj=N-1\n",
"N,L = map(int,input().split())\n*A, = map(int,input().split())\n\nS = [0]*(N+1)\n\nans = []\ni=0\nj=N-1\n",
"N,L = map(int,input().split())\n*A, = map(int,input().split())\n\nS = [0]*(N+1)\nfor i,a in enumerate(A): S[i+1] = S[i] + a\nans = []\ni=0\nj=N-1\n",
"N,L = map(int,input().split())\n*A, = map(int,input().split())\n\nS = [0]*(N+1)\nfor i,a in enumerate(A): S[i+1] = S[i] + a\nans = []\ni=0\nj=N-1\nwhile i<j:\n if S[j+1]-S[i] < L:\n \n break\n",
"N,L = map(int,input().split())\n*A, = map(int,input().split())\n\nS = [0]*(N+1)\nfor i,a in enumerate(A): S[i+1] = S[i] + a\nans = []\ni=0\nj=N-1\nwhile i<j:\n if S[j+1]-S[i] < L:\n print(\"Impossible\")\n break\n",
"N,L = map(int,input().split())\n*A, = map(int,input().split())\n\nS = [0]*(N+1)\nfor i,a in enumerate(A): S[i+1] = S[i] + a\nans = []\ni=0\nj=N-1\nwhile i<j:\n if S[j+1]-S[i] < L:\n print(\"Impossible\")\n break\n if A[i]+A[i+1] <= A[j]+A[j-1]:\n \n i+=1\n",
"N,L = map(int,input().split())\n*A, = map(int,input().split())\n\nS = [0]*(N+1)\nfor i,a in enumerate(A): S[i+1] = S[i] + a\nans = []\ni=0\nj=N-1\nwhile i<j:\n if S[j+1]-S[i] < L:\n print(\"Impossible\")\n break\n if A[i]+A[i+1] <= A[j]+A[j-1]:\n ans.append(i+1)\n i+=1\n",
"N,L = map(int,input().split())\n*A, = map(int,input().split())\n\nS = [0]*(N+1)\nfor i,a in enumerate(A): S[i+1] = S[i] + a\nans = []\ni=0\nj=N-1\nwhile i<j:\n if S[j+1]-S[i] < L:\n print(\"Impossible\")\n break\n if A[i]+A[i+1] <= A[j]+A[j-1]:\n ans.append(i+1)\n i+=1\n else:\n \n j-=1\n",
"N,L = map(int,input().split())\n*A, = map(int,input().split())\n\nS = [0]*(N+1)\nfor i,a in enumerate(A): S[i+1] = S[i] + a\nans = []\ni=0\nj=N-1\nwhile i<j:\n if S[j+1]-S[i] < L:\n print(\"Impossible\")\n break\n if A[i]+A[i+1] <= A[j]+A[j-1]:\n ans.append(i+1)\n i+=1\n else:\n ans.append(j)\n j-=1\n",
"N,L = map(int,input().split())\n*A, = map(int,input().split())\n\nS = [0]*(N+1)\nfor i,a in enumerate(A): S[i+1] = S[i] + a\nans = []\ni=0\nj=N-1\nwhile i<j:\n if S[j+1]-S[i] < L:\n print(\"Impossible\")\n break\n if A[i]+A[i+1] <= A[j]+A[j-1]:\n ans.append(i+1)\n i+=1\n else:\n ans.append(j)\n j-=1\nelse:\n print(\"Possible\")\n",
"N,L = map(int,input().split())\n*A, = map(int,input().split())\n\nS = [0]*(N+1)\nfor i,a in enumerate(A): S[i+1] = S[i] + a\nans = []\ni=0\nj=N-1\nwhile i<j:\n if S[j+1]-S[i] < L:\n print(\"Impossible\")\n break\n if A[i]+A[i+1] <= A[j]+A[j-1]:\n ans.append(i+1)\n i+=1\n else:\n ans.append(j)\n j-=1\nelse:\n print(\"Possible\")\n for a in ans: print(a)\n"
] | 13
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"import sys\n",
"import sys\ninput = sys.stdin.readline\n",
"import sys\ninput = sys.stdin.readline\ninf = float(\"inf\")\n",
"import sys\ninput = sys.stdin.readline\ninf = float(\"inf\")\n\nn,L = map(int,input().split())\n",
"import sys\ninput = sys.stdin.readline\ninf = float(\"inf\")\n\nn,L = map(int,input().split())\na = tuple(map(int,input().split()))\n",
"import sys\ninput = sys.stdin.readline\ninf = float(\"inf\")\n\nn,L = map(int,input().split())\na = tuple(map(int,input().split()))\n\nfor i in range(1,n):\n if a[i]+a[i-1]>=L:\n print('Possible')\n for j in range(1,i):\n print(j)\n for j in range(n-1,i,-1):\n print(j)\n print(i)\n exit()\n",
"import sys\ninput = sys.stdin.readline\ninf = float(\"inf\")\n\nn,L = map(int,input().split())\na = tuple(map(int,input().split()))\n\nfor i in range(1,n):\n if a[i]+a[i-1]>=L:\n print('Possible')\n for j in range(1,i):\n print(j)\n for j in range(n-1,i,-1):\n print(j)\n print(i)\n exit()\n\nprint('Impossible')\n"
] | 8
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"N,L=map(int,input().split())\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nsum_A=sum(A)\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nsum_A=sum(A)\n\njunban=[]\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nsum_A=sum(A)\n\njunban=[]\nflg=False\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nsum_A=sum(A)\n\njunban=[]\nflg=False\n\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n tmp=i\n flg=True\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nsum_A=sum(A)\n\njunban=[]\nflg=False\n\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n tmp=i\n flg=True\n\n\nif flg:\n print(\"Possible\")\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nsum_A=sum(A)\n\njunban=[]\nflg=False\n\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n tmp=i\n flg=True\n\n\nif flg:\n print(\"Possible\")\n for i in range(N-1):\n if tmp>i:\n print(i+1)\n else:\n print(N+tmp-i-1)\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nsum_A=sum(A)\n\njunban=[]\nflg=False\n\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n tmp=i\n flg=True\n\n\nif flg:\n print(\"Possible\")\n for i in range(N-1):\n if tmp>i:\n print(i+1)\n else:\n print(N+tmp-i-1)\nelse:\n print(\"Impossible\")\n"
] | 10
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"N, L = map(int, input().split())\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\npre = A[0]\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\npre = A[0]\nindex = -1\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\npre = A[0]\nindex = -1\nfor i in range(1, N):\n if pre + A[i] >= L:\n \n break\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\npre = A[0]\nindex = -1\nfor i in range(1, N):\n if pre + A[i] >= L:\n index = i\n break\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\npre = A[0]\nindex = -1\nfor i in range(1, N):\n if pre + A[i] >= L:\n index = i\n break\n pre = A[i]\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\npre = A[0]\nindex = -1\nfor i in range(1, N):\n if pre + A[i] >= L:\n index = i\n break\n pre = A[i]\n\nif index == -1:\n print(\"Impossible\")\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\npre = A[0]\nindex = -1\nfor i in range(1, N):\n if pre + A[i] >= L:\n index = i\n break\n pre = A[i]\n\nif index == -1:\n print(\"Impossible\")\nelse:\n \n i = 1\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\npre = A[0]\nindex = -1\nfor i in range(1, N):\n if pre + A[i] >= L:\n index = i\n break\n pre = A[i]\n\nif index == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n i = 1\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\npre = A[0]\nindex = -1\nfor i in range(1, N):\n if pre + A[i] >= L:\n index = i\n break\n pre = A[i]\n\nif index == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n i = 1\n while i < index:\n print(i)\n i += 1\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\npre = A[0]\nindex = -1\nfor i in range(1, N):\n if pre + A[i] >= L:\n index = i\n break\n pre = A[i]\n\nif index == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n i = 1\n while i < index:\n print(i)\n i += 1\n i = N - 1\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\npre = A[0]\nindex = -1\nfor i in range(1, N):\n if pre + A[i] >= L:\n index = i\n break\n pre = A[i]\n\nif index == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n i = 1\n while i < index:\n print(i)\n i += 1\n i = N - 1\n while index - 1 < i:\n print(i)\n i -= 1\n"
] | 14
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"N, L = map(int, input().split())\n",
"N, L = map(int, input().split())\n*A, = map(int, input().split())\n",
"N, L = map(int, input().split())\n*A, = map(int, input().split())\nfor i, (a1, a2) in enumerate(zip(A, A[1:])):\n if a1 + a2 >= L:\n print('Possible')\n print(*([j+1 for j in range(i)]+[j+1 for j in range(N-2, i, -1)]+[i+1]), sep='\\n')\n break\n",
"N, L = map(int, input().split())\n*A, = map(int, input().split())\nfor i, (a1, a2) in enumerate(zip(A, A[1:])):\n if a1 + a2 >= L:\n print('Possible')\n print(*([j+1 for j in range(i)]+[j+1 for j in range(N-2, i, -1)]+[i+1]), sep='\\n')\n break\nelse:\n print('Impossible')\n"
] | 5
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"f = 0\n\n#print(t)\n",
"N, L = map(int, input().split())\n\n\nf = 0\n\n#print(t)\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\nf = 0\n\n#print(t)\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\nf = 0\nfor i in range(N-1):\n if a[i] + a[i+1] >= L:\n f = 1\n t = i\n break\n#print(t)\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\nf = 0\nfor i in range(N-1):\n if a[i] + a[i+1] >= L:\n f = 1\n t = i\n break\n#print(t)\nif f == 0:\n print(\"Impossible\")\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\nf = 0\nfor i in range(N-1):\n if a[i] + a[i+1] >= L:\n f = 1\n t = i\n break\n#print(t)\nif f == 0:\n print(\"Impossible\")\nelse:\n \n ans = []\n \n \n #print(ans)\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\nf = 0\nfor i in range(N-1):\n if a[i] + a[i+1] >= L:\n f = 1\n t = i\n break\n#print(t)\nif f == 0:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n ans = []\n \n \n #print(ans)\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\nf = 0\nfor i in range(N-1):\n if a[i] + a[i+1] >= L:\n f = 1\n t = i\n break\n#print(t)\nif f == 0:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n ans = []\n for i in range(t):\n ans.append(i+1)\n \n #print(ans)\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\nf = 0\nfor i in range(N-1):\n if a[i] + a[i+1] >= L:\n f = 1\n t = i\n break\n#print(t)\nif f == 0:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n ans = []\n for i in range(t):\n ans.append(i+1)\n for i in range(N-1, t, -1):\n ans.append(i)\n #print(ans)\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\nf = 0\nfor i in range(N-1):\n if a[i] + a[i+1] >= L:\n f = 1\n t = i\n break\n#print(t)\nif f == 0:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n ans = []\n for i in range(t):\n ans.append(i+1)\n for i in range(N-1, t, -1):\n ans.append(i)\n #print(ans)\n for x in ans:\n print(str(x))\n"
] | 11
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"s=10**23\n\n\nL=[]\n\n\n#print(L,s)\n",
"import sys\n\n\ns=10**23\n\n\nL=[]\n\n\n#print(L,s)\n",
"import sys\nN,L=map(int,input().split())\n\ns=10**23\n\n\nL=[]\n\n\n#print(L,s)\n",
"import sys\nN,L=map(int,input().split())\nA=[int(i) for i in input().split()]\ns=10**23\n\n\nL=[]\n\n\n#print(L,s)\n",
"import sys\nN,L=map(int,input().split())\nA=[int(i) for i in input().split()]\ns=10**23\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n s=i\n break\n\n\nL=[]\n\n\n#print(L,s)\n",
"import sys\nN,L=map(int,input().split())\nA=[int(i) for i in input().split()]\ns=10**23\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n s=i\n break\nif s==10**23:\n print('Impossible')\n \n\nL=[]\n\n\n#print(L,s)\n",
"import sys\nN,L=map(int,input().split())\nA=[int(i) for i in input().split()]\ns=10**23\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n s=i\n break\nif s==10**23:\n print('Impossible')\n sys.exit()\n\nL=[]\n\n\n#print(L,s)\n",
"import sys\nN,L=map(int,input().split())\nA=[int(i) for i in input().split()]\ns=10**23\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n s=i\n break\nif s==10**23:\n print('Impossible')\n sys.exit()\nprint('Possible')\nL=[]\n\n\n#print(L,s)\n",
"import sys\nN,L=map(int,input().split())\nA=[int(i) for i in input().split()]\ns=10**23\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n s=i\n break\nif s==10**23:\n print('Impossible')\n sys.exit()\nprint('Possible')\nL=[]\nfor i in range(s):\n L.append(i+1)\n\n\n#print(L,s)\n",
"import sys\nN,L=map(int,input().split())\nA=[int(i) for i in input().split()]\ns=10**23\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n s=i\n break\nif s==10**23:\n print('Impossible')\n sys.exit()\nprint('Possible')\nL=[]\nfor i in range(s):\n L.append(i+1)\nfor i in range(N-2,s,-1):\n L.append(i+1)\n\n#print(L,s)\n",
"import sys\nN,L=map(int,input().split())\nA=[int(i) for i in input().split()]\ns=10**23\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n s=i\n break\nif s==10**23:\n print('Impossible')\n sys.exit()\nprint('Possible')\nL=[]\nfor i in range(s):\n L.append(i+1)\nfor i in range(N-2,s,-1):\n L.append(i+1)\nL.append(s+1)\n#print(L,s)\n",
"import sys\nN,L=map(int,input().split())\nA=[int(i) for i in input().split()]\ns=10**23\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n s=i\n break\nif s==10**23:\n print('Impossible')\n sys.exit()\nprint('Possible')\nL=[]\nfor i in range(s):\n L.append(i+1)\nfor i in range(N-2,s,-1):\n L.append(i+1)\nL.append(s+1)\n#print(L,s)\nprint('\\n'.join(map(str,L)))\n"
] | 13
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"aa_i=-1\n\n#print(aa_max,aa_i)\n",
"N,L=map(int,input().split())\n\n\naa_i=-1\n\n#print(aa_max,aa_i)\n",
"N,L=map(int,input().split())\na=list(map(int,input().split()))\n\n\naa_i=-1\n\n#print(aa_max,aa_i)\n",
"N,L=map(int,input().split())\na=list(map(int,input().split()))\n\naa_max=-1\naa_i=-1\n\n#print(aa_max,aa_i)\n",
"N,L=map(int,input().split())\na=list(map(int,input().split()))\n\naa_max=-1\naa_i=-1\nfor i in range(N-1):\n if a[i]+a[i+1]>aa_max:\n aa_max=a[i]+a[i+1]\n aa_i=i\n#print(aa_max,aa_i)\n",
"N,L=map(int,input().split())\na=list(map(int,input().split()))\n\naa_max=-1\naa_i=-1\nfor i in range(N-1):\n if a[i]+a[i+1]>aa_max:\n aa_max=a[i]+a[i+1]\n aa_i=i\n#print(aa_max,aa_i)\n\nif aa_max<L:\n print(\"Impossible\")\n",
"N,L=map(int,input().split())\na=list(map(int,input().split()))\n\naa_max=-1\naa_i=-1\nfor i in range(N-1):\n if a[i]+a[i+1]>aa_max:\n aa_max=a[i]+a[i+1]\n aa_i=i\n#print(aa_max,aa_i)\n\nif aa_max<L:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n",
"N,L=map(int,input().split())\na=list(map(int,input().split()))\n\naa_max=-1\naa_i=-1\nfor i in range(N-1):\n if a[i]+a[i+1]>aa_max:\n aa_max=a[i]+a[i+1]\n aa_i=i\n#print(aa_max,aa_i)\n\nif aa_max<L:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(aa_i):\n print(i+1)\n",
"N,L=map(int,input().split())\na=list(map(int,input().split()))\n\naa_max=-1\naa_i=-1\nfor i in range(N-1):\n if a[i]+a[i+1]>aa_max:\n aa_max=a[i]+a[i+1]\n aa_i=i\n#print(aa_max,aa_i)\n\nif aa_max<L:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(aa_i):\n print(i+1)\n for i in range(N-2,aa_i-1,-1):\n print(i+1)\n"
] | 10
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"ans = []\n",
"N, L = map(int, input().split())\n\n\nans = []\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\n\nans = []\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\nfor i in range(1, N):\n if A[i-1] + A[i] >= L:\n X = i\n break\n\n\nans = []\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\nfor i in range(1, N):\n if A[i-1] + A[i] >= L:\n X = i\n break\nelse:\n \n exit()\n\nans = []\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\nfor i in range(1, N):\n if A[i-1] + A[i] >= L:\n X = i\n break\nelse:\n print(\"Impossible\")\n exit()\n\nans = []\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\nfor i in range(1, N):\n if A[i-1] + A[i] >= L:\n X = i\n break\nelse:\n print(\"Impossible\")\n exit()\n\nans = []\nfor i in range(1, X):\n ans.append(i)\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\nfor i in range(1, N):\n if A[i-1] + A[i] >= L:\n X = i\n break\nelse:\n print(\"Impossible\")\n exit()\n\nans = []\nfor i in range(1, X):\n ans.append(i)\nfor i in range(N-1, X, -1):\n ans.append(i)\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\nfor i in range(1, N):\n if A[i-1] + A[i] >= L:\n X = i\n break\nelse:\n print(\"Impossible\")\n exit()\n\nans = []\nfor i in range(1, X):\n ans.append(i)\nfor i in range(N-1, X, -1):\n ans.append(i)\nans.append(X)\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\nfor i in range(1, N):\n if A[i-1] + A[i] >= L:\n X = i\n break\nelse:\n print(\"Impossible\")\n exit()\n\nans = []\nfor i in range(1, X):\n ans.append(i)\nfor i in range(N-1, X, -1):\n ans.append(i)\nans.append(X)\nprint(\"Possible\")\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\nfor i in range(1, N):\n if A[i-1] + A[i] >= L:\n X = i\n break\nelse:\n print(\"Impossible\")\n exit()\n\nans = []\nfor i in range(1, X):\n ans.append(i)\nfor i in range(N-1, X, -1):\n ans.append(i)\nans.append(X)\nprint(\"Possible\")\nprint(*ans, sep=\"\\n\")\n"
] | 12
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"k=-1\n",
"import sys\n\n\nk=-1\n",
"import sys\nn,x=map(int,input().split())\n\nk=-1\n",
"import sys\nn,x=map(int,input().split())\na=list(map(int,input().split()))\nk=-1\n",
"import sys\nn,x=map(int,input().split())\na=list(map(int,input().split()))\nk=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=x:\n k=i\n break\n",
"import sys\nn,x=map(int,input().split())\na=list(map(int,input().split()))\nk=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=x:\n k=i\n break\n if i==n-2:\n print('Impossible')\n",
"import sys\nn,x=map(int,input().split())\na=list(map(int,input().split()))\nk=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=x:\n k=i\n break\n if i==n-2:\n print('Impossible')\n sys.exit()\n",
"import sys\nn,x=map(int,input().split())\na=list(map(int,input().split()))\nk=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=x:\n k=i\n break\n if i==n-2:\n print('Impossible')\n sys.exit()\nprint('Possible')\n",
"import sys\nn,x=map(int,input().split())\na=list(map(int,input().split()))\nk=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=x:\n k=i\n break\n if i==n-2:\n print('Impossible')\n sys.exit()\nprint('Possible')\nfor i in range(k):\n print(i+1)\n",
"import sys\nn,x=map(int,input().split())\na=list(map(int,input().split()))\nk=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=x:\n k=i\n break\n if i==n-2:\n print('Impossible')\n sys.exit()\nprint('Possible')\nfor i in range(k):\n print(i+1)\nfor i in range(n-2,k,-1):\n print(i+1)\n",
"import sys\nn,x=map(int,input().split())\na=list(map(int,input().split()))\nk=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=x:\n k=i\n break\n if i==n-2:\n print('Impossible')\n sys.exit()\nprint('Possible')\nfor i in range(k):\n print(i+1)\nfor i in range(n-2,k,-1):\n print(i+1)\nprint(k+1)\n"
] | 12
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"ai = lambda: list(map(int, input().split()))\n\n\na = ai()\n\nf = 0\n",
"ai = lambda: list(map(int, input().split()))\n\nn,l = ai()\na = ai()\n\nf = 0\n",
"ai = lambda: list(map(int, input().split()))\n\nn,l = ai()\na = ai()\n\nf = 0\nfor i in range(1,n):\n if a[i-1]+a[i] >= l:\n f = 1\n key = i\n break\n",
"ai = lambda: list(map(int, input().split()))\n\nn,l = ai()\na = ai()\n\nf = 0\nfor i in range(1,n):\n if a[i-1]+a[i] >= l:\n f = 1\n key = i\n break\nif f:\n print('Possible')\n",
"ai = lambda: list(map(int, input().split()))\n\nn,l = ai()\na = ai()\n\nf = 0\nfor i in range(1,n):\n if a[i-1]+a[i] >= l:\n f = 1\n key = i\n break\nif f:\n print('Possible')\n b = list(range(n))\n",
"ai = lambda: list(map(int, input().split()))\n\nn,l = ai()\na = ai()\n\nf = 0\nfor i in range(1,n):\n if a[i-1]+a[i] >= l:\n f = 1\n key = i\n break\nif f:\n print('Possible')\n b = list(range(n))\n c = b[1:key]\n",
"ai = lambda: list(map(int, input().split()))\n\nn,l = ai()\na = ai()\n\nf = 0\nfor i in range(1,n):\n if a[i-1]+a[i] >= l:\n f = 1\n key = i\n break\nif f:\n print('Possible')\n b = list(range(n))\n c = b[1:key]\n c += b[-1:key:-1]\n",
"ai = lambda: list(map(int, input().split()))\n\nn,l = ai()\na = ai()\n\nf = 0\nfor i in range(1,n):\n if a[i-1]+a[i] >= l:\n f = 1\n key = i\n break\nif f:\n print('Possible')\n b = list(range(n))\n c = b[1:key]\n c += b[-1:key:-1]\n c += [key]\n",
"ai = lambda: list(map(int, input().split()))\n\nn,l = ai()\na = ai()\n\nf = 0\nfor i in range(1,n):\n if a[i-1]+a[i] >= l:\n f = 1\n key = i\n break\nif f:\n print('Possible')\n b = list(range(n))\n c = b[1:key]\n c += b[-1:key:-1]\n c += [key]\n print(*c, sep='\\n')\n",
"ai = lambda: list(map(int, input().split()))\n\nn,l = ai()\na = ai()\n\nf = 0\nfor i in range(1,n):\n if a[i-1]+a[i] >= l:\n f = 1\n key = i\n break\nif f:\n print('Possible')\n b = list(range(n))\n c = b[1:key]\n c += b[-1:key:-1]\n c += [key]\n print(*c, sep='\\n')\nelse:\n print('Impossible')\n"
] | 11
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"c = -1\n",
"n,l = [int(x) for x in input().split()]\n\nc = -1\n",
"n,l = [int(x) for x in input().split()]\nx = [int(x) for x in input().split()]\nc = -1\n",
"n,l = [int(x) for x in input().split()]\nx = [int(x) for x in input().split()]\nc = -1\nfor i in range(n-1):\n if x[i] + x[i+1] >= l:\n c = i\n break\n",
"n,l = [int(x) for x in input().split()]\nx = [int(x) for x in input().split()]\nc = -1\nfor i in range(n-1):\n if x[i] + x[i+1] >= l:\n c = i\n break\n\nif c == -1:\n print(\"Impossible\")\n",
"n,l = [int(x) for x in input().split()]\nx = [int(x) for x in input().split()]\nc = -1\nfor i in range(n-1):\n if x[i] + x[i+1] >= l:\n c = i\n break\n\nif c == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n",
"n,l = [int(x) for x in input().split()]\nx = [int(x) for x in input().split()]\nc = -1\nfor i in range(n-1):\n if x[i] + x[i+1] >= l:\n c = i\n break\n\nif c == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(1,c+1):\n print(i)\n",
"n,l = [int(x) for x in input().split()]\nx = [int(x) for x in input().split()]\nc = -1\nfor i in range(n-1):\n if x[i] + x[i+1] >= l:\n c = i\n break\n\nif c == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(1,c+1):\n print(i)\n for i in range(1,n - c):\n print(n - i)\n"
] | 9
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"N,L=list(map(int,input().split()))\nA=list(map(int,input().split()))\n\n\ndef find():\n for i in range(N-1):\n if A[i]+A[i+1] >=L:\n return i\n \n\nn=find()\n\n\nn+=1\n\n\nprint(n)\n",
"N,L=list(map(int,input().split()))\nA=list(map(int,input().split()))\n\n\ndef find():\n for i in range(N-1):\n if A[i]+A[i+1] >=L:\n return i\n return False\n\nn=find()\n\n\nn+=1\n\n\nprint(n)\n",
"N,L=list(map(int,input().split()))\nA=list(map(int,input().split()))\n\n\ndef find():\n for i in range(N-1):\n if A[i]+A[i+1] >=L:\n return i\n return False\n\nn=find()\nif n is False:\n \n exit(0)\n\nn+=1\n\n\nprint(n)\n",
"N,L=list(map(int,input().split()))\nA=list(map(int,input().split()))\n\n\ndef find():\n for i in range(N-1):\n if A[i]+A[i+1] >=L:\n return i\n return False\n\nn=find()\nif n is False:\n print('Impossible')\n exit(0)\n\nn+=1\n\n\nprint(n)\n",
"N,L=list(map(int,input().split()))\nA=list(map(int,input().split()))\n\n\ndef find():\n for i in range(N-1):\n if A[i]+A[i+1] >=L:\n return i\n return False\n\nn=find()\nif n is False:\n print('Impossible')\n exit(0)\n\nn+=1\nprint('Possible')\n\n\nprint(n)\n",
"N,L=list(map(int,input().split()))\nA=list(map(int,input().split()))\n\n\ndef find():\n for i in range(N-1):\n if A[i]+A[i+1] >=L:\n return i\n return False\n\nn=find()\nif n is False:\n print('Impossible')\n exit(0)\n\nn+=1\nprint('Possible')\nfor i in range(1,n):\n print(i)\n\nprint(n)\n",
"N,L=list(map(int,input().split()))\nA=list(map(int,input().split()))\n\n\ndef find():\n for i in range(N-1):\n if A[i]+A[i+1] >=L:\n return i\n return False\n\nn=find()\nif n is False:\n print('Impossible')\n exit(0)\n\nn+=1\nprint('Possible')\nfor i in range(1,n):\n print(i)\nfor i in range(N-1,n,-1):\n print(i)\nprint(n)\n"
] | 8
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"N, L = map(int, input().split())\n",
"N, L = map(int, input().split())\nAs = list(map(int, input().split()))\n",
"N, L = map(int, input().split())\nAs = list(map(int, input().split()))\n\nfor iKnot in range(1, N):\n if As[iKnot - 1] + As[iKnot] >= L:\n print('Possible')\n for i in range(1, iKnot):\n print(i)\n for i in reversed(range(iKnot + 1, N)):\n print(i)\n print(iKnot)\n break\n",
"N, L = map(int, input().split())\nAs = list(map(int, input().split()))\n\nfor iKnot in range(1, N):\n if As[iKnot - 1] + As[iKnot] >= L:\n print('Possible')\n for i in range(1, iKnot):\n print(i)\n for i in reversed(range(iKnot + 1, N)):\n print(i)\n print(iKnot)\n break\nelse:\n print('Impossible')\n"
] | 5
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"N, L = map(int, input().split())\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\nsum = [0]*(N - 1)\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\nsum = [0]*(N - 1)\nfor i in range(N-1):\n sum[i] = a[i] + a[i+1]\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\nsum = [0]*(N - 1)\nfor i in range(N-1):\n sum[i] = a[i] + a[i+1]\n\nif max(sum) < L:\n print(\"Impossible\")\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\nsum = [0]*(N - 1)\nfor i in range(N-1):\n sum[i] = a[i] + a[i+1]\n\nif max(sum) < L:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\nsum = [0]*(N - 1)\nfor i in range(N-1):\n sum[i] = a[i] + a[i+1]\n\nif max(sum) < L:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n id = sum.index(max(sum))\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\nsum = [0]*(N - 1)\nfor i in range(N-1):\n sum[i] = a[i] + a[i+1]\n\nif max(sum) < L:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n id = sum.index(max(sum))\n for i in range(id):\n print(i+1)\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\nsum = [0]*(N - 1)\nfor i in range(N-1):\n sum[i] = a[i] + a[i+1]\n\nif max(sum) < L:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n id = sum.index(max(sum))\n for i in range(id):\n print(i+1)\n for i in reversed(range(id+1, N-1)):\n print(i+1)\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\nsum = [0]*(N - 1)\nfor i in range(N-1):\n sum[i] = a[i] + a[i+1]\n\nif max(sum) < L:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n id = sum.index(max(sum))\n for i in range(id):\n print(i+1)\n for i in reversed(range(id+1, N-1)):\n print(i+1)\n print(id+1)\n"
] | 11
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"n,l=map(int,input().split())\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nfailflag=1\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nfailflag=1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n failflag=0\n k=i\n break\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nfailflag=1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n failflag=0\n k=i\n break\nif failflag==1:\n print('Impossible')\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nfailflag=1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n failflag=0\n k=i\n break\nif failflag==1:\n print('Impossible')\nelse:\n print('Possible')\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nfailflag=1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n failflag=0\n k=i\n break\nif failflag==1:\n print('Impossible')\nelse:\n print('Possible')\n for i in range(1,k+1):\n print(i)\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nfailflag=1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n failflag=0\n k=i\n break\nif failflag==1:\n print('Impossible')\nelse:\n print('Possible')\n for i in range(1,k+1):\n print(i)\n for i in range(n-1-k):\n print(n-1-i)\n"
] | 9
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"N,L = map(int,input().split())\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nB = [A[i-1] + A[i] for i in range(1,N)]\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nB = [A[i-1] + A[i] for i in range(1,N)]\n\nif max(B) < L :\n print(\"Impossible\")\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nB = [A[i-1] + A[i] for i in range(1,N)]\n\nif max(B) < L :\n print(\"Impossible\")\nelse :\n print(\"Possible\")\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nB = [A[i-1] + A[i] for i in range(1,N)]\n\nif max(B) < L :\n print(\"Impossible\")\nelse :\n print(\"Possible\")\n\n ind = B.index(max(B))\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nB = [A[i-1] + A[i] for i in range(1,N)]\n\nif max(B) < L :\n print(\"Impossible\")\nelse :\n print(\"Possible\")\n\n ind = B.index(max(B))\n for i in range(ind) :\n print(i+1)\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nB = [A[i-1] + A[i] for i in range(1,N)]\n\nif max(B) < L :\n print(\"Impossible\")\nelse :\n print(\"Possible\")\n\n ind = B.index(max(B))\n for i in range(ind) :\n print(i+1)\n for i in range(N-1,ind,-1) :\n print(i)\n"
] | 9
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"N,L = map(int,input().split())\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nlast = -1\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nlast = -1\nfor i,(a,b) in enumerate(zip(A,A[1:])):\n if a+b >= L:\n last = i\n break\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nlast = -1\nfor i,(a,b) in enumerate(zip(A,A[1:])):\n if a+b >= L:\n last = i\n break\nif last < 0:\n \n exit()\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nlast = -1\nfor i,(a,b) in enumerate(zip(A,A[1:])):\n if a+b >= L:\n last = i\n break\nif last < 0:\n print('Impossible')\n exit()\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nlast = -1\nfor i,(a,b) in enumerate(zip(A,A[1:])):\n if a+b >= L:\n last = i\n break\nif last < 0:\n print('Impossible')\n exit()\nprint('Possible')\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nlast = -1\nfor i,(a,b) in enumerate(zip(A,A[1:])):\n if a+b >= L:\n last = i\n break\nif last < 0:\n print('Impossible')\n exit()\nprint('Possible')\n\nans = list(range(1,i+1)) + list(range(N-1,i,-1))\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nlast = -1\nfor i,(a,b) in enumerate(zip(A,A[1:])):\n if a+b >= L:\n last = i\n break\nif last < 0:\n print('Impossible')\n exit()\nprint('Possible')\n\nans = list(range(1,i+1)) + list(range(N-1,i,-1))\nprint(*ans, sep='\\n')\n"
] | 10
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"from collections import deque\n\nn,l=map(int,input().split())\na=list(map(int,input().split()))\n\ns=\"\"\n\nfor i in range(1,n):\n if a[i-1]+a[i]>=l:\n s=\"p\"\n break\n\n\nprint(i)\n",
"from collections import deque\n\nn,l=map(int,input().split())\na=list(map(int,input().split()))\n\ns=\"\"\n\nfor i in range(1,n):\n if a[i-1]+a[i]>=l:\n s=\"p\"\n break\n\nif s==\"\":\n \n exit()\n\n\nprint(i)\n",
"from collections import deque\n\nn,l=map(int,input().split())\na=list(map(int,input().split()))\n\ns=\"\"\n\nfor i in range(1,n):\n if a[i-1]+a[i]>=l:\n s=\"p\"\n break\n\nif s==\"\":\n print(\"Impossible\")\n exit()\n\n\nprint(i)\n",
"from collections import deque\n\nn,l=map(int,input().split())\na=list(map(int,input().split()))\n\ns=\"\"\n\nfor i in range(1,n):\n if a[i-1]+a[i]>=l:\n s=\"p\"\n break\n\nif s==\"\":\n print(\"Impossible\")\n exit()\nprint(\"Possible\")\n\n\nprint(i)\n",
"from collections import deque\n\nn,l=map(int,input().split())\na=list(map(int,input().split()))\n\ns=\"\"\n\nfor i in range(1,n):\n if a[i-1]+a[i]>=l:\n s=\"p\"\n break\n\nif s==\"\":\n print(\"Impossible\")\n exit()\nprint(\"Possible\")\n\nfor j in range(1,i):\n print(j)\n\n\nprint(i)\n",
"from collections import deque\n\nn,l=map(int,input().split())\na=list(map(int,input().split()))\n\ns=\"\"\n\nfor i in range(1,n):\n if a[i-1]+a[i]>=l:\n s=\"p\"\n break\n\nif s==\"\":\n print(\"Impossible\")\n exit()\nprint(\"Possible\")\n\nfor j in range(1,i):\n print(j)\nfor j in range(1,len(a)-i):\n print(len(a)-j)\n\nprint(i)\n"
] | 7
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"cant = 0\n",
"n, L, *a = map(int, open(0).read().split())\n\ncant = 0\n",
"n, L, *a = map(int, open(0).read().split())\n\ncant = 0\nfor i in range(n-1):\n if a[i]+a[i+1]>=L:\n l, r = i, i+1\n break\n",
"n, L, *a = map(int, open(0).read().split())\n\ncant = 0\nfor i in range(n-1):\n if a[i]+a[i+1]>=L:\n l, r = i, i+1\n break\nelse: cant = 1\n",
"n, L, *a = map(int, open(0).read().split())\n\ncant = 0\nfor i in range(n-1):\n if a[i]+a[i+1]>=L:\n l, r = i, i+1\n break\nelse: cant = 1\n\nif cant: print(\"Impossible\")\n",
"n, L, *a = map(int, open(0).read().split())\n\ncant = 0\nfor i in range(n-1):\n if a[i]+a[i+1]>=L:\n l, r = i, i+1\n break\nelse: cant = 1\n\nif cant: print(\"Impossible\")\nelse:\n print(\"Possible\")\n",
"n, L, *a = map(int, open(0).read().split())\n\ncant = 0\nfor i in range(n-1):\n if a[i]+a[i+1]>=L:\n l, r = i, i+1\n break\nelse: cant = 1\n\nif cant: print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(l): print(i+1)\n",
"n, L, *a = map(int, open(0).read().split())\n\ncant = 0\nfor i in range(n-1):\n if a[i]+a[i+1]>=L:\n l, r = i, i+1\n break\nelse: cant = 1\n\nif cant: print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(l): print(i+1)\n for i in range(n-2, l-1, -1): print(i+1)\n"
] | 9
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.