id
stringclasses
1 value
instruction
stringclasses
206 values
trajectory
listlengths
2
137
length
int64
2
137
public_tests
listlengths
1
6
generated_tests
listlengths
4
100
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "f=-1\n", "n,l=map(int,input().split())\n\nf=-1\n", "n,l=map(int,input().split())\na=list(map(int,input().split()))\nf=-1\n", "n,l=map(int,input().split())\na=list(map(int,input().split()))\nf=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n f=i\n break\n", "n,l=map(int,input().split())\na=list(map(int,input().split()))\nf=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n f=i\n break\nif f==-1:\n \n exit()\n", "n,l=map(int,input().split())\na=list(map(int,input().split()))\nf=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n f=i\n break\nif f==-1:\n print(\"Impossible\")\n exit()\n", "n,l=map(int,input().split())\na=list(map(int,input().split()))\nf=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n f=i\n break\nif f==-1:\n print(\"Impossible\")\n exit()\nprint(\"Possible\")\n", "n,l=map(int,input().split())\na=list(map(int,input().split()))\nf=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n f=i\n break\nif f==-1:\n print(\"Impossible\")\n exit()\nprint(\"Possible\")\nfor i in range(n-1):\n if i<f:\n print(i+1)\n elif i>f:\n print(n-i+f)\n", "n,l=map(int,input().split())\na=list(map(int,input().split()))\nf=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n f=i\n break\nif f==-1:\n print(\"Impossible\")\n exit()\nprint(\"Possible\")\nfor i in range(n-1):\n if i<f:\n print(i+1)\n elif i>f:\n print(n-i+f)\nprint(f+1)\n" ]
10
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "#最後に切るものを決める\ni = 0\n", "N, L = map(int, input().split())\n\n\n#最後に切るものを決める\ni = 0\n", "N, L = map(int, input().split())\na = list(map(int, input().split()))\n\n#最後に切るものを決める\ni = 0\n", "N, L = map(int, input().split())\na = list(map(int, input().split()))\n\n#最後に切るものを決める\ni = 0\nflag = False\n", "N, L = map(int, input().split())\na = list(map(int, input().split()))\n\n#最後に切るものを決める\ni = 0\nflag = False\nwhile i < N - 1:\n \n i += 1\n", "N, L = map(int, input().split())\na = list(map(int, input().split()))\n\n#最後に切るものを決める\ni = 0\nflag = False\nwhile i < N - 1:\n if a[i] + a[i + 1] >= L:\n \n break\n i += 1\n", "N, L = map(int, input().split())\na = list(map(int, input().split()))\n\n#最後に切るものを決める\ni = 0\nflag = False\nwhile i < N - 1:\n if a[i] + a[i + 1] >= L:\n flag = True\n break\n i += 1\n", "N, L = map(int, input().split())\na = list(map(int, input().split()))\n\n#最後に切るものを決める\ni = 0\nflag = False\nwhile i < N - 1:\n if a[i] + a[i + 1] >= L:\n flag = True\n break\n i += 1\n\nif not flag:\n print ('Impossible')\n", "N, L = map(int, input().split())\na = list(map(int, input().split()))\n\n#最後に切るものを決める\ni = 0\nflag = False\nwhile i < N - 1:\n if a[i] + a[i + 1] >= L:\n flag = True\n break\n i += 1\n\nif not flag:\n print ('Impossible')\nelse:\n print ('Possible')\n", "N, L = map(int, input().split())\na = list(map(int, input().split()))\n\n#最後に切るものを決める\ni = 0\nflag = False\nwhile i < N - 1:\n if a[i] + a[i + 1] >= L:\n flag = True\n break\n i += 1\n\nif not flag:\n print ('Impossible')\nelse:\n print ('Possible')\n if i > 0:\n for j in range(i):\n print (j + 1)\n", "N, L = map(int, input().split())\na = list(map(int, input().split()))\n\n#最後に切るものを決める\ni = 0\nflag = False\nwhile i < N - 1:\n if a[i] + a[i + 1] >= L:\n flag = True\n break\n i += 1\n\nif not flag:\n print ('Impossible')\nelse:\n print ('Possible')\n if i > 0:\n for j in range(i):\n print (j + 1)\n for j in range(N - 1, i, -1):\n print (j)\n" ]
12
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "tmp=0\n", "n,l=map(int,input().split())\n\n\ntmp=0\n", "n,l=map(int,input().split())\na=list(map(int,input().split()))\n\ntmp=0\n", "n,l=map(int,input().split())\na=list(map(int,input().split()))\nlastmusubi=-1\ntmp=0\n", "n,l=map(int,input().split())\na=list(map(int,input().split()))\nlastmusubi=-1\ntmp=0\nfor i in range(n-1):\n if a[i]+a[i+1]>tmp:\n lastmusubi=i\n tmp=a[i]+a[i+1]\n", "n,l=map(int,input().split())\na=list(map(int,input().split()))\nlastmusubi=-1\ntmp=0\nfor i in range(n-1):\n if a[i]+a[i+1]>tmp:\n lastmusubi=i\n tmp=a[i]+a[i+1]\nif tmp>=l:\n print('Possible')\n", "n,l=map(int,input().split())\na=list(map(int,input().split()))\nlastmusubi=-1\ntmp=0\nfor i in range(n-1):\n if a[i]+a[i+1]>tmp:\n lastmusubi=i\n tmp=a[i]+a[i+1]\nif tmp>=l:\n print('Possible')\n if lastmusubi>0:\n for j in range(lastmusubi):\n print(j+1)\n", "n,l=map(int,input().split())\na=list(map(int,input().split()))\nlastmusubi=-1\ntmp=0\nfor i in range(n-1):\n if a[i]+a[i+1]>tmp:\n lastmusubi=i\n tmp=a[i]+a[i+1]\nif tmp>=l:\n print('Possible')\n if lastmusubi>0:\n for j in range(lastmusubi):\n print(j+1)\n if lastmusubi<n-1:\n for j in range(n-2,lastmusubi,-1):\n print(j+1)\n", "n,l=map(int,input().split())\na=list(map(int,input().split()))\nlastmusubi=-1\ntmp=0\nfor i in range(n-1):\n if a[i]+a[i+1]>tmp:\n lastmusubi=i\n tmp=a[i]+a[i+1]\nif tmp>=l:\n print('Possible')\n if lastmusubi>0:\n for j in range(lastmusubi):\n print(j+1)\n if lastmusubi<n-1:\n for j in range(n-2,lastmusubi,-1):\n print(j+1)\n print(lastmusubi+1)\n", "n,l=map(int,input().split())\na=list(map(int,input().split()))\nlastmusubi=-1\ntmp=0\nfor i in range(n-1):\n if a[i]+a[i+1]>tmp:\n lastmusubi=i\n tmp=a[i]+a[i+1]\nif tmp>=l:\n print('Possible')\n if lastmusubi>0:\n for j in range(lastmusubi):\n print(j+1)\n if lastmusubi<n-1:\n for j in range(n-2,lastmusubi,-1):\n print(j+1)\n print(lastmusubi+1)\nelse:\n print('Impossible')\n" ]
11
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "n,l = map(int,input().split())\n", "n,l = map(int,input().split())\na = list(map(int,input().split()))\n", "n,l = map(int,input().split())\na = list(map(int,input().split()))\nfor i in range(n-1):\n if a[i] + a[i+1] >= l:\n print(\"Possible\")\n break\n", "n,l = map(int,input().split())\na = list(map(int,input().split()))\nfor i in range(n-1):\n if a[i] + a[i+1] >= l:\n print(\"Possible\")\n break\nelse:\n \n exit()\n", "n,l = map(int,input().split())\na = list(map(int,input().split()))\nfor i in range(n-1):\n if a[i] + a[i+1] >= l:\n print(\"Possible\")\n break\nelse:\n print(\"Impossible\")\n exit()\n", "n,l = map(int,input().split())\na = list(map(int,input().split()))\nfor i in range(n-1):\n if a[i] + a[i+1] >= l:\n print(\"Possible\")\n break\nelse:\n print(\"Impossible\")\n exit()\nli = list(range(1,i+1))+list(range(n-1,i+1,-1))+[i+1]\n", "n,l = map(int,input().split())\na = list(map(int,input().split()))\nfor i in range(n-1):\n if a[i] + a[i+1] >= l:\n print(\"Possible\")\n break\nelse:\n print(\"Impossible\")\n exit()\nli = list(range(1,i+1))+list(range(n-1,i+1,-1))+[i+1]\nfor x in li:\n print(x)\n" ]
8
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "k=-1\n", "N,L,*A=map(int,open(0).read().split())\nk=-1\n", "N,L,*A=map(int,open(0).read().split())\nk=-1\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n k=i\n", "N,L,*A=map(int,open(0).read().split())\nk=-1\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n k=i\nif k>=0:\n print('Possible')\n", "N,L,*A=map(int,open(0).read().split())\nk=-1\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n k=i\nif k>=0:\n print('Possible')\n for i in range(k+1,N-1)[::-1]:\n print(i+1)\n", "N,L,*A=map(int,open(0).read().split())\nk=-1\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n k=i\nif k>=0:\n print('Possible')\n for i in range(k+1,N-1)[::-1]:\n print(i+1)\n for i in range(k+1):\n print(i+1)\n", "N,L,*A=map(int,open(0).read().split())\nk=-1\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n k=i\nif k>=0:\n print('Possible')\n for i in range(k+1,N-1)[::-1]:\n print(i+1)\n for i in range(k+1):\n print(i+1)\nelse:\n print('Impossible')\n" ]
8
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "p = 0\n", "N, L = map(int, input().split())\n\np = 0\n", "N, L = map(int, input().split())\nA = list(map(int, input().split()))\np = 0\n", "N, L = map(int, input().split())\nA = list(map(int, input().split()))\np = 0\nfor i in range(N-1):\n if A[i] + A[i+1] >= L:\n p = i\n break\n", "N, L = map(int, input().split())\nA = list(map(int, input().split()))\np = 0\nfor i in range(N-1):\n if A[i] + A[i+1] >= L:\n p = i\n break\nelse:\n \n exit()\n", "N, L = map(int, input().split())\nA = list(map(int, input().split()))\np = 0\nfor i in range(N-1):\n if A[i] + A[i+1] >= L:\n p = i\n break\nelse:\n print(\"Impossible\")\n exit()\n", "N, L = map(int, input().split())\nA = list(map(int, input().split()))\np = 0\nfor i in range(N-1):\n if A[i] + A[i+1] >= L:\n p = i\n break\nelse:\n print(\"Impossible\")\n exit()\nprint(\"Possible\")\n", "N, L = map(int, input().split())\nA = list(map(int, input().split()))\np = 0\nfor i in range(N-1):\n if A[i] + A[i+1] >= L:\n p = i\n break\nelse:\n print(\"Impossible\")\n exit()\nprint(\"Possible\")\nfor i in range(1, p+1):\n print(i)\n", "N, L = map(int, input().split())\nA = list(map(int, input().split()))\np = 0\nfor i in range(N-1):\n if A[i] + A[i+1] >= L:\n p = i\n break\nelse:\n print(\"Impossible\")\n exit()\nprint(\"Possible\")\nfor i in range(1, p+1):\n print(i)\nfor i in range(N-1, p, -1):\n print(i)\n" ]
10
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "i=0\n", "n,l,*a=map(int,open(0).read().split())\ni=0\n", "n,l,*a=map(int,open(0).read().split())\ni=0\nfor a,b in zip(a,a[1:]):i+=1;a+b>=l>exit(print('Possible',*range(1,i),*range(n-1,i-1,-1)))\n", "n,l,*a=map(int,open(0).read().split())\ni=0\nfor a,b in zip(a,a[1:]):i+=1;a+b>=l>exit(print('Possible',*range(1,i),*range(n-1,i-1,-1)))\nprint('Impossible')\n" ]
5
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "go=False\n", "n,l=map(int,input().split())\n\n\ngo=False\n", "n,l=map(int,input().split())\nA=[int(i) for i in input().split()]\n\n\ngo=False\n", "n,l=map(int,input().split())\nA=[int(i) for i in input().split()]\n\nwa=[A[i]+A[i+1] for i in range(n-1)]\n\n\ngo=False\n", "n,l=map(int,input().split())\nA=[int(i) for i in input().split()]\n\nwa=[A[i]+A[i+1] for i in range(n-1)]\nlim=max(wa)\n\n\ngo=False\n", "n,l=map(int,input().split())\nA=[int(i) for i in input().split()]\n\nwa=[A[i]+A[i+1] for i in range(n-1)]\nlim=max(wa)\nknot=wa.index(lim)\n\ngo=False\n", "n,l=map(int,input().split())\nA=[int(i) for i in input().split()]\n\nwa=[A[i]+A[i+1] for i in range(n-1)]\nlim=max(wa)\nknot=wa.index(lim)\n\ngo=False\nif l<=lim:\n \n go=True\n", "n,l=map(int,input().split())\nA=[int(i) for i in input().split()]\n\nwa=[A[i]+A[i+1] for i in range(n-1)]\nlim=max(wa)\nknot=wa.index(lim)\n\ngo=False\nif l<=lim:\n print(\"Possible\")\n go=True\n", "n,l=map(int,input().split())\nA=[int(i) for i in input().split()]\n\nwa=[A[i]+A[i+1] for i in range(n-1)]\nlim=max(wa)\nknot=wa.index(lim)\n\ngo=False\nif l<=lim:\n print(\"Possible\")\n go=True\nelse:\n print(\"Impossible\")\n", "n,l=map(int,input().split())\nA=[int(i) for i in input().split()]\n\nwa=[A[i]+A[i+1] for i in range(n-1)]\nlim=max(wa)\nknot=wa.index(lim)\n\ngo=False\nif l<=lim:\n print(\"Possible\")\n go=True\nelse:\n print(\"Impossible\")\n\nif go:\n for i in range(knot):\n print(i+1)\n", "n,l=map(int,input().split())\nA=[int(i) for i in input().split()]\n\nwa=[A[i]+A[i+1] for i in range(n-1)]\nlim=max(wa)\nknot=wa.index(lim)\n\ngo=False\nif l<=lim:\n print(\"Possible\")\n go=True\nelse:\n print(\"Impossible\")\n\nif go:\n for i in range(knot):\n print(i+1)\n for i in range(n-knot-2):\n print(n-i-1)\n", "n,l=map(int,input().split())\nA=[int(i) for i in input().split()]\n\nwa=[A[i]+A[i+1] for i in range(n-1)]\nlim=max(wa)\nknot=wa.index(lim)\n\ngo=False\nif l<=lim:\n print(\"Possible\")\n go=True\nelse:\n print(\"Impossible\")\n\nif go:\n for i in range(knot):\n print(i+1)\n for i in range(n-knot-2):\n print(n-i-1)\n print(knot+1)\n" ]
13
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "j = -1\n", "N, L = map(int, input().split())\n\n\nj = -1\n", "N, L = map(int, input().split())\na = [int(c) for c in input().split()]\n\nj = -1\n", "N, L = map(int, input().split())\na = [int(c) for c in input().split()]\nm = 10**9\nj = -1\n", "N, L = map(int, input().split())\na = [int(c) for c in input().split()]\nm = 10**9\nj = -1\nfor i in range(N-1):\n if a[i]+a[i+1]>=L:\n print('Possible')\n for j in range(1,i+1):\n print(j)\n for j in range(N-1, i+1, -1):\n print(j)\n print(i+1)\n break\n", "N, L = map(int, input().split())\na = [int(c) for c in input().split()]\nm = 10**9\nj = -1\nfor i in range(N-1):\n if a[i]+a[i+1]>=L:\n print('Possible')\n for j in range(1,i+1):\n print(j)\n for j in range(N-1, i+1, -1):\n print(j)\n print(i+1)\n break\nelse:\n print('Impossible')\n" ]
7
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "ans=[]\n", "temp=input().split()\n\n\nans=[]\n", "temp=input().split()\nN=int(temp[0])\n\n\nans=[]\n", "temp=input().split()\nN=int(temp[0])\nL=int(temp[1])\n\n\nans=[]\n", "temp=input().split()\nN=int(temp[0])\nL=int(temp[1])\na=[int(i) for i in input().split()]\n\nans=[]\n", "temp=input().split()\nN=int(temp[0])\nL=int(temp[1])\na=[int(i) for i in input().split()]\nflag=False\nans=[]\n", "temp=input().split()\nN=int(temp[0])\nL=int(temp[1])\na=[int(i) for i in input().split()]\nflag=False\nans=[]\n\nfor i in range(N-1):\n if a[i]+a[i+1]>=L:\n print(\"Possible\")\n flag=True\n ans.append(i)\n break\n", "temp=input().split()\nN=int(temp[0])\nL=int(temp[1])\na=[int(i) for i in input().split()]\nflag=False\nans=[]\n\nfor i in range(N-1):\n if a[i]+a[i+1]>=L:\n print(\"Possible\")\n flag=True\n ans.append(i)\n break\nelse:\n print(\"Impossible\")\n", "temp=input().split()\nN=int(temp[0])\nL=int(temp[1])\na=[int(i) for i in input().split()]\nflag=False\nans=[]\n\nfor i in range(N-1):\n if a[i]+a[i+1]>=L:\n print(\"Possible\")\n flag=True\n ans.append(i)\n break\nelse:\n print(\"Impossible\")\n\nif flag==True:\n while ans[-1]>0:\n ans.append(ans[-1]-1)\n", "temp=input().split()\nN=int(temp[0])\nL=int(temp[1])\na=[int(i) for i in input().split()]\nflag=False\nans=[]\n\nfor i in range(N-1):\n if a[i]+a[i+1]>=L:\n print(\"Possible\")\n flag=True\n ans.append(i)\n break\nelse:\n print(\"Impossible\")\n\nif flag==True:\n while ans[-1]>0:\n ans.append(ans[-1]-1)\n if ans[0]<N-1:\n ans.append(ans[0]+1)\n", "temp=input().split()\nN=int(temp[0])\nL=int(temp[1])\na=[int(i) for i in input().split()]\nflag=False\nans=[]\n\nfor i in range(N-1):\n if a[i]+a[i+1]>=L:\n print(\"Possible\")\n flag=True\n ans.append(i)\n break\nelse:\n print(\"Impossible\")\n\nif flag==True:\n while ans[-1]>0:\n ans.append(ans[-1]-1)\n if ans[0]<N-1:\n ans.append(ans[0]+1)\n while ans[-1]<N-2:\n ans.append(ans[-1]+1)\n", "temp=input().split()\nN=int(temp[0])\nL=int(temp[1])\na=[int(i) for i in input().split()]\nflag=False\nans=[]\n\nfor i in range(N-1):\n if a[i]+a[i+1]>=L:\n print(\"Possible\")\n flag=True\n ans.append(i)\n break\nelse:\n print(\"Impossible\")\n\nif flag==True:\n while ans[-1]>0:\n ans.append(ans[-1]-1)\n if ans[0]<N-1:\n ans.append(ans[0]+1)\n while ans[-1]<N-2:\n ans.append(ans[-1]+1)\n for i in range(N-2,-1,-1):\n print(ans[i]+1)\n" ]
13
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "n, l = map(int,input().split())\n", "n, l = map(int,input().split())\nA = list(map(int,input().split()))\n", "n, l = map(int,input().split())\nA = list(map(int,input().split()))\n\nlast = -1\n", "n, l = map(int,input().split())\nA = list(map(int,input().split()))\n\nlast = -1\nfor i in range(n-1):\n if A[i] + A[i+1] >= l:\n last = i\n break\n", "n, l = map(int,input().split())\nA = list(map(int,input().split()))\n\nlast = -1\nfor i in range(n-1):\n if A[i] + A[i+1] >= l:\n last = i\n break\n\nif last == -1:\n print(\"Impossible\")\n", "n, l = map(int,input().split())\nA = list(map(int,input().split()))\n\nlast = -1\nfor i in range(n-1):\n if A[i] + A[i+1] >= l:\n last = i\n break\n\nif last == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n", "n, l = map(int,input().split())\nA = list(map(int,input().split()))\n\nlast = -1\nfor i in range(n-1):\n if A[i] + A[i+1] >= l:\n last = i\n break\n\nif last == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(last):\n print(i+1)\n", "n, l = map(int,input().split())\nA = list(map(int,input().split()))\n\nlast = -1\nfor i in range(n-1):\n if A[i] + A[i+1] >= l:\n last = i\n break\n\nif last == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(last):\n print(i+1)\n for i in range(n-2, last-1, -1):\n print(i+1)\n" ]
9
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "a=-1\n\n\nprint(a)\n", "import sys\n\n\na=-1\n\n\nprint(a)\n", "import sys\nN,L=map(int,input().split())\n\n\na=-1\n\n\nprint(a)\n", "import sys\nN,L=map(int,input().split())\nA=[int(i) for i in input().split()]\n\na=-1\n\n\nprint(a)\n", "import sys\nN,L=map(int,input().split())\nA=[int(i) for i in input().split()]\nflag=True\na=-1\n\n\nprint(a)\n", "import sys\nN,L=map(int,input().split())\nA=[int(i) for i in input().split()]\nflag=True\na=-1\nfor i in range(N-1):\n if A[i+1]+A[i]>=L:\n flag=False\n a=i+1\n break\n\n\nprint(a)\n", "import sys\nN,L=map(int,input().split())\nA=[int(i) for i in input().split()]\nflag=True\na=-1\nfor i in range(N-1):\n if A[i+1]+A[i]>=L:\n flag=False\n a=i+1\n break\nif flag:\n print('Impossible')\n \n\nprint(a)\n", "import sys\nN,L=map(int,input().split())\nA=[int(i) for i in input().split()]\nflag=True\na=-1\nfor i in range(N-1):\n if A[i+1]+A[i]>=L:\n flag=False\n a=i+1\n break\nif flag:\n print('Impossible')\n sys.exit()\n\n\nprint(a)\n", "import sys\nN,L=map(int,input().split())\nA=[int(i) for i in input().split()]\nflag=True\na=-1\nfor i in range(N-1):\n if A[i+1]+A[i]>=L:\n flag=False\n a=i+1\n break\nif flag:\n print('Impossible')\n sys.exit()\nprint('Possible')\n\n\nprint(a)\n", "import sys\nN,L=map(int,input().split())\nA=[int(i) for i in input().split()]\nflag=True\na=-1\nfor i in range(N-1):\n if A[i+1]+A[i]>=L:\n flag=False\n a=i+1\n break\nif flag:\n print('Impossible')\n sys.exit()\nprint('Possible')\nfor i in range(1,a):\n print(i)\n\nprint(a)\n", "import sys\nN,L=map(int,input().split())\nA=[int(i) for i in input().split()]\nflag=True\na=-1\nfor i in range(N-1):\n if A[i+1]+A[i]>=L:\n flag=False\n a=i+1\n break\nif flag:\n print('Impossible')\n sys.exit()\nprint('Possible')\nfor i in range(1,a):\n print(i)\nfor i in range(N-1,a,-1):\n print(i)\nprint(a)\n" ]
12
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "N, L = map(int, input().split())\n", "N, L = map(int, input().split())\nA = list(map(int, input().split()))\n", "N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\nstart = -1\n", "N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\nstart = -1\nfor i in range(N-1):\n if A[i] + A[i + 1] >= L:\n start = i\n", "N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\nstart = -1\nfor i in range(N-1):\n if A[i] + A[i + 1] >= L:\n start = i\nif start < 0:\n \n exit()\n", "N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\nstart = -1\nfor i in range(N-1):\n if A[i] + A[i + 1] >= L:\n start = i\nif start < 0:\n print(\"Impossible\")\n exit()\n", "N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\nstart = -1\nfor i in range(N-1):\n if A[i] + A[i + 1] >= L:\n start = i\nif start < 0:\n print(\"Impossible\")\n exit()\n\nans = [start + 1]\n", "N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\nstart = -1\nfor i in range(N-1):\n if A[i] + A[i + 1] >= L:\n start = i\nif start < 0:\n print(\"Impossible\")\n exit()\n\nans = [start + 1]\nfor i in range(start + 1, N - 1):\n ans.append(i+1)\n", "N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\nstart = -1\nfor i in range(N-1):\n if A[i] + A[i + 1] >= L:\n start = i\nif start < 0:\n print(\"Impossible\")\n exit()\n\nans = [start + 1]\nfor i in range(start + 1, N - 1):\n ans.append(i+1)\nfor i in reversed(range(start)):\n ans.append(i+1)\n", "N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\nstart = -1\nfor i in range(N-1):\n if A[i] + A[i + 1] >= L:\n start = i\nif start < 0:\n print(\"Impossible\")\n exit()\n\nans = [start + 1]\nfor i in range(start + 1, N - 1):\n ans.append(i+1)\nfor i in reversed(range(start)):\n ans.append(i+1)\n\nans.reverse()\n", "N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\nstart = -1\nfor i in range(N-1):\n if A[i] + A[i + 1] >= L:\n start = i\nif start < 0:\n print(\"Impossible\")\n exit()\n\nans = [start + 1]\nfor i in range(start + 1, N - 1):\n ans.append(i+1)\nfor i in reversed(range(start)):\n ans.append(i+1)\n\nans.reverse()\nprint(\"Possible\")\n", "N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\nstart = -1\nfor i in range(N-1):\n if A[i] + A[i + 1] >= L:\n start = i\nif start < 0:\n print(\"Impossible\")\n exit()\n\nans = [start + 1]\nfor i in range(start + 1, N - 1):\n ans.append(i+1)\nfor i in reversed(range(start)):\n ans.append(i+1)\n\nans.reverse()\nprint(\"Possible\")\nprint(*ans, sep=\"\\n\")\n" ]
13
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "b = 0\nc = 0\n", "N, L = map(int, input().split())\n\nb = 0\nc = 0\n", "N, L = map(int, input().split())\na = list(map(int, input().split()))\nb = 0\nc = 0\n", "N, L = map(int, input().split())\na = list(map(int, input().split()))\nb = 0\nc = 0\nfor i in range(N-1):\n if a[i] + a[i+1] >= L:\n print(\"Possible\")\n b = 1\n c = i\n break\n", "N, L = map(int, input().split())\na = list(map(int, input().split()))\nb = 0\nc = 0\nfor i in range(N-1):\n if a[i] + a[i+1] >= L:\n print(\"Possible\")\n b = 1\n c = i\n break\nelse:\n print(\"Impossible\")\n", "N, L = map(int, input().split())\na = list(map(int, input().split()))\nb = 0\nc = 0\nfor i in range(N-1):\n if a[i] + a[i+1] >= L:\n print(\"Possible\")\n b = 1\n c = i\n break\nelse:\n print(\"Impossible\")\nif b == 1:\n for i in range(1,c+1):\n print(i)\n", "N, L = map(int, input().split())\na = list(map(int, input().split()))\nb = 0\nc = 0\nfor i in range(N-1):\n if a[i] + a[i+1] >= L:\n print(\"Possible\")\n b = 1\n c = i\n break\nelse:\n print(\"Impossible\")\nif b == 1:\n for i in range(1,c+1):\n print(i)\n for i in range(N-1, c, -1):\n print(i)\n" ]
8
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "N, L, *a = map(int, open(0).read().split())\n", "N, L, *a = map(int, open(0).read().split())\nfor i, (n, m) in enumerate(zip(a, a[1:]), 1):\n if n + m >= L:\n print('Possible')\n print('\\n'.join(c for it in (range(1,i), range(N-1,i,-1), [i]) for c in map(str, it)))\n break\n", "N, L, *a = map(int, open(0).read().split())\nfor i, (n, m) in enumerate(zip(a, a[1:]), 1):\n if n + m >= L:\n print('Possible')\n print('\\n'.join(c for it in (range(1,i), range(N-1,i,-1), [i]) for c in map(str, it)))\n break\nelse:\n print('Impossible')\n" ]
4
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "idx = -1\n", "n, k = map(int,input().split())\n\nidx = -1\n", "n, k = map(int,input().split())\na = list(map(int,input().split()))\nidx = -1\n", "n, k = map(int,input().split())\na = list(map(int,input().split()))\nidx = -1\nfor i in range(n-1):\n if a[i]+a[i+1]>=k:\n idx = i\n break\n", "n, k = map(int,input().split())\na = list(map(int,input().split()))\nidx = -1\nfor i in range(n-1):\n if a[i]+a[i+1]>=k:\n idx = i\n break\nif idx == -1:\n \n exit()\n", "n, k = map(int,input().split())\na = list(map(int,input().split()))\nidx = -1\nfor i in range(n-1):\n if a[i]+a[i+1]>=k:\n idx = i\n break\nif idx == -1:\n print('Impossible')\n exit()\n", "n, k = map(int,input().split())\na = list(map(int,input().split()))\nidx = -1\nfor i in range(n-1):\n if a[i]+a[i+1]>=k:\n idx = i\n break\nif idx == -1:\n print('Impossible')\n exit()\nelse:\n print('Possible')\n", "n, k = map(int,input().split())\na = list(map(int,input().split()))\nidx = -1\nfor i in range(n-1):\n if a[i]+a[i+1]>=k:\n idx = i\n break\nif idx == -1:\n print('Impossible')\n exit()\nelse:\n print('Possible')\n for i in range(1, idx+1):\n print(i)\n", "n, k = map(int,input().split())\na = list(map(int,input().split()))\nidx = -1\nfor i in range(n-1):\n if a[i]+a[i+1]>=k:\n idx = i\n break\nif idx == -1:\n print('Impossible')\n exit()\nelse:\n print('Possible')\n for i in range(1, idx+1):\n print(i)\n for i in range(n-1, idx, -1):\n print(i)\n" ]
10
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "res=-1\n", "N,L=[int(i) for i in input().split()]\n\n\nres=-1\n", "N,L=[int(i) for i in input().split()]\nA=[int(i) for i in input().split()]\n\nres=-1\n", "N,L=[int(i) for i in input().split()]\nA=[int(i) for i in input().split()]\n\nres=-1\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n res=i\n break\n", "N,L=[int(i) for i in input().split()]\nA=[int(i) for i in input().split()]\n\nres=-1\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n res=i\n break\nif res!=-1:\n print(\"Possible\")\n", "N,L=[int(i) for i in input().split()]\nA=[int(i) for i in input().split()]\n\nres=-1\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n res=i\n break\nif res!=-1:\n print(\"Possible\")\n for i in range(res):\n print(i+1)\n", "N,L=[int(i) for i in input().split()]\nA=[int(i) for i in input().split()]\n\nres=-1\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n res=i\n break\nif res!=-1:\n print(\"Possible\")\n for i in range(res):\n print(i+1)\n for i in range(N-1,res,-1):\n print(i)\n", "N,L=[int(i) for i in input().split()]\nA=[int(i) for i in input().split()]\n\nres=-1\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n res=i\n break\nif res!=-1:\n print(\"Possible\")\n for i in range(res):\n print(i+1)\n for i in range(N-1,res,-1):\n print(i)\nelse:\n print(\"Impossible\")\n" ]
9
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "n,l = (int(i) for i in input().split())\n", "n,l = (int(i) for i in input().split())\na = [int(i) for i in input().split()]\n", "n,l = (int(i) for i in input().split())\na = [int(i) for i in input().split()]\ns,x,y,ans,num,z = sum(a),0,n-1,[],0,0\n", "n,l = (int(i) for i in input().split())\na = [int(i) for i in input().split()]\ns,x,y,ans,num,z = sum(a),0,n-1,[],0,0\nfor i in range(n-1):\n num2 = a[i]+a[i+1]\n", "n,l = (int(i) for i in input().split())\na = [int(i) for i in input().split()]\ns,x,y,ans,num,z = sum(a),0,n-1,[],0,0\nfor i in range(n-1):\n num2 = a[i]+a[i+1]\n if num<num2: num,z = num2,i+1\n", "n,l = (int(i) for i in input().split())\na = [int(i) for i in input().split()]\ns,x,y,ans,num,z = sum(a),0,n-1,[],0,0\nfor i in range(n-1):\n num2 = a[i]+a[i+1]\n if num<num2: num,z = num2,i+1\nif num>=l:\n print(\"Possible\")\n", "n,l = (int(i) for i in input().split())\na = [int(i) for i in input().split()]\ns,x,y,ans,num,z = sum(a),0,n-1,[],0,0\nfor i in range(n-1):\n num2 = a[i]+a[i+1]\n if num<num2: num,z = num2,i+1\nif num>=l:\n print(\"Possible\")\n for i in range(1,z): print(i)\n", "n,l = (int(i) for i in input().split())\na = [int(i) for i in input().split()]\ns,x,y,ans,num,z = sum(a),0,n-1,[],0,0\nfor i in range(n-1):\n num2 = a[i]+a[i+1]\n if num<num2: num,z = num2,i+1\nif num>=l:\n print(\"Possible\")\n for i in range(1,z): print(i)\n for i in range(n-1,z-1,-1): print(i)\n", "n,l = (int(i) for i in input().split())\na = [int(i) for i in input().split()]\ns,x,y,ans,num,z = sum(a),0,n-1,[],0,0\nfor i in range(n-1):\n num2 = a[i]+a[i+1]\n if num<num2: num,z = num2,i+1\nif num>=l:\n print(\"Possible\")\n for i in range(1,z): print(i)\n for i in range(n-1,z-1,-1): print(i)\nelse: print(\"Impossible\")\n" ]
10
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "n, l = map(int, input().split())\nA = list(map(int, input().split()))\nfor i in range(n-1):\n if A[i]+A[i+1] >= l:\n f = i+1\n break\n\n\nprint(f)\n", "n, l = map(int, input().split())\nA = list(map(int, input().split()))\nfor i in range(n-1):\n if A[i]+A[i+1] >= l:\n f = i+1\n break\nelse:\n \n exit()\n\n\nprint(f)\n", "n, l = map(int, input().split())\nA = list(map(int, input().split()))\nfor i in range(n-1):\n if A[i]+A[i+1] >= l:\n f = i+1\n break\nelse:\n print(\"Impossible\")\n exit()\n\n\nprint(f)\n", "n, l = map(int, input().split())\nA = list(map(int, input().split()))\nfor i in range(n-1):\n if A[i]+A[i+1] >= l:\n f = i+1\n break\nelse:\n print(\"Impossible\")\n exit()\nprint(\"Possible\")\n\n\nprint(f)\n", "n, l = map(int, input().split())\nA = list(map(int, input().split()))\nfor i in range(n-1):\n if A[i]+A[i+1] >= l:\n f = i+1\n break\nelse:\n print(\"Impossible\")\n exit()\nprint(\"Possible\")\nfor i in range(1, f):\n print(i)\n\nprint(f)\n", "n, l = map(int, input().split())\nA = list(map(int, input().split()))\nfor i in range(n-1):\n if A[i]+A[i+1] >= l:\n f = i+1\n break\nelse:\n print(\"Impossible\")\n exit()\nprint(\"Possible\")\nfor i in range(1, f):\n print(i)\nfor i in range(n-1, f, -1):\n print(i)\nprint(f)\n" ]
7
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "x=-1\n", "n,l=map(int,input().split())\n\nx=-1\n", "n,l=map(int,input().split())\na=list(map(int,input().split()))\nx=-1\n", "n,l=map(int,input().split())\na=list(map(int,input().split()))\nx=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n x=i\n break\n", "n,l=map(int,input().split())\na=list(map(int,input().split()))\nx=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n x=i\n break\n\nif x==-1:\n print('Impossible')\n", "n,l=map(int,input().split())\na=list(map(int,input().split()))\nx=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n x=i\n break\n\nif x==-1:\n print('Impossible')\nelse:\n print('Possible')\n", "n,l=map(int,input().split())\na=list(map(int,input().split()))\nx=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n x=i\n break\n\nif x==-1:\n print('Impossible')\nelse:\n print('Possible')\n for i in range(x):\n print(i+1)\n", "n,l=map(int,input().split())\na=list(map(int,input().split()))\nx=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n x=i\n break\n\nif x==-1:\n print('Impossible')\nelse:\n print('Possible')\n for i in range(x):\n print(i+1)\n for i in range(n-2,x-1,-1):\n print(i+1)\n" ]
9
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "x = -1\n", "n,l = map(int, input().split())\n\n\nx = -1\n", "n,l = map(int, input().split())\na = list(map(int, input().split()))\n\nx = -1\n", "n,l = map(int, input().split())\na = list(map(int, input().split()))\n\nx = -1\n\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n x = i+1\n break\n", "n,l = map(int, input().split())\na = list(map(int, input().split()))\n\nx = -1\n\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n x = i+1\n break\n\nif x == -1:\n print('Impossible')\n", "n,l = map(int, input().split())\na = list(map(int, input().split()))\n\nx = -1\n\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n x = i+1\n break\n\nif x == -1:\n print('Impossible')\nelse:\n print('Possible')\n", "n,l = map(int, input().split())\na = list(map(int, input().split()))\n\nx = -1\n\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n x = i+1\n break\n\nif x == -1:\n print('Impossible')\nelse:\n print('Possible')\n for i in range(1,x):\n print(i)\n", "n,l = map(int, input().split())\na = list(map(int, input().split()))\n\nx = -1\n\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n x = i+1\n break\n\nif x == -1:\n print('Impossible')\nelse:\n print('Possible')\n for i in range(1,x):\n print(i)\n for i in range(n-x):\n print(n-i-1)\n" ]
9
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "N, L = map(int, input().split())\n", "N, L = map(int, input().split())\n\nA = list(map(int, input().split()))\n", "N, L = map(int, input().split())\n\nA = list(map(int, input().split()))\n\nans_index = -1\n", "N, L = map(int, input().split())\n\nA = list(map(int, input().split()))\n\nans_index = -1\nfor i in range(N-1):\n if A[i] + A[i+1] >= L:\n ans_index = i\n break\n", "N, L = map(int, input().split())\n\nA = list(map(int, input().split()))\n\nans_index = -1\nfor i in range(N-1):\n if A[i] + A[i+1] >= L:\n ans_index = i\n break\n\nif ans_index == -1:\n \n exit()\n", "N, L = map(int, input().split())\n\nA = list(map(int, input().split()))\n\nans_index = -1\nfor i in range(N-1):\n if A[i] + A[i+1] >= L:\n ans_index = i\n break\n\nif ans_index == -1:\n print('Impossible')\n exit()\n", "N, L = map(int, input().split())\n\nA = list(map(int, input().split()))\n\nans_index = -1\nfor i in range(N-1):\n if A[i] + A[i+1] >= L:\n ans_index = i\n break\n\nif ans_index == -1:\n print('Impossible')\n exit()\nprint('Possible')\n", "N, L = map(int, input().split())\n\nA = list(map(int, input().split()))\n\nans_index = -1\nfor i in range(N-1):\n if A[i] + A[i+1] >= L:\n ans_index = i\n break\n\nif ans_index == -1:\n print('Impossible')\n exit()\nprint('Possible')\n\nans_index += 1\n", "N, L = map(int, input().split())\n\nA = list(map(int, input().split()))\n\nans_index = -1\nfor i in range(N-1):\n if A[i] + A[i+1] >= L:\n ans_index = i\n break\n\nif ans_index == -1:\n print('Impossible')\n exit()\nprint('Possible')\n\nans_index += 1\nfor i in range(1, ans_index):\n print(i)\n", "N, L = map(int, input().split())\n\nA = list(map(int, input().split()))\n\nans_index = -1\nfor i in range(N-1):\n if A[i] + A[i+1] >= L:\n ans_index = i\n break\n\nif ans_index == -1:\n print('Impossible')\n exit()\nprint('Possible')\n\nans_index += 1\nfor i in range(1, ans_index):\n print(i)\nfor i in range(N-1, ans_index, -1):\n print(i)\n", "N, L = map(int, input().split())\n\nA = list(map(int, input().split()))\n\nans_index = -1\nfor i in range(N-1):\n if A[i] + A[i+1] >= L:\n ans_index = i\n break\n\nif ans_index == -1:\n print('Impossible')\n exit()\nprint('Possible')\n\nans_index += 1\nfor i in range(1, ans_index):\n print(i)\nfor i in range(N-1, ans_index, -1):\n print(i)\n\nprint(ans_index)\n" ]
12
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "# 0, 1, ..., i - 1, [i], [i+1], i + 2, ..., N - 1\n", "N, L = map(int, input().split())\n\n\n# 0, 1, ..., i - 1, [i], [i+1], i + 2, ..., N - 1\n", "N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\n\n# 0, 1, ..., i - 1, [i], [i+1], i + 2, ..., N - 1\n", "N, L = map(int, input().split())\nA = list(map(int, input().split()))\nflg = False\n\n\n# 0, 1, ..., i - 1, [i], [i+1], i + 2, ..., N - 1\n", "N, L = map(int, input().split())\nA = list(map(int, input().split()))\nflg = False\nfor i in range(N - 1):\n if A[i] + A[i+1] >= L:\n flg = True\n break\n\n# 0, 1, ..., i - 1, [i], [i+1], i + 2, ..., N - 1\n", "N, L = map(int, input().split())\nA = list(map(int, input().split()))\nflg = False\nfor i in range(N - 1):\n if A[i] + A[i+1] >= L:\n flg = True\n break\nif not flg:\n \n exit()\n\n# 0, 1, ..., i - 1, [i], [i+1], i + 2, ..., N - 1\n", "N, L = map(int, input().split())\nA = list(map(int, input().split()))\nflg = False\nfor i in range(N - 1):\n if A[i] + A[i+1] >= L:\n flg = True\n break\nif not flg:\n print(\"Impossible\")\n exit()\n\n# 0, 1, ..., i - 1, [i], [i+1], i + 2, ..., N - 1\n", "N, L = map(int, input().split())\nA = list(map(int, input().split()))\nflg = False\nfor i in range(N - 1):\n if A[i] + A[i+1] >= L:\n flg = True\n break\nif not flg:\n print(\"Impossible\")\n exit()\nelse:\n print(\"Possible\")\n# 0, 1, ..., i - 1, [i], [i+1], i + 2, ..., N - 1\n", "N, L = map(int, input().split())\nA = list(map(int, input().split()))\nflg = False\nfor i in range(N - 1):\n if A[i] + A[i+1] >= L:\n flg = True\n break\nif not flg:\n print(\"Impossible\")\n exit()\nelse:\n print(\"Possible\")\n# 0, 1, ..., i - 1, [i], [i+1], i + 2, ..., N - 1\nfor j in range(i):\n print(j + 1)\n", "N, L = map(int, input().split())\nA = list(map(int, input().split()))\nflg = False\nfor i in range(N - 1):\n if A[i] + A[i+1] >= L:\n flg = True\n break\nif not flg:\n print(\"Impossible\")\n exit()\nelse:\n print(\"Possible\")\n# 0, 1, ..., i - 1, [i], [i+1], i + 2, ..., N - 1\nfor j in range(i):\n print(j + 1)\nfor j in range(N - 1, i + 1, -1):\n print(j)\n", "N, L = map(int, input().split())\nA = list(map(int, input().split()))\nflg = False\nfor i in range(N - 1):\n if A[i] + A[i+1] >= L:\n flg = True\n break\nif not flg:\n print(\"Impossible\")\n exit()\nelse:\n print(\"Possible\")\n# 0, 1, ..., i - 1, [i], [i+1], i + 2, ..., N - 1\nfor j in range(i):\n print(j + 1)\nfor j in range(N - 1, i + 1, -1):\n print(j)\nprint(i + 1)\n" ]
12
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "n,l = [int(i) for i in input().split()]\n", "n,l = [int(i) for i in input().split()]\na = [int(i) for i in input().split()]\n", "n,l = [int(i) for i in input().split()]\na = [int(i) for i in input().split()]\n\nindex = 0\n", "n,l = [int(i) for i in input().split()]\na = [int(i) for i in input().split()]\n\nindex = 0\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n index = i+1\n", "n,l = [int(i) for i in input().split()]\na = [int(i) for i in input().split()]\n\nindex = 0\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n index = i+1\n\nif index==0:\n print(\"Impossible\")\n", "n,l = [int(i) for i in input().split()]\na = [int(i) for i in input().split()]\n\nindex = 0\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n index = i+1\n\nif index==0:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n", "n,l = [int(i) for i in input().split()]\na = [int(i) for i in input().split()]\n\nindex = 0\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n index = i+1\n\nif index==0:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(1,index):\n print(i)\n", "n,l = [int(i) for i in input().split()]\na = [int(i) for i in input().split()]\n\nindex = 0\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n index = i+1\n\nif index==0:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(1,index):\n print(i)\n for i in range(n-1,index,-1):\n print(i)\n", "n,l = [int(i) for i in input().split()]\na = [int(i) for i in input().split()]\n\nindex = 0\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n index = i+1\n\nif index==0:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(1,index):\n print(i)\n for i in range(n-1,index,-1):\n print(i)\n print(index)\n" ]
10
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "able = 0\n", "N,L = map(int,input().split())\n\n\nable = 0\n", "N,L = map(int,input().split())\n\na = list(map(int,input().split()))\n\n\nable = 0\n", "N,L = map(int,input().split())\n\na = list(map(int,input().split()))\n\nflag = False\nable = 0\n", "N,L = map(int,input().split())\n\na = list(map(int,input().split()))\n\nflag = False\nable = 0\nfor i in range(N-1):\n\n if a[i] + a[i+1] >= L:\n flag = True\n able = i\n break\n", "N,L = map(int,input().split())\n\na = list(map(int,input().split()))\n\nflag = False\nable = 0\nfor i in range(N-1):\n\n if a[i] + a[i+1] >= L:\n flag = True\n able = i\n break\n\nif flag:\n\n print (\"Possible\")\n\n \n #print (able + 1)\n", "N,L = map(int,input().split())\n\na = list(map(int,input().split()))\n\nflag = False\nable = 0\nfor i in range(N-1):\n\n if a[i] + a[i+1] >= L:\n flag = True\n able = i\n break\n\nif flag:\n\n print (\"Possible\")\n\n for i in range(able):\n print (i+1)\n\n \n #print (able + 1)\n", "N,L = map(int,input().split())\n\na = list(map(int,input().split()))\n\nflag = False\nable = 0\nfor i in range(N-1):\n\n if a[i] + a[i+1] >= L:\n flag = True\n able = i\n break\n\nif flag:\n\n print (\"Possible\")\n\n for i in range(able):\n print (i+1)\n\n for i in range(N-1-able):\n print (N-1-i)\n\n #print (able + 1)\n", "N,L = map(int,input().split())\n\na = list(map(int,input().split()))\n\nflag = False\nable = 0\nfor i in range(N-1):\n\n if a[i] + a[i+1] >= L:\n flag = True\n able = i\n break\n\nif flag:\n\n print (\"Possible\")\n\n for i in range(able):\n print (i+1)\n\n for i in range(N-1-able):\n print (N-1-i)\n\n #print (able + 1)\n\nelse:\n print (\"Impossible\")\n", "\nN,L = map(int,input().split())\n\na = list(map(int,input().split()))\n\nflag = False\nable = 0\nfor i in range(N-1):\n\n if a[i] + a[i+1] >= L:\n flag = True\n able = i\n break\n\nif flag:\n\n print (\"Possible\")\n\n for i in range(able):\n print (i+1)\n\n for i in range(N-1-able):\n print (N-1-i)\n\n #print (able + 1)\n\nelse:\n print (\"Impossible\")\n" ]
11
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "n,l = map(int, input().split())\n", "n,l = map(int, input().split())\na = list(map(int, input().split()))\n", "n,l = map(int, input().split())\na = list(map(int, input().split()))\n\nfor i in range(0,n-1):\n if a[i] + a[i+1] >= l:\n print('Possible')\n for j in range(1,i+1):\n print(j)\n for j in range(n-1,i,-1):\n print(j)\n break\n", "n,l = map(int, input().split())\na = list(map(int, input().split()))\n\nfor i in range(0,n-1):\n if a[i] + a[i+1] >= l:\n print('Possible')\n for j in range(1,i+1):\n print(j)\n for j in range(n-1,i,-1):\n print(j)\n break\nelse:\n print('Impossible')\n" ]
5
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "k=0\n", "def dump(n,k):\n for i in range(k-1):\n print(i+1)\n \n\nk=0\n", "def dump(n,k):\n for i in range(k-1):\n print(i+1)\n for i in range(n-1,k-1,-1):\n print(i)\n\n\nk=0\n", "def dump(n,k):\n for i in range(k-1):\n print(i+1)\n for i in range(n-1,k-1,-1):\n print(i)\n\nn,l=map(int,input().split(' '))\n\n\nk=0\n", "def dump(n,k):\n for i in range(k-1):\n print(i+1)\n for i in range(n-1,k-1,-1):\n print(i)\n\nn,l=map(int,input().split(' '))\na=input().split(' ')\n\n\nk=0\n", "def dump(n,k):\n for i in range(k-1):\n print(i+1)\n for i in range(n-1,k-1,-1):\n print(i)\n\nn,l=map(int,input().split(' '))\na=input().split(' ')\na=[int(s) for s in a]\n\nk=0\n", "def dump(n,k):\n for i in range(k-1):\n print(i+1)\n for i in range(n-1,k-1,-1):\n print(i)\n\nn,l=map(int,input().split(' '))\na=input().split(' ')\na=[int(s) for s in a]\n\nk=0\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n k=i+1\n break\n", "def dump(n,k):\n for i in range(k-1):\n print(i+1)\n for i in range(n-1,k-1,-1):\n print(i)\n\nn,l=map(int,input().split(' '))\na=input().split(' ')\na=[int(s) for s in a]\n\nk=0\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n k=i+1\n break\n\nif k==0:\n print(\"Impossible\")\n", "def dump(n,k):\n for i in range(k-1):\n print(i+1)\n for i in range(n-1,k-1,-1):\n print(i)\n\nn,l=map(int,input().split(' '))\na=input().split(' ')\na=[int(s) for s in a]\n\nk=0\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n k=i+1\n break\n\nif k==0:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n", "def dump(n,k):\n for i in range(k-1):\n print(i+1)\n for i in range(n-1,k-1,-1):\n print(i)\n\nn,l=map(int,input().split(' '))\na=input().split(' ')\na=[int(s) for s in a]\n\nk=0\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n k=i+1\n break\n\nif k==0:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n dump(n,k)\n" ]
11
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "n,l,*a=map(int,open(0).read().split())\n", "n,l,*a=map(int,open(0).read().split())\nfor i,(x,y) in enumerate(zip(a,a[1:])):\n if x+y>=l:\n print(\"Possible\")\n r=list(range(n))\n print(\"\\n\".join(map(str,r[1:i+1]+r[n:i:-1])))\n exit()\n", "n,l,*a=map(int,open(0).read().split())\nfor i,(x,y) in enumerate(zip(a,a[1:])):\n if x+y>=l:\n print(\"Possible\")\n r=list(range(n))\n print(\"\\n\".join(map(str,r[1:i+1]+r[n:i:-1])))\n exit()\nprint(\"Impossible\")\n" ]
4
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "N, L = map(int, input().split())\n", "N, L = map(int, input().split())\na = list(map(int, input().split()))\n", "N, L = map(int, input().split())\na = list(map(int, input().split()))\n\nI = [i + 1 for i in range(N - 1) if a[i] + a[i + 1] >= L]\n", "N, L = map(int, input().split())\na = list(map(int, input().split()))\n\nI = [i + 1 for i in range(N - 1) if a[i] + a[i + 1] >= L]\nans = (\n 'Possible\\n{}'.format(\n '\\n'.join(\n map(\n str,\n list(range(1, I[0])) + list(range(N - 1, I[0], -1)) + [I[0]]\n )\n )\n ) if I else\n 'Impossible'\n)\n", "N, L = map(int, input().split())\na = list(map(int, input().split()))\n\nI = [i + 1 for i in range(N - 1) if a[i] + a[i + 1] >= L]\nans = (\n 'Possible\\n{}'.format(\n '\\n'.join(\n map(\n str,\n list(range(1, I[0])) + list(range(N - 1, I[0], -1)) + [I[0]]\n )\n )\n ) if I else\n 'Impossible'\n)\n\nprint(ans)\n" ]
6
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "N, L = (int(i) for i in input().split())\na = [int(i) for i in input().split()]\nP = \"Possible\"\n\nprint(P)\n", "N, L = (int(i) for i in input().split())\na = [int(i) for i in input().split()]\nP = \"Possible\"\nfor i in range(N-1):\n if a[i] + a[i+1] >= L:\n start = i\n break\n\nprint(P)\n", "N, L = (int(i) for i in input().split())\na = [int(i) for i in input().split()]\nP = \"Possible\"\nfor i in range(N-1):\n if a[i] + a[i+1] >= L:\n start = i\n break\nelse:\n P = \"Impossible\"\nprint(P)\n", "N, L = (int(i) for i in input().split())\na = [int(i) for i in input().split()]\nP = \"Possible\"\nfor i in range(N-1):\n if a[i] + a[i+1] >= L:\n start = i\n break\nelse:\n P = \"Impossible\"\nprint(P)\n\nif P == \"Possible\":\n ans = [start]\n", "N, L = (int(i) for i in input().split())\na = [int(i) for i in input().split()]\nP = \"Possible\"\nfor i in range(N-1):\n if a[i] + a[i+1] >= L:\n start = i\n break\nelse:\n P = \"Impossible\"\nprint(P)\n\nif P == \"Possible\":\n ans = [start]\n if start > 0:\n ans += reversed(list(range(start)))\n", "N, L = (int(i) for i in input().split())\na = [int(i) for i in input().split()]\nP = \"Possible\"\nfor i in range(N-1):\n if a[i] + a[i+1] >= L:\n start = i\n break\nelse:\n P = \"Impossible\"\nprint(P)\n\nif P == \"Possible\":\n ans = [start]\n if start > 0:\n ans += reversed(list(range(start)))\n if start != N-2:\n ans += list(range(start+1, N-1))\n", "N, L = (int(i) for i in input().split())\na = [int(i) for i in input().split()]\nP = \"Possible\"\nfor i in range(N-1):\n if a[i] + a[i+1] >= L:\n start = i\n break\nelse:\n P = \"Impossible\"\nprint(P)\n\nif P == \"Possible\":\n ans = [start]\n if start > 0:\n ans += reversed(list(range(start)))\n if start != N-2:\n ans += list(range(start+1, N-1))\n ans.reverse()\n", "N, L = (int(i) for i in input().split())\na = [int(i) for i in input().split()]\nP = \"Possible\"\nfor i in range(N-1):\n if a[i] + a[i+1] >= L:\n start = i\n break\nelse:\n P = \"Impossible\"\nprint(P)\n\nif P == \"Possible\":\n ans = [start]\n if start > 0:\n ans += reversed(list(range(start)))\n if start != N-2:\n ans += list(range(start+1, N-1))\n ans.reverse()\n for a in ans:\n print(a+1)\n" ]
9
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "k = -1\n", "N, L = map(int, input().split())\n\nk = -1\n", "N, L = map(int, input().split())\nA = list(map(int, input().split()))\nk = -1\n", "N, L = map(int, input().split())\nA = list(map(int, input().split()))\nk = -1\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n k=i+1\n", "N, L = map(int, input().split())\nA = list(map(int, input().split()))\nk = -1\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n k=i+1\nif k==-1:\n print(\"Impossible\")\n", "N, L = map(int, input().split())\nA = list(map(int, input().split()))\nk = -1\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n k=i+1\nif k==-1:\n print(\"Impossible\")\nelse:\n \n res = []\n", "N, L = map(int, input().split())\nA = list(map(int, input().split()))\nk = -1\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n k=i+1\nif k==-1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n res = []\n", "N, L = map(int, input().split())\nA = list(map(int, input().split()))\nk = -1\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n k=i+1\nif k==-1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n res = []\n for i in reversed(range(1,k+1)):\n res.append(i)\n", "N, L = map(int, input().split())\nA = list(map(int, input().split()))\nk = -1\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n k=i+1\nif k==-1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n res = []\n for i in reversed(range(1,k+1)):\n res.append(i)\n for i in range(k+1,N):\n res.append(i)\n", "N, L = map(int, input().split())\nA = list(map(int, input().split()))\nk = -1\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n k=i+1\nif k==-1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n res = []\n for i in reversed(range(1,k+1)):\n res.append(i)\n for i in range(k+1,N):\n res.append(i)\n for i in reversed(res):\n print(i)\n" ]
11
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "ok = 0\n", "N, L = map(int, input().split())\n\n\nok = 0\n", "N, L = map(int, input().split())\na = list(map(int, input().split()))\n\nok = 0\n", "N, L = map(int, input().split())\na = list(map(int, input().split()))\n\nok = 0\nfor i in range(1, N):\n if a[i-1] + a[i] >= L:\n ok = 1\n break\n", "N, L = map(int, input().split())\na = list(map(int, input().split()))\n\nok = 0\nfor i in range(1, N):\n if a[i-1] + a[i] >= L:\n ok = 1\n break\n\nif ok:\n \n \n print(i)\n", "N, L = map(int, input().split())\na = list(map(int, input().split()))\n\nok = 0\nfor i in range(1, N):\n if a[i-1] + a[i] >= L:\n ok = 1\n break\n\nif ok:\n print('Possible')\n \n \n print(i)\n", "N, L = map(int, input().split())\na = list(map(int, input().split()))\n\nok = 0\nfor i in range(1, N):\n if a[i-1] + a[i] >= L:\n ok = 1\n break\n\nif ok:\n print('Possible')\n for j in range(1, i):\n print(j)\n \n print(i)\n", "N, L = map(int, input().split())\na = list(map(int, input().split()))\n\nok = 0\nfor i in range(1, N):\n if a[i-1] + a[i] >= L:\n ok = 1\n break\n\nif ok:\n print('Possible')\n for j in range(1, i):\n print(j)\n for j in range(N-1, i, -1):\n print(j)\n print(i)\n", "N, L = map(int, input().split())\na = list(map(int, input().split()))\n\nok = 0\nfor i in range(1, N):\n if a[i-1] + a[i] >= L:\n ok = 1\n break\n\nif ok:\n print('Possible')\n for j in range(1, i):\n print(j)\n for j in range(N-1, i, -1):\n print(j)\n print(i)\nelse:\n print('Impossible')\n" ]
10
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "import sys\n", "import sys\n\nread = sys.stdin.read\n", "import sys\n\nread = sys.stdin.read\nreadline = sys.stdin.readline\n", "import sys\n\nread = sys.stdin.read\nreadline = sys.stdin.readline\n\nN, L, *a = map(int, read().split())\n", "import sys\n\nread = sys.stdin.read\nreadline = sys.stdin.readline\n\nN, L, *a = map(int, read().split())\nknot = -1\n", "import sys\n\nread = sys.stdin.read\nreadline = sys.stdin.readline\n\nN, L, *a = map(int, read().split())\nknot = -1\nfor idx, (i, j) in enumerate(zip(a, a[1:])):\n if i + j >= L:\n knot = idx + 1\n print('Possible')\n break\n", "import sys\n\nread = sys.stdin.read\nreadline = sys.stdin.readline\n\nN, L, *a = map(int, read().split())\nknot = -1\nfor idx, (i, j) in enumerate(zip(a, a[1:])):\n if i + j >= L:\n knot = idx + 1\n print('Possible')\n break\nelse:\n \n exit()\n", "import sys\n\nread = sys.stdin.read\nreadline = sys.stdin.readline\n\nN, L, *a = map(int, read().split())\nknot = -1\nfor idx, (i, j) in enumerate(zip(a, a[1:])):\n if i + j >= L:\n knot = idx + 1\n print('Possible')\n break\nelse:\n print('Impossible')\n exit()\n", "import sys\n\nread = sys.stdin.read\nreadline = sys.stdin.readline\n\nN, L, *a = map(int, read().split())\nknot = -1\nfor idx, (i, j) in enumerate(zip(a, a[1:])):\n if i + j >= L:\n knot = idx + 1\n print('Possible')\n break\nelse:\n print('Impossible')\n exit()\n\nanswer = list(range(1, knot)) + list(range(knot + 1, N))[::-1] + [knot]\n", "import sys\n\nread = sys.stdin.read\nreadline = sys.stdin.readline\n\nN, L, *a = map(int, read().split())\nknot = -1\nfor idx, (i, j) in enumerate(zip(a, a[1:])):\n if i + j >= L:\n knot = idx + 1\n print('Possible')\n break\nelse:\n print('Impossible')\n exit()\n\nanswer = list(range(1, knot)) + list(range(knot + 1, N))[::-1] + [knot]\nprint('\\n'.join(map(str, answer)))\n" ]
11
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "A = []\n", "N, M = map(int, input().split())\n\n\nA = []\n", "N, M = map(int, input().split())\nL = list(map(int, input().split()))\n\n\nA = []\n", "N, M = map(int, input().split())\nL = list(map(int, input().split()))\n\ncount = 0\n\nA = []\n", "N, M = map(int, input().split())\nL = list(map(int, input().split()))\n\ncount = 0\nvouch = 0\nA = []\n", "N, M = map(int, input().split())\nL = list(map(int, input().split()))\n\ncount = 0\nvouch = 0\nA = []\n\nfor i in range (0, N-1):\n if count == 0:\n if L[i]+L[i+1] >= M:\n count=1\n A.append(N-1)\n else:\n A.append(i+1)\n else:\n A.append(N-2-vouch)\n vouch+=1\n", "N, M = map(int, input().split())\nL = list(map(int, input().split()))\n\ncount = 0\nvouch = 0\nA = []\n\nfor i in range (0, N-1):\n if count == 0:\n if L[i]+L[i+1] >= M:\n count=1\n A.append(N-1)\n else:\n A.append(i+1)\n else:\n A.append(N-2-vouch)\n vouch+=1\n\nif count == 0:\n \n exit()\n", "N, M = map(int, input().split())\nL = list(map(int, input().split()))\n\ncount = 0\nvouch = 0\nA = []\n\nfor i in range (0, N-1):\n if count == 0:\n if L[i]+L[i+1] >= M:\n count=1\n A.append(N-1)\n else:\n A.append(i+1)\n else:\n A.append(N-2-vouch)\n vouch+=1\n\nif count == 0:\n print('Impossible')\n exit()\n", "N, M = map(int, input().split())\nL = list(map(int, input().split()))\n\ncount = 0\nvouch = 0\nA = []\n\nfor i in range (0, N-1):\n if count == 0:\n if L[i]+L[i+1] >= M:\n count=1\n A.append(N-1)\n else:\n A.append(i+1)\n else:\n A.append(N-2-vouch)\n vouch+=1\n\nif count == 0:\n print('Impossible')\n exit()\nelse:\n print('Possible')\n", "N, M = map(int, input().split())\nL = list(map(int, input().split()))\n\ncount = 0\nvouch = 0\nA = []\n\nfor i in range (0, N-1):\n if count == 0:\n if L[i]+L[i+1] >= M:\n count=1\n A.append(N-1)\n else:\n A.append(i+1)\n else:\n A.append(N-2-vouch)\n vouch+=1\n\nif count == 0:\n print('Impossible')\n exit()\nelse:\n print('Possible')\n\nfor i in range (0, N-1):\n print(A[i])\n" ]
11
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "N,L=map(int,input().split())\n", "N,L=map(int,input().split())\nA=list(map(int,input().split()))\n", "N,L=map(int,input().split())\nA=list(map(int,input().split()))\n\nfor i in range(0,N-1):\n if A[i]+A[i+1]>=L:\n print('Possible')\n for j in range(1,i+1):\n print(j)\n T=[]\n for j in range(i+2,N):\n T.append(j)\n T.sort(reverse=True)\n for j in range(0,len(T)):\n print(T[j])\n print(i+1)\n break\n", "N,L=map(int,input().split())\nA=list(map(int,input().split()))\n\nfor i in range(0,N-1):\n if A[i]+A[i+1]>=L:\n print('Possible')\n for j in range(1,i+1):\n print(j)\n T=[]\n for j in range(i+2,N):\n T.append(j)\n T.sort(reverse=True)\n for j in range(0,len(T)):\n print(T[j])\n print(i+1)\n break\nelse:\n print('Impossible')\n" ]
5
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "ans=[]\n", "n,l,*a=map(int,open(0).read().split())\nans=[]\n", "n,l,*a=map(int,open(0).read().split())\nans=[]\nfor i in range(1,n):\n if a[i]+a[i-1]<l:\n ans.append(i)\n else:\n for j in range(n-1,i-1,-1):\n ans.append(j)\n print(\"Possible\")\n print(*ans,sep=\"\\n\")\n exit()\n", "n,l,*a=map(int,open(0).read().split())\nans=[]\nfor i in range(1,n):\n if a[i]+a[i-1]<l:\n ans.append(i)\n else:\n for j in range(n-1,i-1,-1):\n ans.append(j)\n print(\"Possible\")\n print(*ans,sep=\"\\n\")\n exit()\nprint(\"Impossible\")\n" ]
5
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "n,l = map(int,input().split())\n", "n,l = map(int,input().split())\na = list(map(int,input().split()))\n", "n,l = map(int,input().split())\na = list(map(int,input().split()))\nfor N in range(n - 1):\n a[N] = a[N] + a[N + 1]\n", "n,l = map(int,input().split())\na = list(map(int,input().split()))\nfor N in range(n - 1):\n a[N] = a[N] + a[N + 1]\nif max(a) >= l:\n print('Possible')\n", "n,l = map(int,input().split())\na = list(map(int,input().split()))\nfor N in range(n - 1):\n a[N] = a[N] + a[N + 1]\nif max(a) >= l:\n print('Possible')\n ind = a.index(max(a)) + 1\n", "n,l = map(int,input().split())\na = list(map(int,input().split()))\nfor N in range(n - 1):\n a[N] = a[N] + a[N + 1]\nif max(a) >= l:\n print('Possible')\n ind = a.index(max(a)) + 1\n for i in range(ind - 1):\n print(i + 1)\n", "n,l = map(int,input().split())\na = list(map(int,input().split()))\nfor N in range(n - 1):\n a[N] = a[N] + a[N + 1]\nif max(a) >= l:\n print('Possible')\n ind = a.index(max(a)) + 1\n for i in range(ind - 1):\n print(i + 1)\n for i in range(n - ind):\n print(n - i - 1)\n", "n,l = map(int,input().split())\na = list(map(int,input().split()))\nfor N in range(n - 1):\n a[N] = a[N] + a[N + 1]\nif max(a) >= l:\n print('Possible')\n ind = a.index(max(a)) + 1\n for i in range(ind - 1):\n print(i + 1)\n for i in range(n - ind):\n print(n - i - 1)\nelse:\n print('Impossible')\n" ]
9
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "n, l = map(int, input().split())\n", "n, l = map(int, input().split())\na = list(map(int, input().split()))\n", "n, l = map(int, input().split())\na = list(map(int, input().split()))\nfor i in range(1, n):\n if a[i] + a[i - 1] >= l:\n print(\"Possible\")\n for j in range(1, i):\n print(j)\n for j in range(n - 1, i, -1):\n print(j)\n print(i)\n exit()\n", "n, l = map(int, input().split())\na = list(map(int, input().split()))\nfor i in range(1, n):\n if a[i] + a[i - 1] >= l:\n print(\"Possible\")\n for j in range(1, i):\n print(j)\n for j in range(n - 1, i, -1):\n print(j)\n print(i)\n exit()\nprint(\"Impossible\")\n" ]
5
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "MAX = 0\n", "N, L = map(int,input().split())\n\n\nMAX = 0\n", "N, L = map(int,input().split())\n\nA = list(map(int,input().split()))\n\nMAX = 0\n", "N, L = map(int,input().split())\n\nA = list(map(int,input().split()))\n\nMAX = 0\nindex = -1\n", "N, L = map(int,input().split())\n\nA = list(map(int,input().split()))\n\nMAX = 0\nindex = -1\n\nfor i in range(N-1):\n if A[i] + A[i+1] > MAX:\n MAX = A[i] + A[i+1]\n index = i+1\n", "N, L = map(int,input().split())\n\nA = list(map(int,input().split()))\n\nMAX = 0\nindex = -1\n\nfor i in range(N-1):\n if A[i] + A[i+1] > MAX:\n MAX = A[i] + A[i+1]\n index = i+1\n\nif MAX < L:\n print(\"Impossible\")\n", "N, L = map(int,input().split())\n\nA = list(map(int,input().split()))\n\nMAX = 0\nindex = -1\n\nfor i in range(N-1):\n if A[i] + A[i+1] > MAX:\n MAX = A[i] + A[i+1]\n index = i+1\n\nif MAX < L:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n", "N, L = map(int,input().split())\n\nA = list(map(int,input().split()))\n\nMAX = 0\nindex = -1\n\nfor i in range(N-1):\n if A[i] + A[i+1] > MAX:\n MAX = A[i] + A[i+1]\n index = i+1\n\nif MAX < L:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(1,index):\n print(i)\n", "N, L = map(int,input().split())\n\nA = list(map(int,input().split()))\n\nMAX = 0\nindex = -1\n\nfor i in range(N-1):\n if A[i] + A[i+1] > MAX:\n MAX = A[i] + A[i+1]\n index = i+1\n\nif MAX < L:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(1,index):\n print(i)\n for i in range(N-1,index,-1):\n print(i)\n", "N, L = map(int,input().split())\n\nA = list(map(int,input().split()))\n\nMAX = 0\nindex = -1\n\nfor i in range(N-1):\n if A[i] + A[i+1] > MAX:\n MAX = A[i] + A[i+1]\n index = i+1\n\nif MAX < L:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(1,index):\n print(i)\n for i in range(N-1,index,-1):\n print(i)\n print(index)\n" ]
11
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "pos=0\n", "n,l=map(int,input().split())\n\n\npos=0\n", "n,l=map(int,input().split())\narr=list(map(int,input().split()))\n\npos=0\n", "n,l=map(int,input().split())\narr=list(map(int,input().split()))\npsbl=False\npos=0\n", "n,l=map(int,input().split())\narr=list(map(int,input().split()))\npsbl=False\npos=0\nfor i in range(n-1):\n if arr[i]+arr[i+1]>=l:\n psbl=True\n pos=i\n break\n", "n,l=map(int,input().split())\narr=list(map(int,input().split()))\npsbl=False\npos=0\nfor i in range(n-1):\n if arr[i]+arr[i+1]>=l:\n psbl=True\n pos=i\n break\nif psbl:\n print(\"Possible\")\n", "n,l=map(int,input().split())\narr=list(map(int,input().split()))\npsbl=False\npos=0\nfor i in range(n-1):\n if arr[i]+arr[i+1]>=l:\n psbl=True\n pos=i\n break\nif psbl:\n print(\"Possible\")\n for i in range(0,pos):\n print(i+1)\n", "n,l=map(int,input().split())\narr=list(map(int,input().split()))\npsbl=False\npos=0\nfor i in range(n-1):\n if arr[i]+arr[i+1]>=l:\n psbl=True\n pos=i\n break\nif psbl:\n print(\"Possible\")\n for i in range(0,pos):\n print(i+1)\n for i in range(n-2,pos,-1):\n print(i+1)\n", "n,l=map(int,input().split())\narr=list(map(int,input().split()))\npsbl=False\npos=0\nfor i in range(n-1):\n if arr[i]+arr[i+1]>=l:\n psbl=True\n pos=i\n break\nif psbl:\n print(\"Possible\")\n for i in range(0,pos):\n print(i+1)\n for i in range(n-2,pos,-1):\n print(i+1)\n print(pos+1)\n", "n,l=map(int,input().split())\narr=list(map(int,input().split()))\npsbl=False\npos=0\nfor i in range(n-1):\n if arr[i]+arr[i+1]>=l:\n psbl=True\n pos=i\n break\nif psbl:\n print(\"Possible\")\n for i in range(0,pos):\n print(i+1)\n for i in range(n-2,pos,-1):\n print(i+1)\n print(pos+1)\nelse:\n print(\"Impossible\")\n" ]
11
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "n,l = map(int,input().split())\n", "n,l = map(int,input().split())\na = list(map(int,input().split()))\n", "n,l = map(int,input().split())\na = list(map(int,input().split()))\n\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n print(\"Possible\")\n for j in range(1,i+1):\n print(j)\n for k in range(n-1,i,-1):\n print(k)\n exit()\n", "n,l = map(int,input().split())\na = list(map(int,input().split()))\n\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n print(\"Possible\")\n for j in range(1,i+1):\n print(j)\n for k in range(n-1,i,-1):\n print(k)\n exit()\nprint(\"Impossible\")\n" ]
5
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "j=-1\n", "N,L=map(int,input().split())\n\nj=-1\n", "N,L=map(int,input().split())\na=[int(i) for i in input().split()]\nj=-1\n", "N,L=map(int,input().split())\na=[int(i) for i in input().split()]\nj=-1\nfor i in range(N-1):\n if a[i]+a[i+1]>=L:\n j=i\n break\n", "N,L=map(int,input().split())\na=[int(i) for i in input().split()]\nj=-1\nfor i in range(N-1):\n if a[i]+a[i+1]>=L:\n j=i\n break\nif j==-1:\n print(\"Impossible\")\n", "N,L=map(int,input().split())\na=[int(i) for i in input().split()]\nj=-1\nfor i in range(N-1):\n if a[i]+a[i+1]>=L:\n j=i\n break\nif j==-1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n", "N,L=map(int,input().split())\na=[int(i) for i in input().split()]\nj=-1\nfor i in range(N-1):\n if a[i]+a[i+1]>=L:\n j=i\n break\nif j==-1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(j):\n print(i+1)\n", "N,L=map(int,input().split())\na=[int(i) for i in input().split()]\nj=-1\nfor i in range(N-1):\n if a[i]+a[i+1]>=L:\n j=i\n break\nif j==-1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(j):\n print(i+1)\n for i in range(j+1,N-1)[::-1]:\n print(i+1)\n", "N,L=map(int,input().split())\na=[int(i) for i in input().split()]\nj=-1\nfor i in range(N-1):\n if a[i]+a[i+1]>=L:\n j=i\n break\nif j==-1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(j):\n print(i+1)\n for i in range(j+1,N-1)[::-1]:\n print(i+1)\n print(j+1)\n" ]
10
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "def solve():\n global N, L\n", "def solve():\n global N, L\n N, L = map(int, input().split())\n", "def solve():\n global N, L\n N, L = map(int, input().split())\n a = list(map(int, input().split()))\n", "def solve():\n global N, L\n N, L = map(int, input().split())\n a = list(map(int, input().split()))\n for i in range(N-1):\n if a[i]+a[i+1]>=L:\n return i+1\n", "def solve():\n global N, L\n N, L = map(int, input().split())\n a = list(map(int, input().split()))\n for i in range(N-1):\n if a[i]+a[i+1]>=L:\n return i+1\n return False\n", "def solve():\n global N, L\n N, L = map(int, input().split())\n a = list(map(int, input().split()))\n for i in range(N-1):\n if a[i]+a[i+1]>=L:\n return i+1\n return False\nans = solve()\n", "def solve():\n global N, L\n N, L = map(int, input().split())\n a = list(map(int, input().split()))\n for i in range(N-1):\n if a[i]+a[i+1]>=L:\n return i+1\n return False\nans = solve()\nif ans:\n print('Possible')\n", "def solve():\n global N, L\n N, L = map(int, input().split())\n a = list(map(int, input().split()))\n for i in range(N-1):\n if a[i]+a[i+1]>=L:\n return i+1\n return False\nans = solve()\nif ans:\n print('Possible')\n for i in range(1, ans):\n print(i)\n", "def solve():\n global N, L\n N, L = map(int, input().split())\n a = list(map(int, input().split()))\n for i in range(N-1):\n if a[i]+a[i+1]>=L:\n return i+1\n return False\nans = solve()\nif ans:\n print('Possible')\n for i in range(1, ans):\n print(i)\n for i in range(N-1, ans, -1):\n print(i)\n", "def solve():\n global N, L\n N, L = map(int, input().split())\n a = list(map(int, input().split()))\n for i in range(N-1):\n if a[i]+a[i+1]>=L:\n return i+1\n return False\nans = solve()\nif ans:\n print('Possible')\n for i in range(1, ans):\n print(i)\n for i in range(N-1, ans, -1):\n print(i)\n print(ans)\n", "def solve():\n global N, L\n N, L = map(int, input().split())\n a = list(map(int, input().split()))\n for i in range(N-1):\n if a[i]+a[i+1]>=L:\n return i+1\n return False\nans = solve()\nif ans:\n print('Possible')\n for i in range(1, ans):\n print(i)\n for i in range(N-1, ans, -1):\n print(i)\n print(ans)\nelse:\n print(\"Impossible\")\n" ]
12
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "ans=0\n", "N,L=map(int,input().split())\n\n\nans=0\n", "N,L=map(int,input().split())\nA=[int(x) for x in input().split()]\n\n\nans=0\n", "N,L=map(int,input().split())\nA=[int(x) for x in input().split()]\n\npsbl=False\nans=0\n", "N,L=map(int,input().split())\nA=[int(x) for x in input().split()]\n\npsbl=False\nans=0\nfor i in range(1,N):\n if A[i-1]+A[i]>=L:\n psbl=True\n ans=i-1\n break\n", "N,L=map(int,input().split())\nA=[int(x) for x in input().split()]\n\npsbl=False\nans=0\nfor i in range(1,N):\n if A[i-1]+A[i]>=L:\n psbl=True\n ans=i-1\n break\nif psbl==False:\n print(\"Impossible\")\n", "N,L=map(int,input().split())\nA=[int(x) for x in input().split()]\n\npsbl=False\nans=0\nfor i in range(1,N):\n if A[i-1]+A[i]>=L:\n psbl=True\n ans=i-1\n break\nif psbl==False:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n", "N,L=map(int,input().split())\nA=[int(x) for x in input().split()]\n\npsbl=False\nans=0\nfor i in range(1,N):\n if A[i-1]+A[i]>=L:\n psbl=True\n ans=i-1\n break\nif psbl==False:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(ans):\n print(i+1)\n", "N,L=map(int,input().split())\nA=[int(x) for x in input().split()]\n\npsbl=False\nans=0\nfor i in range(1,N):\n if A[i-1]+A[i]>=L:\n psbl=True\n ans=i-1\n break\nif psbl==False:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(ans):\n print(i+1)\n for j in range(N-1-ans):\n print(N-j-1)\n" ]
10
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "t = 0\nm = 0\n", "N, L = map(int, input().split())\n\n\nt = 0\nm = 0\n", "N, L = map(int, input().split())\na = list(map(int, input().split()))\n\n\nt = 0\nm = 0\n", "N, L = map(int, input().split())\na = list(map(int, input().split()))\nS = sum(a)\n\nt = 0\nm = 0\n", "N, L = map(int, input().split())\na = list(map(int, input().split()))\nS = sum(a)\n\nt = 0\nm = 0\nfor k in range(len(a)-1):\n if a[k]+a[k+1]>=L:\n t = 1\n m = k+1\n break\n", "N, L = map(int, input().split())\na = list(map(int, input().split()))\nS = sum(a)\n\nt = 0\nm = 0\nfor k in range(len(a)-1):\n if a[k]+a[k+1]>=L:\n t = 1\n m = k+1\n break\nif t == 0:\n \n exit()\n", "N, L = map(int, input().split())\na = list(map(int, input().split()))\nS = sum(a)\n\nt = 0\nm = 0\nfor k in range(len(a)-1):\n if a[k]+a[k+1]>=L:\n t = 1\n m = k+1\n break\nif t == 0:\n print(\"Impossible\")\n exit()\n", "N, L = map(int, input().split())\na = list(map(int, input().split()))\nS = sum(a)\n\nt = 0\nm = 0\nfor k in range(len(a)-1):\n if a[k]+a[k+1]>=L:\n t = 1\n m = k+1\n break\nif t == 0:\n print(\"Impossible\")\n exit()\nelse:\n \n \n print(m)\n", "N, L = map(int, input().split())\na = list(map(int, input().split()))\nS = sum(a)\n\nt = 0\nm = 0\nfor k in range(len(a)-1):\n if a[k]+a[k+1]>=L:\n t = 1\n m = k+1\n break\nif t == 0:\n print(\"Impossible\")\n exit()\nelse:\n print(\"Possible\")\n \n \n print(m)\n", "N, L = map(int, input().split())\na = list(map(int, input().split()))\nS = sum(a)\n\nt = 0\nm = 0\nfor k in range(len(a)-1):\n if a[k]+a[k+1]>=L:\n t = 1\n m = k+1\n break\nif t == 0:\n print(\"Impossible\")\n exit()\nelse:\n print(\"Possible\")\n for k in range(1,m):\n print(k)\n \n print(m)\n", "N, L = map(int, input().split())\na = list(map(int, input().split()))\nS = sum(a)\n\nt = 0\nm = 0\nfor k in range(len(a)-1):\n if a[k]+a[k+1]>=L:\n t = 1\n m = k+1\n break\nif t == 0:\n print(\"Impossible\")\n exit()\nelse:\n print(\"Possible\")\n for k in range(1,m):\n print(k)\n for l in range(len(a)-(k+2)):\n print(len(a)-l-1)\n print(m)\n" ]
12
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "import sys\n", "import sys\ninput = sys.stdin.readline\n", "import sys\ninput = sys.stdin.readline\n\nN, L = map(int, input().split())\n", "import sys\ninput = sys.stdin.readline\n\nN, L = map(int, input().split())\na = list(map(int, input().split()))\n", "import sys\ninput = sys.stdin.readline\n\nN, L = map(int, input().split())\na = list(map(int, input().split()))\nfor i in range(N-1):\n if a[i] + a[i+1] >= L:\n print('Possible')\n for j in range(1, i+1):\n print(j)\n for j in range(i+1, N)[::-1]:\n print(j)\n exit()\n", "import sys\ninput = sys.stdin.readline\n\nN, L = map(int, input().split())\na = list(map(int, input().split()))\nfor i in range(N-1):\n if a[i] + a[i+1] >= L:\n print('Possible')\n for j in range(1, i+1):\n print(j)\n for j in range(i+1, N)[::-1]:\n print(j)\n exit()\nprint('Impossible')\n" ]
7
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "N, L = map(int, input().split())\n", "N, L = map(int, input().split())\nA = [int(i) for i in input().split()]\n", "N, L = map(int, input().split())\nA = [int(i) for i in input().split()]\n\nfor i in range(1, N):\n if A[i-1]+A[i] >= L:\n print('Possible')\n ans = []\n for j in range(1, i):\n ans.append(j)\n for k in range(N-1, i, -1):\n ans.append(k)\n ans.append(i)\n print(*ans, sep='\\n')\n exit()\n", "N, L = map(int, input().split())\nA = [int(i) for i in input().split()]\n\nfor i in range(1, N):\n if A[i-1]+A[i] >= L:\n print('Possible')\n ans = []\n for j in range(1, i):\n ans.append(j)\n for k in range(N-1, i, -1):\n ans.append(k)\n ans.append(i)\n print(*ans, sep='\\n')\n exit()\nprint('Impossible')\n" ]
5
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "p=0\n\n\nprint(p)\n", "N,L=map(int,input().split())\n\n\np=0\n\n\nprint(p)\n", "N,L=map(int,input().split())\na=[int(i) for i in input().split()]\n\np=0\n\n\nprint(p)\n", "N,L=map(int,input().split())\na=[int(i) for i in input().split()]\nLongest_pair=0\np=0\n\n\nprint(p)\n", "N,L=map(int,input().split())\na=[int(i) for i in input().split()]\nLongest_pair=0\np=0\nfor i in range(N-1):\n if a[i]+a[i+1]>Longest_pair:\n Longest_pair=a[i]+a[i+1]\n p=i+1\n\n\nprint(p)\n", "N,L=map(int,input().split())\na=[int(i) for i in input().split()]\nLongest_pair=0\np=0\nfor i in range(N-1):\n if a[i]+a[i+1]>Longest_pair:\n Longest_pair=a[i]+a[i+1]\n p=i+1\nif Longest_pair<L:\n \n exit()\n\n\nprint(p)\n", "N,L=map(int,input().split())\na=[int(i) for i in input().split()]\nLongest_pair=0\np=0\nfor i in range(N-1):\n if a[i]+a[i+1]>Longest_pair:\n Longest_pair=a[i]+a[i+1]\n p=i+1\nif Longest_pair<L:\n print(\"Impossible\")\n exit()\n\n\nprint(p)\n", "N,L=map(int,input().split())\na=[int(i) for i in input().split()]\nLongest_pair=0\np=0\nfor i in range(N-1):\n if a[i]+a[i+1]>Longest_pair:\n Longest_pair=a[i]+a[i+1]\n p=i+1\nif Longest_pair<L:\n print(\"Impossible\")\n exit()\nelse:\n print(\"Possible\")\n\n\nprint(p)\n", "N,L=map(int,input().split())\na=[int(i) for i in input().split()]\nLongest_pair=0\np=0\nfor i in range(N-1):\n if a[i]+a[i+1]>Longest_pair:\n Longest_pair=a[i]+a[i+1]\n p=i+1\nif Longest_pair<L:\n print(\"Impossible\")\n exit()\nelse:\n print(\"Possible\")\nfor i in range(1,p):\n print(i)\n\nprint(p)\n", "N,L=map(int,input().split())\na=[int(i) for i in input().split()]\nLongest_pair=0\np=0\nfor i in range(N-1):\n if a[i]+a[i+1]>Longest_pair:\n Longest_pair=a[i]+a[i+1]\n p=i+1\nif Longest_pair<L:\n print(\"Impossible\")\n exit()\nelse:\n print(\"Possible\")\nfor i in range(1,p):\n print(i)\nfor i in range(p+1,N)[::-1]:\n print(i)\nprint(p)\n" ]
11
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "m=-1\n", "n,l=map(int,input().split())\n\nm=-1\n", "n,l=map(int,input().split())\na=list(map(int,input().split()))\nm=-1\n", "n,l=map(int,input().split())\na=list(map(int,input().split()))\nm=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n m=i\n", "n,l=map(int,input().split())\na=list(map(int,input().split()))\nm=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n m=i\nif m==-1:\n print('Impossible')\n", "n,l=map(int,input().split())\na=list(map(int,input().split()))\nm=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n m=i\nif m==-1:\n print('Impossible')\nelse:\n print('Possible')\n", "n,l=map(int,input().split())\na=list(map(int,input().split()))\nm=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n m=i\nif m==-1:\n print('Impossible')\nelse:\n print('Possible')\n for i in range(m):\n print(i+1)\n", "n,l=map(int,input().split())\na=list(map(int,input().split()))\nm=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n m=i\nif m==-1:\n print('Impossible')\nelse:\n print('Possible')\n for i in range(m):\n print(i+1)\n for i in range(n-2,m,-1):\n print(i+1)\n", "n,l=map(int,input().split())\na=list(map(int,input().split()))\nm=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n m=i\nif m==-1:\n print('Impossible')\nelse:\n print('Possible')\n for i in range(m):\n print(i+1)\n for i in range(n-2,m,-1):\n print(i+1)\n print(m+1)\n" ]
10
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "ma = 0\nmidx = 0\n", "n, l = map(int, input().split())\n\nma = 0\nmidx = 0\n", "n, l = map(int, input().split())\na = list(map(int, input().split()))\nma = 0\nmidx = 0\n", "n, l = map(int, input().split())\na = list(map(int, input().split()))\nma = 0\nmidx = 0\nfor i in range(n - 1):\n if ma < a[i] + a[i + 1]:\n midx = i\n ma = a[i] + a[i + 1]\n", "n, l = map(int, input().split())\na = list(map(int, input().split()))\nma = 0\nmidx = 0\nfor i in range(n - 1):\n if ma < a[i] + a[i + 1]:\n midx = i\n ma = a[i] + a[i + 1]\nif l > ma:\n print('Impossible')\n", "n, l = map(int, input().split())\na = list(map(int, input().split()))\nma = 0\nmidx = 0\nfor i in range(n - 1):\n if ma < a[i] + a[i + 1]:\n midx = i\n ma = a[i] + a[i + 1]\nif l > ma:\n print('Impossible')\nelse:\n print('Possible')\n", "n, l = map(int, input().split())\na = list(map(int, input().split()))\nma = 0\nmidx = 0\nfor i in range(n - 1):\n if ma < a[i] + a[i + 1]:\n midx = i\n ma = a[i] + a[i + 1]\nif l > ma:\n print('Impossible')\nelse:\n print('Possible')\n for i in range(midx):\n print(i + 1)\n", "n, l = map(int, input().split())\na = list(map(int, input().split()))\nma = 0\nmidx = 0\nfor i in range(n - 1):\n if ma < a[i] + a[i + 1]:\n midx = i\n ma = a[i] + a[i + 1]\nif l > ma:\n print('Impossible')\nelse:\n print('Possible')\n for i in range(midx):\n print(i + 1)\n for i in range(n - 1, midx, -1):\n print(i)\n" ]
9
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "#C\n#各ペアについてみていき、一つでもl以上⇔Possible\n\n\nmaxsum=0\n", "#C\n#各ペアについてみていき、一つでもl以上⇔Possible\n\nn,l = [int(i) for i in input().split()]\n\n\nmaxsum=0\n", "#C\n#各ペアについてみていき、一つでもl以上⇔Possible\n\nn,l = [int(i) for i in input().split()]\na = [int(i) for i in input().split()]\n\nmaxsum=0\n", "#C\n#各ペアについてみていき、一つでもl以上⇔Possible\n\nn,l = [int(i) for i in input().split()]\na = [int(i) for i in input().split()]\n\nmaxsum=0\nmaxind = 0\n", "#C\n#各ペアについてみていき、一つでもl以上⇔Possible\n\nn,l = [int(i) for i in input().split()]\na = [int(i) for i in input().split()]\n\nmaxsum=0\nmaxind = 0\nfor i in range(n-1):\n s = a[i]+a[i+1]\n", "#C\n#各ペアについてみていき、一つでもl以上⇔Possible\n\nn,l = [int(i) for i in input().split()]\na = [int(i) for i in input().split()]\n\nmaxsum=0\nmaxind = 0\nfor i in range(n-1):\n s = a[i]+a[i+1]\n if s > maxsum:\n maxsum = s\n", "#C\n#各ペアについてみていき、一つでもl以上⇔Possible\n\nn,l = [int(i) for i in input().split()]\na = [int(i) for i in input().split()]\n\nmaxsum=0\nmaxind = 0\nfor i in range(n-1):\n s = a[i]+a[i+1]\n if s > maxsum:\n maxsum = s\n maxind = i+1\n", "#C\n#各ペアについてみていき、一つでもl以上⇔Possible\n\nn,l = [int(i) for i in input().split()]\na = [int(i) for i in input().split()]\n\nmaxsum=0\nmaxind = 0\nfor i in range(n-1):\n s = a[i]+a[i+1]\n if s > maxsum:\n maxsum = s\n maxind = i+1\n\nif maxsum<l:\n print(\"Impossible\")\n", "#C\n#各ペアについてみていき、一つでもl以上⇔Possible\n\nn,l = [int(i) for i in input().split()]\na = [int(i) for i in input().split()]\n\nmaxsum=0\nmaxind = 0\nfor i in range(n-1):\n s = a[i]+a[i+1]\n if s > maxsum:\n maxsum = s\n maxind = i+1\n\nif maxsum<l:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n", "#C\n#各ペアについてみていき、一つでもl以上⇔Possible\n\nn,l = [int(i) for i in input().split()]\na = [int(i) for i in input().split()]\n\nmaxsum=0\nmaxind = 0\nfor i in range(n-1):\n s = a[i]+a[i+1]\n if s > maxsum:\n maxsum = s\n maxind = i+1\n\nif maxsum<l:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(1,maxind):\n print(i)\n", "#C\n#各ペアについてみていき、一つでもl以上⇔Possible\n\nn,l = [int(i) for i in input().split()]\na = [int(i) for i in input().split()]\n\nmaxsum=0\nmaxind = 0\nfor i in range(n-1):\n s = a[i]+a[i+1]\n if s > maxsum:\n maxsum = s\n maxind = i+1\n\nif maxsum<l:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(1,maxind):\n print(i)\n for i in range(n-1,maxind,-1):\n print(i)\n", "#C\n#各ペアについてみていき、一つでもl以上⇔Possible\n\nn,l = [int(i) for i in input().split()]\na = [int(i) for i in input().split()]\n\nmaxsum=0\nmaxind = 0\nfor i in range(n-1):\n s = a[i]+a[i+1]\n if s > maxsum:\n maxsum = s\n maxind = i+1\n\nif maxsum<l:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(1,maxind):\n print(i)\n for i in range(n-1,maxind,-1):\n print(i)\n print(maxind)\n" ]
13
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "N,L = list(map(int,input().split()))\n", "N,L = list(map(int,input().split()))\n\na = list(map(int,input().split()))\n", "N,L = list(map(int,input().split()))\n\na = list(map(int,input().split()))\n\na_list = []\n", "N,L = list(map(int,input().split()))\n\na = list(map(int,input().split()))\n\na_list = []\nfor i in range(N-1):\n a_list.append([a[i]+a[i+1],i])\n", "N,L = list(map(int,input().split()))\n\na = list(map(int,input().split()))\n\na_list = []\nfor i in range(N-1):\n a_list.append([a[i]+a[i+1],i])\n\na_list=sorted(a_list,key=lambda x:x[0],reverse=True)\n", "N,L = list(map(int,input().split()))\n\na = list(map(int,input().split()))\n\na_list = []\nfor i in range(N-1):\n a_list.append([a[i]+a[i+1],i])\n\na_list=sorted(a_list,key=lambda x:x[0],reverse=True)\n\nif a_list[0][0]>=L:\n n=a_list[0][1]\n", "N,L = list(map(int,input().split()))\n\na = list(map(int,input().split()))\n\na_list = []\nfor i in range(N-1):\n a_list.append([a[i]+a[i+1],i])\n\na_list=sorted(a_list,key=lambda x:x[0],reverse=True)\n\nif a_list[0][0]>=L:\n n=a_list[0][1]\n print(\"Possible\")\n", "N,L = list(map(int,input().split()))\n\na = list(map(int,input().split()))\n\na_list = []\nfor i in range(N-1):\n a_list.append([a[i]+a[i+1],i])\n\na_list=sorted(a_list,key=lambda x:x[0],reverse=True)\n\nif a_list[0][0]>=L:\n n=a_list[0][1]\n print(\"Possible\")\n for i in range(n):\n print(i+1)\n", "N,L = list(map(int,input().split()))\n\na = list(map(int,input().split()))\n\na_list = []\nfor i in range(N-1):\n a_list.append([a[i]+a[i+1],i])\n\na_list=sorted(a_list,key=lambda x:x[0],reverse=True)\n\nif a_list[0][0]>=L:\n n=a_list[0][1]\n print(\"Possible\")\n for i in range(n):\n print(i+1)\n for i in range(N-2-n):\n print(N-1-i)\n", "N,L = list(map(int,input().split()))\n\na = list(map(int,input().split()))\n\na_list = []\nfor i in range(N-1):\n a_list.append([a[i]+a[i+1],i])\n\na_list=sorted(a_list,key=lambda x:x[0],reverse=True)\n\nif a_list[0][0]>=L:\n n=a_list[0][1]\n print(\"Possible\")\n for i in range(n):\n print(i+1)\n for i in range(N-2-n):\n print(N-1-i)\n print(n+1)\n", "N,L = list(map(int,input().split()))\n\na = list(map(int,input().split()))\n\na_list = []\nfor i in range(N-1):\n a_list.append([a[i]+a[i+1],i])\n\na_list=sorted(a_list,key=lambda x:x[0],reverse=True)\n\nif a_list[0][0]>=L:\n n=a_list[0][1]\n print(\"Possible\")\n for i in range(n):\n print(i+1)\n for i in range(N-2-n):\n print(N-1-i)\n print(n+1)\nelse:\n print(\"Impossible\")\n" ]
12
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "N,L=list(map(int, input().split()))\n", "N,L=list(map(int, input().split()))\nA=list(map(int, input().split()))\n", "N,L=list(map(int, input().split()))\nA=list(map(int, input().split()))\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n print('Possible')\n k=i\n break\n", "N,L=list(map(int, input().split()))\nA=list(map(int, input().split()))\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n print('Possible')\n k=i\n break\nelse:\n \n exit()\n", "N,L=list(map(int, input().split()))\nA=list(map(int, input().split()))\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n print('Possible')\n k=i\n break\nelse:\n print('Impossible')\n exit()\n", "N,L=list(map(int, input().split()))\nA=list(map(int, input().split()))\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n print('Possible')\n k=i\n break\nelse:\n print('Impossible')\n exit()\nans=[0]*(N-1)\n", "N,L=list(map(int, input().split()))\nA=list(map(int, input().split()))\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n print('Possible')\n k=i\n break\nelse:\n print('Impossible')\n exit()\nans=[0]*(N-1)\nans[k]=N-1\n", "N,L=list(map(int, input().split()))\nA=list(map(int, input().split()))\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n print('Possible')\n k=i\n break\nelse:\n print('Impossible')\n exit()\nans=[0]*(N-1)\nans[k]=N-1\nfor i in range(k):\n ans[i]=i+1\n", "N,L=list(map(int, input().split()))\nA=list(map(int, input().split()))\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n print('Possible')\n k=i\n break\nelse:\n print('Impossible')\n exit()\nans=[0]*(N-1)\nans[k]=N-1\nfor i in range(k):\n ans[i]=i+1\nfor i in range(N-2-k):\n ans[N-i-2]=k+i+1\n", "N,L=list(map(int, input().split()))\nA=list(map(int, input().split()))\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n print('Possible')\n k=i\n break\nelse:\n print('Impossible')\n exit()\nans=[0]*(N-1)\nans[k]=N-1\nfor i in range(k):\n ans[i]=i+1\nfor i in range(N-2-k):\n ans[N-i-2]=k+i+1\nfor i in range(N-1):\n print(ans[i])\n" ]
11
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "last=0;\n", "import sys\n\n\nlast=0;\n", "import sys\nsys.setrecursionlimit(200000)\n\n\nlast=0;\n", "import sys\nsys.setrecursionlimit(200000)\nn,l=map(int,input().split())\n\nlast=0;\n", "import sys\nsys.setrecursionlimit(200000)\nn,l=map(int,input().split())\nr=list(map(int,input().split()))\nlast=0;\n", "import sys\nsys.setrecursionlimit(200000)\nn,l=map(int,input().split())\nr=list(map(int,input().split()))\nlast=0;tiepoint=0\n", "import sys\nsys.setrecursionlimit(200000)\nn,l=map(int,input().split())\nr=list(map(int,input().split()))\nlast=0;tiepoint=0\nfor i in range(n-1):\n if r[i]+r[i+1]>last:\n last=r[i]+r[i+1]\n tiepoint=i\n", "import sys\nsys.setrecursionlimit(200000)\nn,l=map(int,input().split())\nr=list(map(int,input().split()))\nlast=0;tiepoint=0\nfor i in range(n-1):\n if r[i]+r[i+1]>last:\n last=r[i]+r[i+1]\n tiepoint=i\nif last>=l:\n print(\"Possible\")\n", "import sys\nsys.setrecursionlimit(200000)\nn,l=map(int,input().split())\nr=list(map(int,input().split()))\nlast=0;tiepoint=0\nfor i in range(n-1):\n if r[i]+r[i+1]>last:\n last=r[i]+r[i+1]\n tiepoint=i\nif last>=l:\n print(\"Possible\")\n for i in range(tiepoint):\n print(i+1)\n", "import sys\nsys.setrecursionlimit(200000)\nn,l=map(int,input().split())\nr=list(map(int,input().split()))\nlast=0;tiepoint=0\nfor i in range(n-1):\n if r[i]+r[i+1]>last:\n last=r[i]+r[i+1]\n tiepoint=i\nif last>=l:\n print(\"Possible\")\n for i in range(tiepoint):\n print(i+1)\n for i in range(tiepoint+1,n-1)[::-1]:\n print(i+1)\n", "import sys\nsys.setrecursionlimit(200000)\nn,l=map(int,input().split())\nr=list(map(int,input().split()))\nlast=0;tiepoint=0\nfor i in range(n-1):\n if r[i]+r[i+1]>last:\n last=r[i]+r[i+1]\n tiepoint=i\nif last>=l:\n print(\"Possible\")\n for i in range(tiepoint):\n print(i+1)\n for i in range(tiepoint+1,n-1)[::-1]:\n print(i+1)\n print(tiepoint+1)\n", "import sys\nsys.setrecursionlimit(200000)\nn,l=map(int,input().split())\nr=list(map(int,input().split()))\nlast=0;tiepoint=0\nfor i in range(n-1):\n if r[i]+r[i+1]>last:\n last=r[i]+r[i+1]\n tiepoint=i\nif last>=l:\n print(\"Possible\")\n for i in range(tiepoint):\n print(i+1)\n for i in range(tiepoint+1,n-1)[::-1]:\n print(i+1)\n print(tiepoint+1)\nelse:print(\"Impossible\")\n" ]
13
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "n, l = map(int, input().split())\n", "n, l = map(int, input().split())\na = list(map(int, input().split()))\n", "n, l = map(int, input().split())\na = list(map(int, input().split()))\n\natom = -1\n", "n, l = map(int, input().split())\na = list(map(int, input().split()))\n\natom = -1\nfor i in range(n-1):\n if l <= a[i] + a[i+1]:\n atom = i\n break\n", "n, l = map(int, input().split())\na = list(map(int, input().split()))\n\natom = -1\nfor i in range(n-1):\n if l <= a[i] + a[i+1]:\n atom = i\n break\n\nif atom < 0:\n print('Impossible')\n", "n, l = map(int, input().split())\na = list(map(int, input().split()))\n\natom = -1\nfor i in range(n-1):\n if l <= a[i] + a[i+1]:\n atom = i\n break\n\nif atom < 0:\n print('Impossible')\nelse:\n print('Possible')\n", "n, l = map(int, input().split())\na = list(map(int, input().split()))\n\natom = -1\nfor i in range(n-1):\n if l <= a[i] + a[i+1]:\n atom = i\n break\n\nif atom < 0:\n print('Impossible')\nelse:\n print('Possible')\n for i in range(atom):\n print(i+1)\n", "n, l = map(int, input().split())\na = list(map(int, input().split()))\n\natom = -1\nfor i in range(n-1):\n if l <= a[i] + a[i+1]:\n atom = i\n break\n\nif atom < 0:\n print('Impossible')\nelse:\n print('Possible')\n for i in range(atom):\n print(i+1)\n for i in range(n-atom-1):\n print(n-1-i)\n" ]
9
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "idx = -1\n", "n, length = list(map(int, input().split()))\n\n\nidx = -1\n", "n, length = list(map(int, input().split()))\nnums = list(map(int, input().split()))\n\nidx = -1\n", "n, length = list(map(int, input().split()))\nnums = list(map(int, input().split()))\n\nidx = -1\nfor i in range(n-1):\n if nums[i] + nums[i+1] >= length:\n idx = i\n break\n", "n, length = list(map(int, input().split()))\nnums = list(map(int, input().split()))\n\nidx = -1\nfor i in range(n-1):\n if nums[i] + nums[i+1] >= length:\n idx = i\n break\nif idx < 0:\n \n exit()\n", "n, length = list(map(int, input().split()))\nnums = list(map(int, input().split()))\n\nidx = -1\nfor i in range(n-1):\n if nums[i] + nums[i+1] >= length:\n idx = i\n break\nif idx < 0:\n print('Impossible')\n exit()\n", "n, length = list(map(int, input().split()))\nnums = list(map(int, input().split()))\n\nidx = -1\nfor i in range(n-1):\n if nums[i] + nums[i+1] >= length:\n idx = i\n break\nif idx < 0:\n print('Impossible')\n exit()\n\nprint('Possible')\n", "n, length = list(map(int, input().split()))\nnums = list(map(int, input().split()))\n\nidx = -1\nfor i in range(n-1):\n if nums[i] + nums[i+1] >= length:\n idx = i\n break\nif idx < 0:\n print('Impossible')\n exit()\n\nprint('Possible')\nfor i in range(idx):\n print(i+1)\n", "n, length = list(map(int, input().split()))\nnums = list(map(int, input().split()))\n\nidx = -1\nfor i in range(n-1):\n if nums[i] + nums[i+1] >= length:\n idx = i\n break\nif idx < 0:\n print('Impossible')\n exit()\n\nprint('Possible')\nfor i in range(idx):\n print(i+1)\nfor i in reversed(range(idx, n-1)):\n print(i+1)\n", "\nn, length = list(map(int, input().split()))\nnums = list(map(int, input().split()))\n\nidx = -1\nfor i in range(n-1):\n if nums[i] + nums[i+1] >= length:\n idx = i\n break\nif idx < 0:\n print('Impossible')\n exit()\n\nprint('Possible')\nfor i in range(idx):\n print(i+1)\nfor i in reversed(range(idx, n-1)):\n print(i+1)\n" ]
11
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "b = []\n", "n, l = map(int, input().split())\n\nb = []\n", "n, l = map(int, input().split())\na = [int(i) for i in input().split()]\nb = []\n", "n, l = map(int, input().split())\na = [int(i) for i in input().split()]\nb = []\nfor i in range(n-1):\n b.append(a[i] + a[i+1])\n", "n, l = map(int, input().split())\na = [int(i) for i in input().split()]\nb = []\nfor i in range(n-1):\n b.append(a[i] + a[i+1])\nif max(b) >= l:\n ans = \"Possible\"\n", "n, l = map(int, input().split())\na = [int(i) for i in input().split()]\nb = []\nfor i in range(n-1):\n b.append(a[i] + a[i+1])\nif max(b) >= l:\n ans = \"Possible\"\nelse:\n ans = \"Impossible\"\n", "n, l = map(int, input().split())\na = [int(i) for i in input().split()]\nb = []\nfor i in range(n-1):\n b.append(a[i] + a[i+1])\nif max(b) >= l:\n ans = \"Possible\"\nelse:\n ans = \"Impossible\"\nprint(ans)\n", "n, l = map(int, input().split())\na = [int(i) for i in input().split()]\nb = []\nfor i in range(n-1):\n b.append(a[i] + a[i+1])\nif max(b) >= l:\n ans = \"Possible\"\nelse:\n ans = \"Impossible\"\nprint(ans)\nif ans == \"Possible\":\n k = b.index(max(b))\n", "n, l = map(int, input().split())\na = [int(i) for i in input().split()]\nb = []\nfor i in range(n-1):\n b.append(a[i] + a[i+1])\nif max(b) >= l:\n ans = \"Possible\"\nelse:\n ans = \"Impossible\"\nprint(ans)\nif ans == \"Possible\":\n k = b.index(max(b))\n ans = list(range(1, k + 1)) + list(range(n - 1, k + 1, -1)) + [k + 1]\n", "n, l = map(int, input().split())\na = [int(i) for i in input().split()]\nb = []\nfor i in range(n-1):\n b.append(a[i] + a[i+1])\nif max(b) >= l:\n ans = \"Possible\"\nelse:\n ans = \"Impossible\"\nprint(ans)\nif ans == \"Possible\":\n k = b.index(max(b))\n ans = list(range(1, k + 1)) + list(range(n - 1, k + 1, -1)) + [k + 1]\n for i in ans:\n print(i)\n" ]
11
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "x = -1\n", "n,l = map(int,input().split())\n\nx = -1\n", "n,l = map(int,input().split())\na = list(map(int,input().split()))\nx = -1\n", "n,l = map(int,input().split())\na = list(map(int,input().split()))\nx = -1\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n x = i\n break\n", "n,l = map(int,input().split())\na = list(map(int,input().split()))\nx = -1\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n x = i\n break\nif x == -1:\n print('Impossible')\n", "n,l = map(int,input().split())\na = list(map(int,input().split()))\nx = -1\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n x = i\n break\nif x == -1:\n print('Impossible')\nelse:\n print('Possible')\n", "n,l = map(int,input().split())\na = list(map(int,input().split()))\nx = -1\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n x = i\n break\nif x == -1:\n print('Impossible')\nelse:\n print('Possible')\n for i in range(x):\n print(i+1)\n", "n,l = map(int,input().split())\na = list(map(int,input().split()))\nx = -1\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n x = i\n break\nif x == -1:\n print('Impossible')\nelse:\n print('Possible')\n for i in range(x):\n print(i+1)\n for i in range(n-2,x,-1):\n print(i+1)\n", "n,l = map(int,input().split())\na = list(map(int,input().split()))\nx = -1\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n x = i\n break\nif x == -1:\n print('Impossible')\nelse:\n print('Possible')\n for i in range(x):\n print(i+1)\n for i in range(n-2,x,-1):\n print(i+1)\n print(x+1)\n" ]
10
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "mx=0\nind=-1\n", "n,l=map(int, input().split())\n\nmx=0\nind=-1\n", "n,l=map(int, input().split())\n*a,=map(int, input().split())\nmx=0\nind=-1\n", "n,l=map(int, input().split())\n*a,=map(int, input().split())\nmx=0\nind=-1\nfor i in range(n-1):\n if mx<=a[i+1]+a[i]:\n ind=i\n mx=a[i+1]+a[i]\n", "n,l=map(int, input().split())\n*a,=map(int, input().split())\nmx=0\nind=-1\nfor i in range(n-1):\n if mx<=a[i+1]+a[i]:\n ind=i\n mx=a[i+1]+a[i]\nif mx>=l:\n print(\"Possible\")\n", "n,l=map(int, input().split())\n*a,=map(int, input().split())\nmx=0\nind=-1\nfor i in range(n-1):\n if mx<=a[i+1]+a[i]:\n ind=i\n mx=a[i+1]+a[i]\nif mx>=l:\n print(\"Possible\")\n for i in range(ind):\n print(i+1)\n", "n,l=map(int, input().split())\n*a,=map(int, input().split())\nmx=0\nind=-1\nfor i in range(n-1):\n if mx<=a[i+1]+a[i]:\n ind=i\n mx=a[i+1]+a[i]\nif mx>=l:\n print(\"Possible\")\n for i in range(ind):\n print(i+1)\n for i in range(n-1,ind,-1):\n print(i)\n", "n,l=map(int, input().split())\n*a,=map(int, input().split())\nmx=0\nind=-1\nfor i in range(n-1):\n if mx<=a[i+1]+a[i]:\n ind=i\n mx=a[i+1]+a[i]\nif mx>=l:\n print(\"Possible\")\n for i in range(ind):\n print(i+1)\n for i in range(n-1,ind,-1):\n print(i)\nelse:\n print(\"Impossible\")\n" ]
9
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "v=[0]\n", "n,l=map(int,input().split())\n\nv=[0]\n", "n,l=map(int,input().split())\n*a,=map(int,input().split())\nv=[0]\n", "n,l=map(int,input().split())\n*a,=map(int,input().split())\nv=[0]\n\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n v[0]=i+1\n v+=list(range(1,i+1)[::-1])\n v+=list(range(i+2,n))\n print(\"Possible\")\n print(*v[::-1],sep=\"\\n\")\n break\n", "n,l=map(int,input().split())\n*a,=map(int,input().split())\nv=[0]\n\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n v[0]=i+1\n v+=list(range(1,i+1)[::-1])\n v+=list(range(i+2,n))\n print(\"Possible\")\n print(*v[::-1],sep=\"\\n\")\n break\nelse:\n print(\"Impossible\")\n" ]
6
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "N,L,*A=map(int,open(0).read().split())\n", "N,L,*A=map(int,open(0).read().split())\nfor i,a,b in zip(range(1,N),A,A[1:]):\n if a+b>=L:print(\"Possible\",*range(1,i));print(*range(N-1,i-1,-1));quit()\n", "N,L,*A=map(int,open(0).read().split())\nfor i,a,b in zip(range(1,N),A,A[1:]):\n if a+b>=L:print(\"Possible\",*range(1,i));print(*range(N-1,i-1,-1));quit()\nprint(\"Impossible\")\n" ]
4
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "N,L = map(int,input().split())\n", "N,L = map(int,input().split())\nsrc = list(map(int,input().split()))\n", "N,L = map(int,input().split())\nsrc = list(map(int,input().split()))\n\nfor i,(a,b) in enumerate(zip(src, src[1:])):\n if a+b >= L:\n print('Possible')\n for j in range(1,i+1): print(j)\n for j in range(N-1,i,-1): print(j)\n exit()\n", "N,L = map(int,input().split())\nsrc = list(map(int,input().split()))\n\nfor i,(a,b) in enumerate(zip(src, src[1:])):\n if a+b >= L:\n print('Possible')\n for j in range(1,i+1): print(j)\n for j in range(N-1,i,-1): print(j)\n exit()\nprint('Impossible')\n" ]
5
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "N, L = map(int, input().split())\n", "N, L = map(int, input().split())\nA = list(map(int, input().split()))\n", "N, L = map(int, input().split())\nA = list(map(int, input().split()))\nd = [A[i] + A[i+1] for i in range(N-1)]\n", "N, L = map(int, input().split())\nA = list(map(int, input().split()))\nd = [A[i] + A[i+1] for i in range(N-1)]\nif max(d) < L:\n print(\"Impossible\")\n", "N, L = map(int, input().split())\nA = list(map(int, input().split()))\nd = [A[i] + A[i+1] for i in range(N-1)]\nif max(d) < L:\n print(\"Impossible\")\nelse:\n \n j = 0\n", "N, L = map(int, input().split())\nA = list(map(int, input().split()))\nd = [A[i] + A[i+1] for i in range(N-1)]\nif max(d) < L:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n j = 0\n", "N, L = map(int, input().split())\nA = list(map(int, input().split()))\nd = [A[i] + A[i+1] for i in range(N-1)]\nif max(d) < L:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n j = 0\n while d[j] < L:\n j += 1\n", "N, L = map(int, input().split())\nA = list(map(int, input().split()))\nd = [A[i] + A[i+1] for i in range(N-1)]\nif max(d) < L:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n j = 0\n while d[j] < L:\n j += 1\n for i in range(j):\n print(i+1)\n", "N, L = map(int, input().split())\nA = list(map(int, input().split()))\nd = [A[i] + A[i+1] for i in range(N-1)]\nif max(d) < L:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n j = 0\n while d[j] < L:\n j += 1\n for i in range(j):\n print(i+1)\n for i in range(j, N-1):\n print(N-i+j-1)\n" ]
10
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "s = -1\n", "import sys\n\n\ns = -1\n", "import sys\ninput = sys.stdin.readline\n\n\ns = -1\n", "import sys\ninput = sys.stdin.readline\nN, L = map(int, input().split())\n\ns = -1\n", "import sys\ninput = sys.stdin.readline\nN, L = map(int, input().split())\na = list(map(int, input().split()))\ns = -1\n", "import sys\ninput = sys.stdin.readline\nN, L = map(int, input().split())\na = list(map(int, input().split()))\ns = -1\nfor i in range(N - 1):\n if a[i] + a[i + 1] >= L:\n s = i\n break\n", "import sys\ninput = sys.stdin.readline\nN, L = map(int, input().split())\na = list(map(int, input().split()))\ns = -1\nfor i in range(N - 1):\n if a[i] + a[i + 1] >= L:\n s = i\n break\nif s == -1:\n \n exit(0)\n", "import sys\ninput = sys.stdin.readline\nN, L = map(int, input().split())\na = list(map(int, input().split()))\ns = -1\nfor i in range(N - 1):\n if a[i] + a[i + 1] >= L:\n s = i\n break\nif s == -1:\n print(\"Impossible\")\n exit(0)\n", "import sys\ninput = sys.stdin.readline\nN, L = map(int, input().split())\na = list(map(int, input().split()))\ns = -1\nfor i in range(N - 1):\n if a[i] + a[i + 1] >= L:\n s = i\n break\nif s == -1:\n print(\"Impossible\")\n exit(0)\nres = [s]\n", "import sys\ninput = sys.stdin.readline\nN, L = map(int, input().split())\na = list(map(int, input().split()))\ns = -1\nfor i in range(N - 1):\n if a[i] + a[i + 1] >= L:\n s = i\n break\nif s == -1:\n print(\"Impossible\")\n exit(0)\nres = [s]\nfor i in range(s - 1, -1, -1):\n res.append(i)\n", "import sys\ninput = sys.stdin.readline\nN, L = map(int, input().split())\na = list(map(int, input().split()))\ns = -1\nfor i in range(N - 1):\n if a[i] + a[i + 1] >= L:\n s = i\n break\nif s == -1:\n print(\"Impossible\")\n exit(0)\nres = [s]\nfor i in range(s - 1, -1, -1):\n res.append(i)\nfor i in range(s + 1, N - 1):\n res.append(i)\n", "import sys\ninput = sys.stdin.readline\nN, L = map(int, input().split())\na = list(map(int, input().split()))\ns = -1\nfor i in range(N - 1):\n if a[i] + a[i + 1] >= L:\n s = i\n break\nif s == -1:\n print(\"Impossible\")\n exit(0)\nres = [s]\nfor i in range(s - 1, -1, -1):\n res.append(i)\nfor i in range(s + 1, N - 1):\n res.append(i)\nres.reverse()\n", "import sys\ninput = sys.stdin.readline\nN, L = map(int, input().split())\na = list(map(int, input().split()))\ns = -1\nfor i in range(N - 1):\n if a[i] + a[i + 1] >= L:\n s = i\n break\nif s == -1:\n print(\"Impossible\")\n exit(0)\nres = [s]\nfor i in range(s - 1, -1, -1):\n res.append(i)\nfor i in range(s + 1, N - 1):\n res.append(i)\nres.reverse()\nprint(\"Possible\")\n", "import sys\ninput = sys.stdin.readline\nN, L = map(int, input().split())\na = list(map(int, input().split()))\ns = -1\nfor i in range(N - 1):\n if a[i] + a[i + 1] >= L:\n s = i\n break\nif s == -1:\n print(\"Impossible\")\n exit(0)\nres = [s]\nfor i in range(s - 1, -1, -1):\n res.append(i)\nfor i in range(s + 1, N - 1):\n res.append(i)\nres.reverse()\nprint(\"Possible\")\nfor r in res: print(r + 1)\n" ]
15
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "def get_ints():\n return list(map(int, input().split()))\n", "def get_ints():\n return list(map(int, input().split()))\n\n[n, l] = get_ints()\n", "def get_ints():\n return list(map(int, input().split()))\n\n[n, l] = get_ints()\na = get_ints()\n", "def get_ints():\n return list(map(int, input().split()))\n\n[n, l] = get_ints()\na = get_ints()\n\nfor i in range(n - 1):\n \n \n exit(0)\n", "def get_ints():\n return list(map(int, input().split()))\n\n[n, l] = get_ints()\na = get_ints()\n\nfor i in range(n - 1):\n if a[i] + a[i + 1] < l:\n continue\n \n \n exit(0)\n", "def get_ints():\n return list(map(int, input().split()))\n\n[n, l] = get_ints()\na = get_ints()\n\nfor i in range(n - 1):\n if a[i] + a[i + 1] < l:\n continue\n print(\"Possible\")\n \n \n exit(0)\n", "def get_ints():\n return list(map(int, input().split()))\n\n[n, l] = get_ints()\na = get_ints()\n\nfor i in range(n - 1):\n if a[i] + a[i + 1] < l:\n continue\n print(\"Possible\")\n for j in range(1, i + 1):\n print(j)\n \n exit(0)\n", "def get_ints():\n return list(map(int, input().split()))\n\n[n, l] = get_ints()\na = get_ints()\n\nfor i in range(n - 1):\n if a[i] + a[i + 1] < l:\n continue\n print(\"Possible\")\n for j in range(1, i + 1):\n print(j)\n for j in range(n - 1, i, -1):\n print(j)\n exit(0)\n", "def get_ints():\n return list(map(int, input().split()))\n\n[n, l] = get_ints()\na = get_ints()\n\nfor i in range(n - 1):\n if a[i] + a[i + 1] < l:\n continue\n print(\"Possible\")\n for j in range(1, i + 1):\n print(j)\n for j in range(n - 1, i, -1):\n print(j)\n exit(0)\n\nprint(\"Impossible\")\n" ]
10
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "j=-1\n", "n,l=[int(x) for x in input().split()]\n\n\nj=-1\n", "n,l=[int(x) for x in input().split()]\n\na=[int(x) for x in input().split()]\n\nj=-1\n", "n,l=[int(x) for x in input().split()]\n\na=[int(x) for x in input().split()]\n\nj=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n j=i\n break\n", "n,l=[int(x) for x in input().split()]\n\na=[int(x) for x in input().split()]\n\nj=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n j=i\n break\n\nif j==-1:\n print(\"Impossible\")\n", "n,l=[int(x) for x in input().split()]\n\na=[int(x) for x in input().split()]\n\nj=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n j=i\n break\n\nif j==-1:\n print(\"Impossible\")\nelse:\n #print(j)\n print(\"Possible\")\n", "n,l=[int(x) for x in input().split()]\n\na=[int(x) for x in input().split()]\n\nj=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n j=i\n break\n\nif j==-1:\n print(\"Impossible\")\nelse:\n #print(j)\n print(\"Possible\")\n for i in range(j):\n print(i+1)\n", "n,l=[int(x) for x in input().split()]\n\na=[int(x) for x in input().split()]\n\nj=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n j=i\n break\n\nif j==-1:\n print(\"Impossible\")\nelse:\n #print(j)\n print(\"Possible\")\n for i in range(j):\n print(i+1)\n for i in range(n-1,j,-1):\n print(i)\n" ]
9
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i. At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly: * Choose a (connected) rope with a total length of at least L, then untie one of its knots. Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots. Constraints * 2≤N≤10^5 * 1≤L≤10^9 * 1≤a_i≤10^9 * All input values are integers. Input The input is given from Standard Input in the following format: N L a_1 a_2 ... a_n Output If it is not possible to untie all of the N-1 knots, print `Impossible`. If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i. If there is more than one solution, output any. Examples Input 3 50 30 20 10 Output Possible 2 1 Input 2 21 10 10 Output Impossible Input 5 50 10 20 30 40 50 Output Possible 1 2 3 4
[ "\n", "n,l = (int(i) for i in input().split())\n", "n,l = (int(i) for i in input().split())\na = list(int(i) for i in input().split())\n", "n,l = (int(i) for i in input().split())\na = list(int(i) for i in input().split())\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n print('Possible')\n for j in range(n,i+2,-1):\n print(j-1)\n for k in range(1,i+2):\n print(k)\n exit()\n", "n,l = (int(i) for i in input().split())\na = list(int(i) for i in input().split())\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n print('Possible')\n for j in range(n,i+2,-1):\n print(j-1)\n for k in range(1,i+2):\n print(k)\n exit()\nprint('Impossible')\n" ]
5
[ { "input": "3 50\n30 20 10", "output": "Possible\n2\n1" }, { "input": "5 50\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4" }, { "input": "2 21\n10 10", "output": "Impossible" } ]
[ { "input": "3 50\n30 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 40 50", "output": "Possible\n1\n2\n3\n4\n" }, { "input": "5 50\n10 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "5 30\n10 20 29 51 104", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "3 23\n0 17 18", "output": "Possible\n1\n2\n" }, { "input": "2 21\n10 13", "output": "Possible\n1\n" }, { "input": "3 50\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 17 11", "output": "Possible\n2\n1\n" }, { "input": "3 50\n30 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 50", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n26 17 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n15 20", "output": "Possible\n1\n" }, { "input": "3 50\n50 17 10", "output": "Possible\n2\n1\n" }, { "input": "2 4\n10 13", "output": "Possible\n1\n" }, { "input": "3 67\n34 17 10", "output": "Impossible\n" }, { "input": "3 50\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 39\n15 20", "output": "Impossible\n" }, { "input": "3 68\n50 17 10", "output": "Impossible\n" }, { "input": "2 4\n10 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 25\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 3 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 20", "output": "Possible\n1\n" }, { "input": "3 68\n50 17 1", "output": "Impossible\n" }, { "input": "2 4\n9 4", "output": "Possible\n1\n" }, { "input": "3 67\n61 17 4", "output": "Possible\n2\n1\n" }, { "input": "3 13\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 29 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 1\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 6", "output": "Possible\n1\n" }, { "input": "3 16\n19 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n15 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n8 20", "output": "Possible\n1\n" }, { "input": "2 4\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 7\n10 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 1", "output": "Possible\n1\n" }, { "input": "2 7\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 0", "output": "Possible\n1\n" }, { "input": "3 50\n30 19 10", "output": "Impossible\n" }, { "input": "5 50\n10 20 30 40 27", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 28\n10 10", "output": "Impossible\n" }, { "input": "3 50\n30 33 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 20 30 58 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 25\n10 20", "output": "Possible\n1\n" }, { "input": "3 50\n55 23 10", "output": "Possible\n2\n1\n" }, { "input": "2 21\n10 24", "output": "Possible\n1\n" }, { "input": "3 44\n34 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 47\n34 6 10", "output": "Impossible\n" }, { "input": "3 82\n34 17 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 10", "output": "Possible\n2\n1\n" }, { "input": "5 44\n10 20 30 40 35", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 50\n23 17 10", "output": "Impossible\n" }, { "input": "5 50\n8 20 30 51 88", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 21\n12 20", "output": "Possible\n1\n" }, { "input": "3 67\n9 17 10", "output": "Impossible\n" }, { "input": "3 12\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "5 80\n10 20 30 6 50", "output": "Impossible\n" }, { "input": "3 13\n38 17 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n10 13 30 51 104", "output": "Possible\n1\n2\n4\n3\n" }, { "input": "2 39\n15 7", "output": "Impossible\n" }, { "input": "2 4\n10 7", "output": "Possible\n1\n" }, { "input": "3 67\n57 17 10", "output": "Possible\n2\n1\n" }, { "input": "3 23\n30 21 13", "output": "Possible\n2\n1\n" }, { "input": "3 13\n26 0 10", "output": "Possible\n2\n1\n" }, { "input": "2 11\n15 36", "output": "Possible\n1\n" }, { "input": "3 68\n50 2 1", "output": "Impossible\n" }, { "input": "2 4\n9 8", "output": "Possible\n1\n" }, { "input": "3 13\n19 2 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 36 29 51 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "3 16\n37 3 10", "output": "Possible\n2\n1\n" }, { "input": "5 50\n2 20 54 34 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 0\n20 20", "output": "Possible\n1\n" }, { "input": "2 4\n9 9", "output": "Possible\n1\n" }, { "input": "5 50\n2 9 54 51 144", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 3\n10 1", "output": "Possible\n1\n" }, { "input": "5 50\n2 14 54 1 104", "output": "Possible\n1\n4\n3\n2\n" }, { "input": "2 2\n10 1", "output": "Possible\n1\n" }, { "input": "2 13\n14 1", "output": "Possible\n1\n" }, { "input": "2 14\n14 0", "output": "Possible\n1\n" }, { "input": "2 7\n18 1", "output": "Possible\n1\n" }, { "input": "3 50\n30 5 10", "output": "Impossible\n" }, { "input": "3 67\n30 33 10", "output": "Impossible\n" }, { "input": "5 5\n10 20 30 58 88", "output": "Possible\n4\n3\n2\n1\n" }, { "input": "2 25\n14 20", "output": "Possible\n1\n" }, { "input": "3 50\n49 23 10", "output": "Possible\n2\n1\n" }, { "input": "3 44\n34 17 5", "output": "Possible\n2\n1\n" }, { "input": "3 4\n34 6 10", "output": "Possible\n2\n1\n" }, { "input": "3 82\n34 12 11", "output": "Impossible\n" }, { "input": "3 50\n54 21 20", "output": "Possible\n2\n1\n" } ]
0/::0
Takahashi will do a tap dance. The dance is described by a string S where each character is `L`, `R`, `U`, or `D`. These characters indicate the positions on which Takahashi should step. He will follow these instructions one by one in order, starting with the first character. S is said to be easily playable if and only if it satisfies both of the following conditions: * Every character in an odd position (1-st, 3-rd, 5-th, \ldots) is `R`, `U`, or `D`. * Every character in an even position (2-nd, 4-th, 6-th, \ldots) is `L`, `U`, or `D`. Your task is to print `Yes` if S is easily playable, and `No` otherwise. Constraints * S is a string of length between 1 and 100 (inclusive). * Each character of S is `L`, `R`, `U`, or `D`. Input Input is given from Standard Input in the following format: S Output Print `Yes` if S is easily playable, and `No` otherwise. Examples Input RUDLUDR Output Yes Input DULL Output No Input UUUUUUUUUUUUUUU Output Yes Input ULURU Output No Input RDULULDURURLRDULRLR Output Yes
[ "\n", "S = input()\n", "S = input()\nprint(\"No\" if (\"L\" in S[0::2]) or (\"R\" in S[1::2]) else \"Yes\")\n" ]
3
[ { "input": "RUDLUDR", "output": "Yes" }, { "input": "DULL", "output": "No" }, { "input": "RDULULDURURLRDULRLR", "output": "Yes" }, { "input": "UUUUUUUUUUUUUUU", "output": "Yes" }, { "input": "ULURU", "output": "No" } ]
[ { "input": "RDULDUR", "output": "Yes\n" }, { "input": "LLUD", "output": "No\n" }, { "input": "RDULULDURURLLDULRRR", "output": "No\n" }, { "input": "ULURV", "output": "No\n" }, { "input": "EULL", "output": "No\n" }, { "input": "RCULULDURURLLDULRRR", "output": "No\n" }, { "input": "UKURU", "output": "No\n" }, { "input": "EULM", "output": "No\n" }, { "input": "RCVLULDURURLLDULRRR", "output": "No\n" }, { "input": "UJURU", "output": "No\n" }, { "input": "RCVLULDURURKLDULRRR", "output": "No\n" }, { "input": "URUJU", "output": "No\n" }, { "input": "RCVLUUDURLRKLDULRRR", "output": "No\n" }, { "input": "RCVLUUDURLRKLDVLRRR", "output": "No\n" }, { "input": "RRRLVDLKRLRUDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RCVLUVDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RCVLUWDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDWULVCR", "output": "No\n" }, { "input": "RQRLWRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRLRLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDKLVDWUWVCR", "output": "No\n" }, { "input": "RCVWUWDVLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUWDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUVDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RRRRLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVDR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCS", "output": "No\n" }, { "input": "RRRQLPLDDKMWKVUWVCS", "output": "No\n" }, { "input": "RRMQLPLDDKRWKVUWVCS", "output": "No\n" }, { "input": "WRMQLPLDDKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKDDLPLQMRW", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRW", "output": "No\n" }, { "input": "WRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "VRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRV", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPDLMRV", "output": "No\n" }, { "input": "SCVWKVKRRUQDLPDLMRV", "output": "No\n" }, { "input": "VRMLDPLDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLDPKDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLCPKDQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKDQVRRKVKWVDS", "output": "No\n" }, { "input": "SDVWKVKRRVQDKPCLMRV", "output": "No\n" }, { "input": "VRMLCQKDQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCQKDQKRRVVKWVDS", "output": "No\n" }, { "input": "VRMLCQKVQKRRDVKWVDS", "output": "No\n" }, { "input": "VVMLCQKVQKRRDRKWVDS", "output": "No\n" }, { "input": "DVMLCQKVQKRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKWVVS", "output": "No\n" }, { "input": "SVVWKRDRRJQVKQCLMVD", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVWS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRWSVWK", "output": "No\n" }, { "input": "DVMLCQKVQJQRCRWSVWK", "output": "No\n" }, { "input": "KWVSWRCRQJQVKQCLMVD", "output": "No\n" }, { "input": "KWVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKUQCLMVD", "output": "No\n" }, { "input": "DVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCSWSVXK", "output": "No\n" }, { "input": "EVMLCQUSPJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWSCRQJPSUQCLMVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPWE", "output": "No\n" }, { "input": "EWPLCQUSMJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWRCRQJMSUQCLPWE", "output": "No\n" }, { "input": "KXVKWCCRQJMSUQRLPWE", "output": "No\n" }, { "input": "KXVKPCCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQQMSUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLRBCSQPQLWLWRUJE", "output": "No\n" } ]
0/::0
Takahashi will do a tap dance. The dance is described by a string S where each character is `L`, `R`, `U`, or `D`. These characters indicate the positions on which Takahashi should step. He will follow these instructions one by one in order, starting with the first character. S is said to be easily playable if and only if it satisfies both of the following conditions: * Every character in an odd position (1-st, 3-rd, 5-th, \ldots) is `R`, `U`, or `D`. * Every character in an even position (2-nd, 4-th, 6-th, \ldots) is `L`, `U`, or `D`. Your task is to print `Yes` if S is easily playable, and `No` otherwise. Constraints * S is a string of length between 1 and 100 (inclusive). * Each character of S is `L`, `R`, `U`, or `D`. Input Input is given from Standard Input in the following format: S Output Print `Yes` if S is easily playable, and `No` otherwise. Examples Input RUDLUDR Output Yes Input DULL Output No Input UUUUUUUUUUUUUUU Output Yes Input ULURU Output No Input RDULULDURURLRDULRLR Output Yes
[ "\n", "S = input()\n", "S = input()\n\nprint((\"Yes\", \"No\")[\"L\" in S[::2] or \"R\" in S[1::2]])\n" ]
3
[ { "input": "RUDLUDR", "output": "Yes" }, { "input": "DULL", "output": "No" }, { "input": "RDULULDURURLRDULRLR", "output": "Yes" }, { "input": "UUUUUUUUUUUUUUU", "output": "Yes" }, { "input": "ULURU", "output": "No" } ]
[ { "input": "RDULDUR", "output": "Yes\n" }, { "input": "LLUD", "output": "No\n" }, { "input": "RDULULDURURLLDULRRR", "output": "No\n" }, { "input": "ULURV", "output": "No\n" }, { "input": "EULL", "output": "No\n" }, { "input": "RCULULDURURLLDULRRR", "output": "No\n" }, { "input": "UKURU", "output": "No\n" }, { "input": "EULM", "output": "No\n" }, { "input": "RCVLULDURURLLDULRRR", "output": "No\n" }, { "input": "UJURU", "output": "No\n" }, { "input": "RCVLULDURURKLDULRRR", "output": "No\n" }, { "input": "URUJU", "output": "No\n" }, { "input": "RCVLUUDURLRKLDULRRR", "output": "No\n" }, { "input": "RCVLUUDURLRKLDVLRRR", "output": "No\n" }, { "input": "RRRLVDLKRLRUDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RCVLUVDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RCVLUWDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDWULVCR", "output": "No\n" }, { "input": "RQRLWRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRLRLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDKLVDWUWVCR", "output": "No\n" }, { "input": "RCVWUWDVLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUWDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUVDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RRRRLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVDR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCS", "output": "No\n" }, { "input": "RRRQLPLDDKMWKVUWVCS", "output": "No\n" }, { "input": "RRMQLPLDDKRWKVUWVCS", "output": "No\n" }, { "input": "WRMQLPLDDKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKDDLPLQMRW", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRW", "output": "No\n" }, { "input": "WRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "VRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRV", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPDLMRV", "output": "No\n" }, { "input": "SCVWKVKRRUQDLPDLMRV", "output": "No\n" }, { "input": "VRMLDPLDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLDPKDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLCPKDQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKDQVRRKVKWVDS", "output": "No\n" }, { "input": "SDVWKVKRRVQDKPCLMRV", "output": "No\n" }, { "input": "VRMLCQKDQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCQKDQKRRVVKWVDS", "output": "No\n" }, { "input": "VRMLCQKVQKRRDVKWVDS", "output": "No\n" }, { "input": "VVMLCQKVQKRRDRKWVDS", "output": "No\n" }, { "input": "DVMLCQKVQKRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKWVVS", "output": "No\n" }, { "input": "SVVWKRDRRJQVKQCLMVD", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVWS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRWSVWK", "output": "No\n" }, { "input": "DVMLCQKVQJQRCRWSVWK", "output": "No\n" }, { "input": "KWVSWRCRQJQVKQCLMVD", "output": "No\n" }, { "input": "KWVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKUQCLMVD", "output": "No\n" }, { "input": "DVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCSWSVXK", "output": "No\n" }, { "input": "EVMLCQUSPJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWSCRQJPSUQCLMVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPWE", "output": "No\n" }, { "input": "EWPLCQUSMJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWRCRQJMSUQCLPWE", "output": "No\n" }, { "input": "KXVKWCCRQJMSUQRLPWE", "output": "No\n" }, { "input": "KXVKPCCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQQMSUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLRBCSQPQLWLWRUJE", "output": "No\n" } ]
0/::0
Takahashi will do a tap dance. The dance is described by a string S where each character is `L`, `R`, `U`, or `D`. These characters indicate the positions on which Takahashi should step. He will follow these instructions one by one in order, starting with the first character. S is said to be easily playable if and only if it satisfies both of the following conditions: * Every character in an odd position (1-st, 3-rd, 5-th, \ldots) is `R`, `U`, or `D`. * Every character in an even position (2-nd, 4-th, 6-th, \ldots) is `L`, `U`, or `D`. Your task is to print `Yes` if S is easily playable, and `No` otherwise. Constraints * S is a string of length between 1 and 100 (inclusive). * Each character of S is `L`, `R`, `U`, or `D`. Input Input is given from Standard Input in the following format: S Output Print `Yes` if S is easily playable, and `No` otherwise. Examples Input RUDLUDR Output Yes Input DULL Output No Input UUUUUUUUUUUUUUU Output Yes Input ULURU Output No Input RDULULDURURLRDULRLR Output Yes
[ "\n", "s=input();\n", "s=input();print(\" YNeos\"[set(s[::2])<=set(\"RUD\")and set(s[1::2])<=set(\"LUD\")::2])\n" ]
3
[ { "input": "RUDLUDR", "output": "Yes" }, { "input": "DULL", "output": "No" }, { "input": "RDULULDURURLRDULRLR", "output": "Yes" }, { "input": "UUUUUUUUUUUUUUU", "output": "Yes" }, { "input": "ULURU", "output": "No" } ]
[ { "input": "RDULDUR", "output": "Yes\n" }, { "input": "LLUD", "output": "No\n" }, { "input": "RDULULDURURLLDULRRR", "output": "No\n" }, { "input": "ULURV", "output": "No\n" }, { "input": "EULL", "output": "No\n" }, { "input": "RCULULDURURLLDULRRR", "output": "No\n" }, { "input": "UKURU", "output": "No\n" }, { "input": "EULM", "output": "No\n" }, { "input": "RCVLULDURURLLDULRRR", "output": "No\n" }, { "input": "UJURU", "output": "No\n" }, { "input": "RCVLULDURURKLDULRRR", "output": "No\n" }, { "input": "URUJU", "output": "No\n" }, { "input": "RCVLUUDURLRKLDULRRR", "output": "No\n" }, { "input": "RCVLUUDURLRKLDVLRRR", "output": "No\n" }, { "input": "RRRLVDLKRLRUDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RCVLUVDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RCVLUWDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDWULVCR", "output": "No\n" }, { "input": "RQRLWRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRLRLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDKLVDWUWVCR", "output": "No\n" }, { "input": "RCVWUWDVLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUWDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUVDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RRRRLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVDR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCS", "output": "No\n" }, { "input": "RRRQLPLDDKMWKVUWVCS", "output": "No\n" }, { "input": "RRMQLPLDDKRWKVUWVCS", "output": "No\n" }, { "input": "WRMQLPLDDKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKDDLPLQMRW", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRW", "output": "No\n" }, { "input": "WRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "VRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRV", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPDLMRV", "output": "No\n" }, { "input": "SCVWKVKRRUQDLPDLMRV", "output": "No\n" }, { "input": "VRMLDPLDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLDPKDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLCPKDQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKDQVRRKVKWVDS", "output": "No\n" }, { "input": "SDVWKVKRRVQDKPCLMRV", "output": "No\n" }, { "input": "VRMLCQKDQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCQKDQKRRVVKWVDS", "output": "No\n" }, { "input": "VRMLCQKVQKRRDVKWVDS", "output": "No\n" }, { "input": "VVMLCQKVQKRRDRKWVDS", "output": "No\n" }, { "input": "DVMLCQKVQKRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKWVVS", "output": "No\n" }, { "input": "SVVWKRDRRJQVKQCLMVD", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVWS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRWSVWK", "output": "No\n" }, { "input": "DVMLCQKVQJQRCRWSVWK", "output": "No\n" }, { "input": "KWVSWRCRQJQVKQCLMVD", "output": "No\n" }, { "input": "KWVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKUQCLMVD", "output": "No\n" }, { "input": "DVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCSWSVXK", "output": "No\n" }, { "input": "EVMLCQUSPJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWSCRQJPSUQCLMVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPWE", "output": "No\n" }, { "input": "EWPLCQUSMJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWRCRQJMSUQCLPWE", "output": "No\n" }, { "input": "KXVKWCCRQJMSUQRLPWE", "output": "No\n" }, { "input": "KXVKPCCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQQMSUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLRBCSQPQLWLWRUJE", "output": "No\n" } ]
0/::0
Takahashi will do a tap dance. The dance is described by a string S where each character is `L`, `R`, `U`, or `D`. These characters indicate the positions on which Takahashi should step. He will follow these instructions one by one in order, starting with the first character. S is said to be easily playable if and only if it satisfies both of the following conditions: * Every character in an odd position (1-st, 3-rd, 5-th, \ldots) is `R`, `U`, or `D`. * Every character in an even position (2-nd, 4-th, 6-th, \ldots) is `L`, `U`, or `D`. Your task is to print `Yes` if S is easily playable, and `No` otherwise. Constraints * S is a string of length between 1 and 100 (inclusive). * Each character of S is `L`, `R`, `U`, or `D`. Input Input is given from Standard Input in the following format: S Output Print `Yes` if S is easily playable, and `No` otherwise. Examples Input RUDLUDR Output Yes Input DULL Output No Input UUUUUUUUUUUUUUU Output Yes Input ULURU Output No Input RDULULDURURLRDULRLR Output Yes
[ "\n", "S = input()\n", "S = input()\n\nif 'L' in S[::2] or 'R' in S[1::2]:\n print('No')\n", "S = input()\n\nif 'L' in S[::2] or 'R' in S[1::2]:\n print('No')\nelse:\n print('Yes')\n" ]
4
[ { "input": "RUDLUDR", "output": "Yes" }, { "input": "DULL", "output": "No" }, { "input": "RDULULDURURLRDULRLR", "output": "Yes" }, { "input": "UUUUUUUUUUUUUUU", "output": "Yes" }, { "input": "ULURU", "output": "No" } ]
[ { "input": "RDULDUR", "output": "Yes\n" }, { "input": "LLUD", "output": "No\n" }, { "input": "RDULULDURURLLDULRRR", "output": "No\n" }, { "input": "ULURV", "output": "No\n" }, { "input": "EULL", "output": "No\n" }, { "input": "RCULULDURURLLDULRRR", "output": "No\n" }, { "input": "UKURU", "output": "No\n" }, { "input": "EULM", "output": "No\n" }, { "input": "RCVLULDURURLLDULRRR", "output": "No\n" }, { "input": "UJURU", "output": "No\n" }, { "input": "RCVLULDURURKLDULRRR", "output": "No\n" }, { "input": "URUJU", "output": "No\n" }, { "input": "RCVLUUDURLRKLDULRRR", "output": "No\n" }, { "input": "RCVLUUDURLRKLDVLRRR", "output": "No\n" }, { "input": "RRRLVDLKRLRUDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RCVLUVDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RCVLUWDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDWULVCR", "output": "No\n" }, { "input": "RQRLWRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRLRLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDKLVDWUWVCR", "output": "No\n" }, { "input": "RCVWUWDVLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUWDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUVDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RRRRLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVDR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCS", "output": "No\n" }, { "input": "RRRQLPLDDKMWKVUWVCS", "output": "No\n" }, { "input": "RRMQLPLDDKRWKVUWVCS", "output": "No\n" }, { "input": "WRMQLPLDDKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKDDLPLQMRW", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRW", "output": "No\n" }, { "input": "WRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "VRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRV", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPDLMRV", "output": "No\n" }, { "input": "SCVWKVKRRUQDLPDLMRV", "output": "No\n" }, { "input": "VRMLDPLDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLDPKDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLCPKDQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKDQVRRKVKWVDS", "output": "No\n" }, { "input": "SDVWKVKRRVQDKPCLMRV", "output": "No\n" }, { "input": "VRMLCQKDQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCQKDQKRRVVKWVDS", "output": "No\n" }, { "input": "VRMLCQKVQKRRDVKWVDS", "output": "No\n" }, { "input": "VVMLCQKVQKRRDRKWVDS", "output": "No\n" }, { "input": "DVMLCQKVQKRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKWVVS", "output": "No\n" }, { "input": "SVVWKRDRRJQVKQCLMVD", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVWS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRWSVWK", "output": "No\n" }, { "input": "DVMLCQKVQJQRCRWSVWK", "output": "No\n" }, { "input": "KWVSWRCRQJQVKQCLMVD", "output": "No\n" }, { "input": "KWVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKUQCLMVD", "output": "No\n" }, { "input": "DVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCSWSVXK", "output": "No\n" }, { "input": "EVMLCQUSPJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWSCRQJPSUQCLMVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPWE", "output": "No\n" }, { "input": "EWPLCQUSMJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWRCRQJMSUQCLPWE", "output": "No\n" }, { "input": "KXVKWCCRQJMSUQRLPWE", "output": "No\n" }, { "input": "KXVKPCCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQQMSUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLRBCSQPQLWLWRUJE", "output": "No\n" } ]
0/::0
Takahashi will do a tap dance. The dance is described by a string S where each character is `L`, `R`, `U`, or `D`. These characters indicate the positions on which Takahashi should step. He will follow these instructions one by one in order, starting with the first character. S is said to be easily playable if and only if it satisfies both of the following conditions: * Every character in an odd position (1-st, 3-rd, 5-th, \ldots) is `R`, `U`, or `D`. * Every character in an even position (2-nd, 4-th, 6-th, \ldots) is `L`, `U`, or `D`. Your task is to print `Yes` if S is easily playable, and `No` otherwise. Constraints * S is a string of length between 1 and 100 (inclusive). * Each character of S is `L`, `R`, `U`, or `D`. Input Input is given from Standard Input in the following format: S Output Print `Yes` if S is easily playable, and `No` otherwise. Examples Input RUDLUDR Output Yes Input DULL Output No Input UUUUUUUUUUUUUUU Output Yes Input ULURU Output No Input RDULULDURURLRDULRLR Output Yes
[ "\n", "s=input()\n", "s=input()\na=list(s[1::2])\n", "s=input()\na=list(s[1::2])\nb=list(s[0::2])\n", "s=input()\na=list(s[1::2])\nb=list(s[0::2])\nif \"R\" in a or \"L\" in b:\n print(\"No\")\n", "s=input()\na=list(s[1::2])\nb=list(s[0::2])\nif \"R\" in a or \"L\" in b:\n print(\"No\")\nelse:\n print(\"Yes\")\n" ]
6
[ { "input": "RUDLUDR", "output": "Yes" }, { "input": "DULL", "output": "No" }, { "input": "RDULULDURURLRDULRLR", "output": "Yes" }, { "input": "UUUUUUUUUUUUUUU", "output": "Yes" }, { "input": "ULURU", "output": "No" } ]
[ { "input": "RDULDUR", "output": "Yes\n" }, { "input": "LLUD", "output": "No\n" }, { "input": "RDULULDURURLLDULRRR", "output": "No\n" }, { "input": "ULURV", "output": "No\n" }, { "input": "EULL", "output": "No\n" }, { "input": "RCULULDURURLLDULRRR", "output": "No\n" }, { "input": "UKURU", "output": "No\n" }, { "input": "EULM", "output": "No\n" }, { "input": "RCVLULDURURLLDULRRR", "output": "No\n" }, { "input": "UJURU", "output": "No\n" }, { "input": "RCVLULDURURKLDULRRR", "output": "No\n" }, { "input": "URUJU", "output": "No\n" }, { "input": "RCVLUUDURLRKLDULRRR", "output": "No\n" }, { "input": "RCVLUUDURLRKLDVLRRR", "output": "No\n" }, { "input": "RRRLVDLKRLRUDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RCVLUVDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RCVLUWDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDWULVCR", "output": "No\n" }, { "input": "RQRLWRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRLRLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDKLVDWUWVCR", "output": "No\n" }, { "input": "RCVWUWDVLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUWDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUVDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RRRRLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVDR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCS", "output": "No\n" }, { "input": "RRRQLPLDDKMWKVUWVCS", "output": "No\n" }, { "input": "RRMQLPLDDKRWKVUWVCS", "output": "No\n" }, { "input": "WRMQLPLDDKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKDDLPLQMRW", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRW", "output": "No\n" }, { "input": "WRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "VRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRV", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPDLMRV", "output": "No\n" }, { "input": "SCVWKVKRRUQDLPDLMRV", "output": "No\n" }, { "input": "VRMLDPLDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLDPKDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLCPKDQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKDQVRRKVKWVDS", "output": "No\n" }, { "input": "SDVWKVKRRVQDKPCLMRV", "output": "No\n" }, { "input": "VRMLCQKDQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCQKDQKRRVVKWVDS", "output": "No\n" }, { "input": "VRMLCQKVQKRRDVKWVDS", "output": "No\n" }, { "input": "VVMLCQKVQKRRDRKWVDS", "output": "No\n" }, { "input": "DVMLCQKVQKRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKWVVS", "output": "No\n" }, { "input": "SVVWKRDRRJQVKQCLMVD", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVWS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRWSVWK", "output": "No\n" }, { "input": "DVMLCQKVQJQRCRWSVWK", "output": "No\n" }, { "input": "KWVSWRCRQJQVKQCLMVD", "output": "No\n" }, { "input": "KWVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKUQCLMVD", "output": "No\n" }, { "input": "DVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCSWSVXK", "output": "No\n" }, { "input": "EVMLCQUSPJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWSCRQJPSUQCLMVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPWE", "output": "No\n" }, { "input": "EWPLCQUSMJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWRCRQJMSUQCLPWE", "output": "No\n" }, { "input": "KXVKWCCRQJMSUQRLPWE", "output": "No\n" }, { "input": "KXVKPCCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQQMSUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLRBCSQPQLWLWRUJE", "output": "No\n" } ]
0/::0
Takahashi will do a tap dance. The dance is described by a string S where each character is `L`, `R`, `U`, or `D`. These characters indicate the positions on which Takahashi should step. He will follow these instructions one by one in order, starting with the first character. S is said to be easily playable if and only if it satisfies both of the following conditions: * Every character in an odd position (1-st, 3-rd, 5-th, \ldots) is `R`, `U`, or `D`. * Every character in an even position (2-nd, 4-th, 6-th, \ldots) is `L`, `U`, or `D`. Your task is to print `Yes` if S is easily playable, and `No` otherwise. Constraints * S is a string of length between 1 and 100 (inclusive). * Each character of S is `L`, `R`, `U`, or `D`. Input Input is given from Standard Input in the following format: S Output Print `Yes` if S is easily playable, and `No` otherwise. Examples Input RUDLUDR Output Yes Input DULL Output No Input UUUUUUUUUUUUUUU Output Yes Input ULURU Output No Input RDULULDURURLRDULRLR Output Yes
[ "\n", "s = input()\n", "s = input()\n\nif 'L' in s[::2]:\n print('No')\n", "s = input()\n\nif 'L' in s[::2]:\n print('No')\nelif 'R' in s[1::2]:\n print('No')\n", "s = input()\n\nif 'L' in s[::2]:\n print('No')\nelif 'R' in s[1::2]:\n print('No')\nelse:\n print('Yes')\n" ]
5
[ { "input": "RUDLUDR", "output": "Yes" }, { "input": "DULL", "output": "No" }, { "input": "RDULULDURURLRDULRLR", "output": "Yes" }, { "input": "UUUUUUUUUUUUUUU", "output": "Yes" }, { "input": "ULURU", "output": "No" } ]
[ { "input": "RDULDUR", "output": "Yes\n" }, { "input": "LLUD", "output": "No\n" }, { "input": "RDULULDURURLLDULRRR", "output": "No\n" }, { "input": "ULURV", "output": "No\n" }, { "input": "EULL", "output": "No\n" }, { "input": "RCULULDURURLLDULRRR", "output": "No\n" }, { "input": "UKURU", "output": "No\n" }, { "input": "EULM", "output": "No\n" }, { "input": "RCVLULDURURLLDULRRR", "output": "No\n" }, { "input": "UJURU", "output": "No\n" }, { "input": "RCVLULDURURKLDULRRR", "output": "No\n" }, { "input": "URUJU", "output": "No\n" }, { "input": "RCVLUUDURLRKLDULRRR", "output": "No\n" }, { "input": "RCVLUUDURLRKLDVLRRR", "output": "No\n" }, { "input": "RRRLVDLKRLRUDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RCVLUVDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RCVLUWDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDWULVCR", "output": "No\n" }, { "input": "RQRLWRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRLRLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDKLVDWUWVCR", "output": "No\n" }, { "input": "RCVWUWDVLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUWDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUVDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RRRRLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVDR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCS", "output": "No\n" }, { "input": "RRRQLPLDDKMWKVUWVCS", "output": "No\n" }, { "input": "RRMQLPLDDKRWKVUWVCS", "output": "No\n" }, { "input": "WRMQLPLDDKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKDDLPLQMRW", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRW", "output": "No\n" }, { "input": "WRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "VRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRV", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPDLMRV", "output": "No\n" }, { "input": "SCVWKVKRRUQDLPDLMRV", "output": "No\n" }, { "input": "VRMLDPLDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLDPKDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLCPKDQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKDQVRRKVKWVDS", "output": "No\n" }, { "input": "SDVWKVKRRVQDKPCLMRV", "output": "No\n" }, { "input": "VRMLCQKDQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCQKDQKRRVVKWVDS", "output": "No\n" }, { "input": "VRMLCQKVQKRRDVKWVDS", "output": "No\n" }, { "input": "VVMLCQKVQKRRDRKWVDS", "output": "No\n" }, { "input": "DVMLCQKVQKRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKWVVS", "output": "No\n" }, { "input": "SVVWKRDRRJQVKQCLMVD", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVWS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRWSVWK", "output": "No\n" }, { "input": "DVMLCQKVQJQRCRWSVWK", "output": "No\n" }, { "input": "KWVSWRCRQJQVKQCLMVD", "output": "No\n" }, { "input": "KWVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKUQCLMVD", "output": "No\n" }, { "input": "DVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCSWSVXK", "output": "No\n" }, { "input": "EVMLCQUSPJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWSCRQJPSUQCLMVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPWE", "output": "No\n" }, { "input": "EWPLCQUSMJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWRCRQJMSUQCLPWE", "output": "No\n" }, { "input": "KXVKWCCRQJMSUQRLPWE", "output": "No\n" }, { "input": "KXVKPCCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQQMSUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLRBCSQPQLWLWRUJE", "output": "No\n" } ]
0/::0
Takahashi will do a tap dance. The dance is described by a string S where each character is `L`, `R`, `U`, or `D`. These characters indicate the positions on which Takahashi should step. He will follow these instructions one by one in order, starting with the first character. S is said to be easily playable if and only if it satisfies both of the following conditions: * Every character in an odd position (1-st, 3-rd, 5-th, \ldots) is `R`, `U`, or `D`. * Every character in an even position (2-nd, 4-th, 6-th, \ldots) is `L`, `U`, or `D`. Your task is to print `Yes` if S is easily playable, and `No` otherwise. Constraints * S is a string of length between 1 and 100 (inclusive). * Each character of S is `L`, `R`, `U`, or `D`. Input Input is given from Standard Input in the following format: S Output Print `Yes` if S is easily playable, and `No` otherwise. Examples Input RUDLUDR Output Yes Input DULL Output No Input UUUUUUUUUUUUUUU Output Yes Input ULURU Output No Input RDULULDURURLRDULRLR Output Yes
[ "\n", "s = input()\n", "s = input()\nif 'L' in s[0::2] or 'R' in s[1::2]:\n print('No')\n", "s = input()\nif 'L' in s[0::2] or 'R' in s[1::2]:\n print('No')\nelse:\n print('Yes')\n" ]
4
[ { "input": "RUDLUDR", "output": "Yes" }, { "input": "DULL", "output": "No" }, { "input": "RDULULDURURLRDULRLR", "output": "Yes" }, { "input": "UUUUUUUUUUUUUUU", "output": "Yes" }, { "input": "ULURU", "output": "No" } ]
[ { "input": "RDULDUR", "output": "Yes\n" }, { "input": "LLUD", "output": "No\n" }, { "input": "RDULULDURURLLDULRRR", "output": "No\n" }, { "input": "ULURV", "output": "No\n" }, { "input": "EULL", "output": "No\n" }, { "input": "RCULULDURURLLDULRRR", "output": "No\n" }, { "input": "UKURU", "output": "No\n" }, { "input": "EULM", "output": "No\n" }, { "input": "RCVLULDURURLLDULRRR", "output": "No\n" }, { "input": "UJURU", "output": "No\n" }, { "input": "RCVLULDURURKLDULRRR", "output": "No\n" }, { "input": "URUJU", "output": "No\n" }, { "input": "RCVLUUDURLRKLDULRRR", "output": "No\n" }, { "input": "RCVLUUDURLRKLDVLRRR", "output": "No\n" }, { "input": "RRRLVDLKRLRUDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RCVLUVDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RCVLUWDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDWULVCR", "output": "No\n" }, { "input": "RQRLWRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRLRLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDKLVDWUWVCR", "output": "No\n" }, { "input": "RCVWUWDVLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUWDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUVDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RRRRLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVDR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCS", "output": "No\n" }, { "input": "RRRQLPLDDKMWKVUWVCS", "output": "No\n" }, { "input": "RRMQLPLDDKRWKVUWVCS", "output": "No\n" }, { "input": "WRMQLPLDDKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKDDLPLQMRW", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRW", "output": "No\n" }, { "input": "WRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "VRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRV", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPDLMRV", "output": "No\n" }, { "input": "SCVWKVKRRUQDLPDLMRV", "output": "No\n" }, { "input": "VRMLDPLDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLDPKDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLCPKDQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKDQVRRKVKWVDS", "output": "No\n" }, { "input": "SDVWKVKRRVQDKPCLMRV", "output": "No\n" }, { "input": "VRMLCQKDQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCQKDQKRRVVKWVDS", "output": "No\n" }, { "input": "VRMLCQKVQKRRDVKWVDS", "output": "No\n" }, { "input": "VVMLCQKVQKRRDRKWVDS", "output": "No\n" }, { "input": "DVMLCQKVQKRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKWVVS", "output": "No\n" }, { "input": "SVVWKRDRRJQVKQCLMVD", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVWS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRWSVWK", "output": "No\n" }, { "input": "DVMLCQKVQJQRCRWSVWK", "output": "No\n" }, { "input": "KWVSWRCRQJQVKQCLMVD", "output": "No\n" }, { "input": "KWVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKUQCLMVD", "output": "No\n" }, { "input": "DVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCSWSVXK", "output": "No\n" }, { "input": "EVMLCQUSPJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWSCRQJPSUQCLMVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPWE", "output": "No\n" }, { "input": "EWPLCQUSMJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWRCRQJMSUQCLPWE", "output": "No\n" }, { "input": "KXVKWCCRQJMSUQRLPWE", "output": "No\n" }, { "input": "KXVKPCCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQQMSUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLRBCSQPQLWLWRUJE", "output": "No\n" } ]
0/::0
Takahashi will do a tap dance. The dance is described by a string S where each character is `L`, `R`, `U`, or `D`. These characters indicate the positions on which Takahashi should step. He will follow these instructions one by one in order, starting with the first character. S is said to be easily playable if and only if it satisfies both of the following conditions: * Every character in an odd position (1-st, 3-rd, 5-th, \ldots) is `R`, `U`, or `D`. * Every character in an even position (2-nd, 4-th, 6-th, \ldots) is `L`, `U`, or `D`. Your task is to print `Yes` if S is easily playable, and `No` otherwise. Constraints * S is a string of length between 1 and 100 (inclusive). * Each character of S is `L`, `R`, `U`, or `D`. Input Input is given from Standard Input in the following format: S Output Print `Yes` if S is easily playable, and `No` otherwise. Examples Input RUDLUDR Output Yes Input DULL Output No Input UUUUUUUUUUUUUUU Output Yes Input ULURU Output No Input RDULULDURURLRDULRLR Output Yes
[ "\n", "import re\n", "import re\nif re.match('^([RUD][LUD])*[RUD]?$', input()):\n print('Yes')\n", "import re\nif re.match('^([RUD][LUD])*[RUD]?$', input()):\n print('Yes')\nelse:\n print('No')\n" ]
4
[ { "input": "RUDLUDR", "output": "Yes" }, { "input": "DULL", "output": "No" }, { "input": "RDULULDURURLRDULRLR", "output": "Yes" }, { "input": "UUUUUUUUUUUUUUU", "output": "Yes" }, { "input": "ULURU", "output": "No" } ]
[ { "input": "RDULDUR", "output": "Yes\n" }, { "input": "LLUD", "output": "No\n" }, { "input": "RDULULDURURLLDULRRR", "output": "No\n" }, { "input": "ULURV", "output": "No\n" }, { "input": "EULL", "output": "No\n" }, { "input": "RCULULDURURLLDULRRR", "output": "No\n" }, { "input": "UKURU", "output": "No\n" }, { "input": "EULM", "output": "No\n" }, { "input": "RCVLULDURURLLDULRRR", "output": "No\n" }, { "input": "UJURU", "output": "No\n" }, { "input": "RCVLULDURURKLDULRRR", "output": "No\n" }, { "input": "URUJU", "output": "No\n" }, { "input": "RCVLUUDURLRKLDULRRR", "output": "No\n" }, { "input": "RCVLUUDURLRKLDVLRRR", "output": "No\n" }, { "input": "RRRLVDLKRLRUDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RCVLUVDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RCVLUWDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDWULVCR", "output": "No\n" }, { "input": "RQRLWRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRLRLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDKLVDWUWVCR", "output": "No\n" }, { "input": "RCVWUWDVLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUWDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUVDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RRRRLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVDR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCS", "output": "No\n" }, { "input": "RRRQLPLDDKMWKVUWVCS", "output": "No\n" }, { "input": "RRMQLPLDDKRWKVUWVCS", "output": "No\n" }, { "input": "WRMQLPLDDKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKDDLPLQMRW", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRW", "output": "No\n" }, { "input": "WRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "VRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRV", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPDLMRV", "output": "No\n" }, { "input": "SCVWKVKRRUQDLPDLMRV", "output": "No\n" }, { "input": "VRMLDPLDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLDPKDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLCPKDQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKDQVRRKVKWVDS", "output": "No\n" }, { "input": "SDVWKVKRRVQDKPCLMRV", "output": "No\n" }, { "input": "VRMLCQKDQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCQKDQKRRVVKWVDS", "output": "No\n" }, { "input": "VRMLCQKVQKRRDVKWVDS", "output": "No\n" }, { "input": "VVMLCQKVQKRRDRKWVDS", "output": "No\n" }, { "input": "DVMLCQKVQKRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKWVVS", "output": "No\n" }, { "input": "SVVWKRDRRJQVKQCLMVD", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVWS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRWSVWK", "output": "No\n" }, { "input": "DVMLCQKVQJQRCRWSVWK", "output": "No\n" }, { "input": "KWVSWRCRQJQVKQCLMVD", "output": "No\n" }, { "input": "KWVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKUQCLMVD", "output": "No\n" }, { "input": "DVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCSWSVXK", "output": "No\n" }, { "input": "EVMLCQUSPJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWSCRQJPSUQCLMVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPWE", "output": "No\n" }, { "input": "EWPLCQUSMJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWRCRQJMSUQCLPWE", "output": "No\n" }, { "input": "KXVKWCCRQJMSUQRLPWE", "output": "No\n" }, { "input": "KXVKPCCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQQMSUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLRBCSQPQLWLWRUJE", "output": "No\n" } ]
0/::0
Takahashi will do a tap dance. The dance is described by a string S where each character is `L`, `R`, `U`, or `D`. These characters indicate the positions on which Takahashi should step. He will follow these instructions one by one in order, starting with the first character. S is said to be easily playable if and only if it satisfies both of the following conditions: * Every character in an odd position (1-st, 3-rd, 5-th, \ldots) is `R`, `U`, or `D`. * Every character in an even position (2-nd, 4-th, 6-th, \ldots) is `L`, `U`, or `D`. Your task is to print `Yes` if S is easily playable, and `No` otherwise. Constraints * S is a string of length between 1 and 100 (inclusive). * Each character of S is `L`, `R`, `U`, or `D`. Input Input is given from Standard Input in the following format: S Output Print `Yes` if S is easily playable, and `No` otherwise. Examples Input RUDLUDR Output Yes Input DULL Output No Input UUUUUUUUUUUUUUU Output Yes Input ULURU Output No Input RDULULDURURLRDULRLR Output Yes
[ "\n", "s = input()\n", "s = input()\nprint('Yes') if s[1::2].count('R') == 0 and s[::2].count('L') == 0 else print('No')\n" ]
3
[ { "input": "RUDLUDR", "output": "Yes" }, { "input": "DULL", "output": "No" }, { "input": "RDULULDURURLRDULRLR", "output": "Yes" }, { "input": "UUUUUUUUUUUUUUU", "output": "Yes" }, { "input": "ULURU", "output": "No" } ]
[ { "input": "RDULDUR", "output": "Yes\n" }, { "input": "LLUD", "output": "No\n" }, { "input": "RDULULDURURLLDULRRR", "output": "No\n" }, { "input": "ULURV", "output": "No\n" }, { "input": "EULL", "output": "No\n" }, { "input": "RCULULDURURLLDULRRR", "output": "No\n" }, { "input": "UKURU", "output": "No\n" }, { "input": "EULM", "output": "No\n" }, { "input": "RCVLULDURURLLDULRRR", "output": "No\n" }, { "input": "UJURU", "output": "No\n" }, { "input": "RCVLULDURURKLDULRRR", "output": "No\n" }, { "input": "URUJU", "output": "No\n" }, { "input": "RCVLUUDURLRKLDULRRR", "output": "No\n" }, { "input": "RCVLUUDURLRKLDVLRRR", "output": "No\n" }, { "input": "RRRLVDLKRLRUDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RCVLUVDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RCVLUWDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDWULVCR", "output": "No\n" }, { "input": "RQRLWRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRLRLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDKLVDWUWVCR", "output": "No\n" }, { "input": "RCVWUWDVLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUWDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUVDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RRRRLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVDR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCS", "output": "No\n" }, { "input": "RRRQLPLDDKMWKVUWVCS", "output": "No\n" }, { "input": "RRMQLPLDDKRWKVUWVCS", "output": "No\n" }, { "input": "WRMQLPLDDKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKDDLPLQMRW", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRW", "output": "No\n" }, { "input": "WRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "VRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRV", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPDLMRV", "output": "No\n" }, { "input": "SCVWKVKRRUQDLPDLMRV", "output": "No\n" }, { "input": "VRMLDPLDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLDPKDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLCPKDQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKDQVRRKVKWVDS", "output": "No\n" }, { "input": "SDVWKVKRRVQDKPCLMRV", "output": "No\n" }, { "input": "VRMLCQKDQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCQKDQKRRVVKWVDS", "output": "No\n" }, { "input": "VRMLCQKVQKRRDVKWVDS", "output": "No\n" }, { "input": "VVMLCQKVQKRRDRKWVDS", "output": "No\n" }, { "input": "DVMLCQKVQKRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKWVVS", "output": "No\n" }, { "input": "SVVWKRDRRJQVKQCLMVD", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVWS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRWSVWK", "output": "No\n" }, { "input": "DVMLCQKVQJQRCRWSVWK", "output": "No\n" }, { "input": "KWVSWRCRQJQVKQCLMVD", "output": "No\n" }, { "input": "KWVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKUQCLMVD", "output": "No\n" }, { "input": "DVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCSWSVXK", "output": "No\n" }, { "input": "EVMLCQUSPJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWSCRQJPSUQCLMVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPWE", "output": "No\n" }, { "input": "EWPLCQUSMJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWRCRQJMSUQCLPWE", "output": "No\n" }, { "input": "KXVKWCCRQJMSUQRLPWE", "output": "No\n" }, { "input": "KXVKPCCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQQMSUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLRBCSQPQLWLWRUJE", "output": "No\n" } ]
0/::0
Takahashi will do a tap dance. The dance is described by a string S where each character is `L`, `R`, `U`, or `D`. These characters indicate the positions on which Takahashi should step. He will follow these instructions one by one in order, starting with the first character. S is said to be easily playable if and only if it satisfies both of the following conditions: * Every character in an odd position (1-st, 3-rd, 5-th, \ldots) is `R`, `U`, or `D`. * Every character in an even position (2-nd, 4-th, 6-th, \ldots) is `L`, `U`, or `D`. Your task is to print `Yes` if S is easily playable, and `No` otherwise. Constraints * S is a string of length between 1 and 100 (inclusive). * Each character of S is `L`, `R`, `U`, or `D`. Input Input is given from Standard Input in the following format: S Output Print `Yes` if S is easily playable, and `No` otherwise. Examples Input RUDLUDR Output Yes Input DULL Output No Input UUUUUUUUUUUUUUU Output Yes Input ULURU Output No Input RDULULDURURLRDULRLR Output Yes
[ "\n", "s = [i for i in input()]\n", "s = [i for i in input()]\nif 'L' in s[0::2] or 'R' in s[1::2]:\n print('No')\n", "s = [i for i in input()]\nif 'L' in s[0::2] or 'R' in s[1::2]:\n print('No')\nelse:\n print(\"Yes\")\n" ]
4
[ { "input": "RUDLUDR", "output": "Yes" }, { "input": "DULL", "output": "No" }, { "input": "RDULULDURURLRDULRLR", "output": "Yes" }, { "input": "UUUUUUUUUUUUUUU", "output": "Yes" }, { "input": "ULURU", "output": "No" } ]
[ { "input": "RDULDUR", "output": "Yes\n" }, { "input": "LLUD", "output": "No\n" }, { "input": "RDULULDURURLLDULRRR", "output": "No\n" }, { "input": "ULURV", "output": "No\n" }, { "input": "EULL", "output": "No\n" }, { "input": "RCULULDURURLLDULRRR", "output": "No\n" }, { "input": "UKURU", "output": "No\n" }, { "input": "EULM", "output": "No\n" }, { "input": "RCVLULDURURLLDULRRR", "output": "No\n" }, { "input": "UJURU", "output": "No\n" }, { "input": "RCVLULDURURKLDULRRR", "output": "No\n" }, { "input": "URUJU", "output": "No\n" }, { "input": "RCVLUUDURLRKLDULRRR", "output": "No\n" }, { "input": "RCVLUUDURLRKLDVLRRR", "output": "No\n" }, { "input": "RRRLVDLKRLRUDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RCVLUVDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RCVLUWDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDWULVCR", "output": "No\n" }, { "input": "RQRLWRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRLRLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDKLVDWUWVCR", "output": "No\n" }, { "input": "RCVWUWDVLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUWDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUVDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RRRRLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVDR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCS", "output": "No\n" }, { "input": "RRRQLPLDDKMWKVUWVCS", "output": "No\n" }, { "input": "RRMQLPLDDKRWKVUWVCS", "output": "No\n" }, { "input": "WRMQLPLDDKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKDDLPLQMRW", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRW", "output": "No\n" }, { "input": "WRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "VRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRV", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPDLMRV", "output": "No\n" }, { "input": "SCVWKVKRRUQDLPDLMRV", "output": "No\n" }, { "input": "VRMLDPLDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLDPKDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLCPKDQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKDQVRRKVKWVDS", "output": "No\n" }, { "input": "SDVWKVKRRVQDKPCLMRV", "output": "No\n" }, { "input": "VRMLCQKDQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCQKDQKRRVVKWVDS", "output": "No\n" }, { "input": "VRMLCQKVQKRRDVKWVDS", "output": "No\n" }, { "input": "VVMLCQKVQKRRDRKWVDS", "output": "No\n" }, { "input": "DVMLCQKVQKRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKWVVS", "output": "No\n" }, { "input": "SVVWKRDRRJQVKQCLMVD", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVWS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRWSVWK", "output": "No\n" }, { "input": "DVMLCQKVQJQRCRWSVWK", "output": "No\n" }, { "input": "KWVSWRCRQJQVKQCLMVD", "output": "No\n" }, { "input": "KWVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKUQCLMVD", "output": "No\n" }, { "input": "DVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCSWSVXK", "output": "No\n" }, { "input": "EVMLCQUSPJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWSCRQJPSUQCLMVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPWE", "output": "No\n" }, { "input": "EWPLCQUSMJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWRCRQJMSUQCLPWE", "output": "No\n" }, { "input": "KXVKWCCRQJMSUQRLPWE", "output": "No\n" }, { "input": "KXVKPCCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQQMSUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLRBCSQPQLWLWRUJE", "output": "No\n" } ]
0/::0
Takahashi will do a tap dance. The dance is described by a string S where each character is `L`, `R`, `U`, or `D`. These characters indicate the positions on which Takahashi should step. He will follow these instructions one by one in order, starting with the first character. S is said to be easily playable if and only if it satisfies both of the following conditions: * Every character in an odd position (1-st, 3-rd, 5-th, \ldots) is `R`, `U`, or `D`. * Every character in an even position (2-nd, 4-th, 6-th, \ldots) is `L`, `U`, or `D`. Your task is to print `Yes` if S is easily playable, and `No` otherwise. Constraints * S is a string of length between 1 and 100 (inclusive). * Each character of S is `L`, `R`, `U`, or `D`. Input Input is given from Standard Input in the following format: S Output Print `Yes` if S is easily playable, and `No` otherwise. Examples Input RUDLUDR Output Yes Input DULL Output No Input UUUUUUUUUUUUUUU Output Yes Input ULURU Output No Input RDULULDURURLRDULRLR Output Yes
[ "\n", "S = list(input())\n", "S = list(input())\n\nif 'L' in S[0::2] or 'R' in S[1::2]:\n print('No')\n", "S = list(input())\n\nif 'L' in S[0::2] or 'R' in S[1::2]:\n print('No')\nelse:\n print('Yes')\n" ]
4
[ { "input": "RUDLUDR", "output": "Yes" }, { "input": "DULL", "output": "No" }, { "input": "RDULULDURURLRDULRLR", "output": "Yes" }, { "input": "UUUUUUUUUUUUUUU", "output": "Yes" }, { "input": "ULURU", "output": "No" } ]
[ { "input": "RDULDUR", "output": "Yes\n" }, { "input": "LLUD", "output": "No\n" }, { "input": "RDULULDURURLLDULRRR", "output": "No\n" }, { "input": "ULURV", "output": "No\n" }, { "input": "EULL", "output": "No\n" }, { "input": "RCULULDURURLLDULRRR", "output": "No\n" }, { "input": "UKURU", "output": "No\n" }, { "input": "EULM", "output": "No\n" }, { "input": "RCVLULDURURLLDULRRR", "output": "No\n" }, { "input": "UJURU", "output": "No\n" }, { "input": "RCVLULDURURKLDULRRR", "output": "No\n" }, { "input": "URUJU", "output": "No\n" }, { "input": "RCVLUUDURLRKLDULRRR", "output": "No\n" }, { "input": "RCVLUUDURLRKLDVLRRR", "output": "No\n" }, { "input": "RRRLVDLKRLRUDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RCVLUVDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RCVLUWDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDWULVCR", "output": "No\n" }, { "input": "RQRLWRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRLRLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDKLVDWUWVCR", "output": "No\n" }, { "input": "RCVWUWDVLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUWDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUVDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RRRRLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVDR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCS", "output": "No\n" }, { "input": "RRRQLPLDDKMWKVUWVCS", "output": "No\n" }, { "input": "RRMQLPLDDKRWKVUWVCS", "output": "No\n" }, { "input": "WRMQLPLDDKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKDDLPLQMRW", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRW", "output": "No\n" }, { "input": "WRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "VRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRV", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPDLMRV", "output": "No\n" }, { "input": "SCVWKVKRRUQDLPDLMRV", "output": "No\n" }, { "input": "VRMLDPLDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLDPKDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLCPKDQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKDQVRRKVKWVDS", "output": "No\n" }, { "input": "SDVWKVKRRVQDKPCLMRV", "output": "No\n" }, { "input": "VRMLCQKDQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCQKDQKRRVVKWVDS", "output": "No\n" }, { "input": "VRMLCQKVQKRRDVKWVDS", "output": "No\n" }, { "input": "VVMLCQKVQKRRDRKWVDS", "output": "No\n" }, { "input": "DVMLCQKVQKRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKWVVS", "output": "No\n" }, { "input": "SVVWKRDRRJQVKQCLMVD", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVWS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRWSVWK", "output": "No\n" }, { "input": "DVMLCQKVQJQRCRWSVWK", "output": "No\n" }, { "input": "KWVSWRCRQJQVKQCLMVD", "output": "No\n" }, { "input": "KWVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKUQCLMVD", "output": "No\n" }, { "input": "DVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCSWSVXK", "output": "No\n" }, { "input": "EVMLCQUSPJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWSCRQJPSUQCLMVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPWE", "output": "No\n" }, { "input": "EWPLCQUSMJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWRCRQJMSUQCLPWE", "output": "No\n" }, { "input": "KXVKWCCRQJMSUQRLPWE", "output": "No\n" }, { "input": "KXVKPCCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQQMSUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLRBCSQPQLWLWRUJE", "output": "No\n" } ]
0/::0
Takahashi will do a tap dance. The dance is described by a string S where each character is `L`, `R`, `U`, or `D`. These characters indicate the positions on which Takahashi should step. He will follow these instructions one by one in order, starting with the first character. S is said to be easily playable if and only if it satisfies both of the following conditions: * Every character in an odd position (1-st, 3-rd, 5-th, \ldots) is `R`, `U`, or `D`. * Every character in an even position (2-nd, 4-th, 6-th, \ldots) is `L`, `U`, or `D`. Your task is to print `Yes` if S is easily playable, and `No` otherwise. Constraints * S is a string of length between 1 and 100 (inclusive). * Each character of S is `L`, `R`, `U`, or `D`. Input Input is given from Standard Input in the following format: S Output Print `Yes` if S is easily playable, and `No` otherwise. Examples Input RUDLUDR Output Yes Input DULL Output No Input UUUUUUUUUUUUUUU Output Yes Input ULURU Output No Input RDULULDURURLRDULRLR Output Yes
[ "\n", "s = input()\n", "s = input()\ns1 = s[0::2]\n", "s = input()\ns1 = s[0::2]\ns2 = s[1::2]\n", "s = input()\ns1 = s[0::2]\ns2 = s[1::2]\nif s1.count(\"L\")==0 and s2.count(\"R\")==0:\n print(\"Yes\")\n", "s = input()\ns1 = s[0::2]\ns2 = s[1::2]\nif s1.count(\"L\")==0 and s2.count(\"R\")==0:\n print(\"Yes\")\nelse:print(\"No\")\n" ]
6
[ { "input": "RUDLUDR", "output": "Yes" }, { "input": "DULL", "output": "No" }, { "input": "RDULULDURURLRDULRLR", "output": "Yes" }, { "input": "UUUUUUUUUUUUUUU", "output": "Yes" }, { "input": "ULURU", "output": "No" } ]
[ { "input": "RDULDUR", "output": "Yes\n" }, { "input": "LLUD", "output": "No\n" }, { "input": "RDULULDURURLLDULRRR", "output": "No\n" }, { "input": "ULURV", "output": "No\n" }, { "input": "EULL", "output": "No\n" }, { "input": "RCULULDURURLLDULRRR", "output": "No\n" }, { "input": "UKURU", "output": "No\n" }, { "input": "EULM", "output": "No\n" }, { "input": "RCVLULDURURLLDULRRR", "output": "No\n" }, { "input": "UJURU", "output": "No\n" }, { "input": "RCVLULDURURKLDULRRR", "output": "No\n" }, { "input": "URUJU", "output": "No\n" }, { "input": "RCVLUUDURLRKLDULRRR", "output": "No\n" }, { "input": "RCVLUUDURLRKLDVLRRR", "output": "No\n" }, { "input": "RRRLVDLKRLRUDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RCVLUVDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RCVLUWDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDWULVCR", "output": "No\n" }, { "input": "RQRLWRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRLRLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDKLVDWUWVCR", "output": "No\n" }, { "input": "RCVWUWDVLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUWDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUVDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RRRRLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVDR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCS", "output": "No\n" }, { "input": "RRRQLPLDDKMWKVUWVCS", "output": "No\n" }, { "input": "RRMQLPLDDKRWKVUWVCS", "output": "No\n" }, { "input": "WRMQLPLDDKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKDDLPLQMRW", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRW", "output": "No\n" }, { "input": "WRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "VRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRV", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPDLMRV", "output": "No\n" }, { "input": "SCVWKVKRRUQDLPDLMRV", "output": "No\n" }, { "input": "VRMLDPLDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLDPKDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLCPKDQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKDQVRRKVKWVDS", "output": "No\n" }, { "input": "SDVWKVKRRVQDKPCLMRV", "output": "No\n" }, { "input": "VRMLCQKDQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCQKDQKRRVVKWVDS", "output": "No\n" }, { "input": "VRMLCQKVQKRRDVKWVDS", "output": "No\n" }, { "input": "VVMLCQKVQKRRDRKWVDS", "output": "No\n" }, { "input": "DVMLCQKVQKRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKWVVS", "output": "No\n" }, { "input": "SVVWKRDRRJQVKQCLMVD", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVWS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRWSVWK", "output": "No\n" }, { "input": "DVMLCQKVQJQRCRWSVWK", "output": "No\n" }, { "input": "KWVSWRCRQJQVKQCLMVD", "output": "No\n" }, { "input": "KWVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKUQCLMVD", "output": "No\n" }, { "input": "DVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCSWSVXK", "output": "No\n" }, { "input": "EVMLCQUSPJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWSCRQJPSUQCLMVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPWE", "output": "No\n" }, { "input": "EWPLCQUSMJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWRCRQJMSUQCLPWE", "output": "No\n" }, { "input": "KXVKWCCRQJMSUQRLPWE", "output": "No\n" }, { "input": "KXVKPCCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQQMSUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLRBCSQPQLWLWRUJE", "output": "No\n" } ]
0/::0
Takahashi will do a tap dance. The dance is described by a string S where each character is `L`, `R`, `U`, or `D`. These characters indicate the positions on which Takahashi should step. He will follow these instructions one by one in order, starting with the first character. S is said to be easily playable if and only if it satisfies both of the following conditions: * Every character in an odd position (1-st, 3-rd, 5-th, \ldots) is `R`, `U`, or `D`. * Every character in an even position (2-nd, 4-th, 6-th, \ldots) is `L`, `U`, or `D`. Your task is to print `Yes` if S is easily playable, and `No` otherwise. Constraints * S is a string of length between 1 and 100 (inclusive). * Each character of S is `L`, `R`, `U`, or `D`. Input Input is given from Standard Input in the following format: S Output Print `Yes` if S is easily playable, and `No` otherwise. Examples Input RUDLUDR Output Yes Input DULL Output No Input UUUUUUUUUUUUUUU Output Yes Input ULURU Output No Input RDULULDURURLRDULRLR Output Yes
[ "\n", "S=input()\n\no=S[::2]\n", "S=input()\n\no=S[::2]\ne=S[1::2]\n", "S=input()\n\no=S[::2]\ne=S[1::2]\n\nif \"R\" in e or \"L\" in o:\n print(\"No\")\n", "S=input()\n\no=S[::2]\ne=S[1::2]\n\nif \"R\" in e or \"L\" in o:\n print(\"No\")\nelse:\n print(\"Yes\")\n" ]
5
[ { "input": "RUDLUDR", "output": "Yes" }, { "input": "DULL", "output": "No" }, { "input": "RDULULDURURLRDULRLR", "output": "Yes" }, { "input": "UUUUUUUUUUUUUUU", "output": "Yes" }, { "input": "ULURU", "output": "No" } ]
[ { "input": "RDULDUR", "output": "Yes\n" }, { "input": "LLUD", "output": "No\n" }, { "input": "RDULULDURURLLDULRRR", "output": "No\n" }, { "input": "ULURV", "output": "No\n" }, { "input": "EULL", "output": "No\n" }, { "input": "RCULULDURURLLDULRRR", "output": "No\n" }, { "input": "UKURU", "output": "No\n" }, { "input": "EULM", "output": "No\n" }, { "input": "RCVLULDURURLLDULRRR", "output": "No\n" }, { "input": "UJURU", "output": "No\n" }, { "input": "RCVLULDURURKLDULRRR", "output": "No\n" }, { "input": "URUJU", "output": "No\n" }, { "input": "RCVLUUDURLRKLDULRRR", "output": "No\n" }, { "input": "RCVLUUDURLRKLDVLRRR", "output": "No\n" }, { "input": "RRRLVDLKRLRUDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RCVLUVDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RCVLUWDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDWULVCR", "output": "No\n" }, { "input": "RQRLWRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRLRLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDKLVDWUWVCR", "output": "No\n" }, { "input": "RCVWUWDVLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUWDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUVDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RRRRLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVDR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCS", "output": "No\n" }, { "input": "RRRQLPLDDKMWKVUWVCS", "output": "No\n" }, { "input": "RRMQLPLDDKRWKVUWVCS", "output": "No\n" }, { "input": "WRMQLPLDDKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKDDLPLQMRW", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRW", "output": "No\n" }, { "input": "WRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "VRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRV", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPDLMRV", "output": "No\n" }, { "input": "SCVWKVKRRUQDLPDLMRV", "output": "No\n" }, { "input": "VRMLDPLDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLDPKDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLCPKDQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKDQVRRKVKWVDS", "output": "No\n" }, { "input": "SDVWKVKRRVQDKPCLMRV", "output": "No\n" }, { "input": "VRMLCQKDQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCQKDQKRRVVKWVDS", "output": "No\n" }, { "input": "VRMLCQKVQKRRDVKWVDS", "output": "No\n" }, { "input": "VVMLCQKVQKRRDRKWVDS", "output": "No\n" }, { "input": "DVMLCQKVQKRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKWVVS", "output": "No\n" }, { "input": "SVVWKRDRRJQVKQCLMVD", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVWS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRWSVWK", "output": "No\n" }, { "input": "DVMLCQKVQJQRCRWSVWK", "output": "No\n" }, { "input": "KWVSWRCRQJQVKQCLMVD", "output": "No\n" }, { "input": "KWVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKUQCLMVD", "output": "No\n" }, { "input": "DVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCSWSVXK", "output": "No\n" }, { "input": "EVMLCQUSPJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWSCRQJPSUQCLMVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPWE", "output": "No\n" }, { "input": "EWPLCQUSMJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWRCRQJMSUQCLPWE", "output": "No\n" }, { "input": "KXVKWCCRQJMSUQRLPWE", "output": "No\n" }, { "input": "KXVKPCCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQQMSUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLRBCSQPQLWLWRUJE", "output": "No\n" } ]
0/::0
Takahashi will do a tap dance. The dance is described by a string S where each character is `L`, `R`, `U`, or `D`. These characters indicate the positions on which Takahashi should step. He will follow these instructions one by one in order, starting with the first character. S is said to be easily playable if and only if it satisfies both of the following conditions: * Every character in an odd position (1-st, 3-rd, 5-th, \ldots) is `R`, `U`, or `D`. * Every character in an even position (2-nd, 4-th, 6-th, \ldots) is `L`, `U`, or `D`. Your task is to print `Yes` if S is easily playable, and `No` otherwise. Constraints * S is a string of length between 1 and 100 (inclusive). * Each character of S is `L`, `R`, `U`, or `D`. Input Input is given from Standard Input in the following format: S Output Print `Yes` if S is easily playable, and `No` otherwise. Examples Input RUDLUDR Output Yes Input DULL Output No Input UUUUUUUUUUUUUUU Output Yes Input ULURU Output No Input RDULULDURURLRDULRLR Output Yes
[ "\n", "s = str(input())\n", "s = str(input())\nprint(\"No\" if \"L\" in s[::2] or \"R\" in s[1::2] else \"Yes\")\n" ]
3
[ { "input": "RUDLUDR", "output": "Yes" }, { "input": "DULL", "output": "No" }, { "input": "RDULULDURURLRDULRLR", "output": "Yes" }, { "input": "UUUUUUUUUUUUUUU", "output": "Yes" }, { "input": "ULURU", "output": "No" } ]
[ { "input": "RDULDUR", "output": "Yes\n" }, { "input": "LLUD", "output": "No\n" }, { "input": "RDULULDURURLLDULRRR", "output": "No\n" }, { "input": "ULURV", "output": "No\n" }, { "input": "EULL", "output": "No\n" }, { "input": "RCULULDURURLLDULRRR", "output": "No\n" }, { "input": "UKURU", "output": "No\n" }, { "input": "EULM", "output": "No\n" }, { "input": "RCVLULDURURLLDULRRR", "output": "No\n" }, { "input": "UJURU", "output": "No\n" }, { "input": "RCVLULDURURKLDULRRR", "output": "No\n" }, { "input": "URUJU", "output": "No\n" }, { "input": "RCVLUUDURLRKLDULRRR", "output": "No\n" }, { "input": "RCVLUUDURLRKLDVLRRR", "output": "No\n" }, { "input": "RRRLVDLKRLRUDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RCVLUVDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RCVLUWDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDWULVCR", "output": "No\n" }, { "input": "RQRLWRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRLRLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDKLVDWUWVCR", "output": "No\n" }, { "input": "RCVWUWDVLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUWDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUVDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RRRRLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVDR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCS", "output": "No\n" }, { "input": "RRRQLPLDDKMWKVUWVCS", "output": "No\n" }, { "input": "RRMQLPLDDKRWKVUWVCS", "output": "No\n" }, { "input": "WRMQLPLDDKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKDDLPLQMRW", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRW", "output": "No\n" }, { "input": "WRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "VRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRV", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPDLMRV", "output": "No\n" }, { "input": "SCVWKVKRRUQDLPDLMRV", "output": "No\n" }, { "input": "VRMLDPLDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLDPKDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLCPKDQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKDQVRRKVKWVDS", "output": "No\n" }, { "input": "SDVWKVKRRVQDKPCLMRV", "output": "No\n" }, { "input": "VRMLCQKDQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCQKDQKRRVVKWVDS", "output": "No\n" }, { "input": "VRMLCQKVQKRRDVKWVDS", "output": "No\n" }, { "input": "VVMLCQKVQKRRDRKWVDS", "output": "No\n" }, { "input": "DVMLCQKVQKRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKWVVS", "output": "No\n" }, { "input": "SVVWKRDRRJQVKQCLMVD", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVWS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRWSVWK", "output": "No\n" }, { "input": "DVMLCQKVQJQRCRWSVWK", "output": "No\n" }, { "input": "KWVSWRCRQJQVKQCLMVD", "output": "No\n" }, { "input": "KWVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKUQCLMVD", "output": "No\n" }, { "input": "DVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCSWSVXK", "output": "No\n" }, { "input": "EVMLCQUSPJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWSCRQJPSUQCLMVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPWE", "output": "No\n" }, { "input": "EWPLCQUSMJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWRCRQJMSUQCLPWE", "output": "No\n" }, { "input": "KXVKWCCRQJMSUQRLPWE", "output": "No\n" }, { "input": "KXVKPCCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQQMSUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLRBCSQPQLWLWRUJE", "output": "No\n" } ]
0/::0
Takahashi will do a tap dance. The dance is described by a string S where each character is `L`, `R`, `U`, or `D`. These characters indicate the positions on which Takahashi should step. He will follow these instructions one by one in order, starting with the first character. S is said to be easily playable if and only if it satisfies both of the following conditions: * Every character in an odd position (1-st, 3-rd, 5-th, \ldots) is `R`, `U`, or `D`. * Every character in an even position (2-nd, 4-th, 6-th, \ldots) is `L`, `U`, or `D`. Your task is to print `Yes` if S is easily playable, and `No` otherwise. Constraints * S is a string of length between 1 and 100 (inclusive). * Each character of S is `L`, `R`, `U`, or `D`. Input Input is given from Standard Input in the following format: S Output Print `Yes` if S is easily playable, and `No` otherwise. Examples Input RUDLUDR Output Yes Input DULL Output No Input UUUUUUUUUUUUUUU Output Yes Input ULURU Output No Input RDULULDURURLRDULRLR Output Yes
[ "\n", "S = input()\n", "S = input()\n\nflag = True\n", "S = input()\n\nflag = True\nif 'L' in S[::2] or 'R' in S[1::2]:\n print('No')\n", "S = input()\n\nflag = True\nif 'L' in S[::2] or 'R' in S[1::2]:\n print('No')\nelse:\n print('Yes')\n" ]
5
[ { "input": "RUDLUDR", "output": "Yes" }, { "input": "DULL", "output": "No" }, { "input": "RDULULDURURLRDULRLR", "output": "Yes" }, { "input": "UUUUUUUUUUUUUUU", "output": "Yes" }, { "input": "ULURU", "output": "No" } ]
[ { "input": "RDULDUR", "output": "Yes\n" }, { "input": "LLUD", "output": "No\n" }, { "input": "RDULULDURURLLDULRRR", "output": "No\n" }, { "input": "ULURV", "output": "No\n" }, { "input": "EULL", "output": "No\n" }, { "input": "RCULULDURURLLDULRRR", "output": "No\n" }, { "input": "UKURU", "output": "No\n" }, { "input": "EULM", "output": "No\n" }, { "input": "RCVLULDURURLLDULRRR", "output": "No\n" }, { "input": "UJURU", "output": "No\n" }, { "input": "RCVLULDURURKLDULRRR", "output": "No\n" }, { "input": "URUJU", "output": "No\n" }, { "input": "RCVLUUDURLRKLDULRRR", "output": "No\n" }, { "input": "RCVLUUDURLRKLDVLRRR", "output": "No\n" }, { "input": "RRRLVDLKRLRUDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RCVLUVDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RCVLUWDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDWULVCR", "output": "No\n" }, { "input": "RQRLWRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRLRLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDKLVDWUWVCR", "output": "No\n" }, { "input": "RCVWUWDVLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUWDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUVDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RRRRLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVDR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCS", "output": "No\n" }, { "input": "RRRQLPLDDKMWKVUWVCS", "output": "No\n" }, { "input": "RRMQLPLDDKRWKVUWVCS", "output": "No\n" }, { "input": "WRMQLPLDDKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKDDLPLQMRW", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRW", "output": "No\n" }, { "input": "WRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "VRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRV", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPDLMRV", "output": "No\n" }, { "input": "SCVWKVKRRUQDLPDLMRV", "output": "No\n" }, { "input": "VRMLDPLDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLDPKDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLCPKDQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKDQVRRKVKWVDS", "output": "No\n" }, { "input": "SDVWKVKRRVQDKPCLMRV", "output": "No\n" }, { "input": "VRMLCQKDQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCQKDQKRRVVKWVDS", "output": "No\n" }, { "input": "VRMLCQKVQKRRDVKWVDS", "output": "No\n" }, { "input": "VVMLCQKVQKRRDRKWVDS", "output": "No\n" }, { "input": "DVMLCQKVQKRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKWVVS", "output": "No\n" }, { "input": "SVVWKRDRRJQVKQCLMVD", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVWS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRWSVWK", "output": "No\n" }, { "input": "DVMLCQKVQJQRCRWSVWK", "output": "No\n" }, { "input": "KWVSWRCRQJQVKQCLMVD", "output": "No\n" }, { "input": "KWVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKUQCLMVD", "output": "No\n" }, { "input": "DVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCSWSVXK", "output": "No\n" }, { "input": "EVMLCQUSPJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWSCRQJPSUQCLMVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPWE", "output": "No\n" }, { "input": "EWPLCQUSMJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWRCRQJMSUQCLPWE", "output": "No\n" }, { "input": "KXVKWCCRQJMSUQRLPWE", "output": "No\n" }, { "input": "KXVKPCCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQQMSUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLRBCSQPQLWLWRUJE", "output": "No\n" } ]
0/::0
Takahashi will do a tap dance. The dance is described by a string S where each character is `L`, `R`, `U`, or `D`. These characters indicate the positions on which Takahashi should step. He will follow these instructions one by one in order, starting with the first character. S is said to be easily playable if and only if it satisfies both of the following conditions: * Every character in an odd position (1-st, 3-rd, 5-th, \ldots) is `R`, `U`, or `D`. * Every character in an even position (2-nd, 4-th, 6-th, \ldots) is `L`, `U`, or `D`. Your task is to print `Yes` if S is easily playable, and `No` otherwise. Constraints * S is a string of length between 1 and 100 (inclusive). * Each character of S is `L`, `R`, `U`, or `D`. Input Input is given from Standard Input in the following format: S Output Print `Yes` if S is easily playable, and `No` otherwise. Examples Input RUDLUDR Output Yes Input DULL Output No Input UUUUUUUUUUUUUUU Output Yes Input ULURU Output No Input RDULULDURURLRDULRLR Output Yes
[ "\n", "S = input()\n", "S = input()\n\nSR = S[0 : : 2]\n", "S = input()\n\nSR = S[0 : : 2]\nSL = S[1 : : 2]\n", "S = input()\n\nSR = S[0 : : 2]\nSL = S[1 : : 2]\n\nprint('No' if 'L' in SR or 'R' in SL else 'Yes')\n" ]
5
[ { "input": "RUDLUDR", "output": "Yes" }, { "input": "DULL", "output": "No" }, { "input": "RDULULDURURLRDULRLR", "output": "Yes" }, { "input": "UUUUUUUUUUUUUUU", "output": "Yes" }, { "input": "ULURU", "output": "No" } ]
[ { "input": "RDULDUR", "output": "Yes\n" }, { "input": "LLUD", "output": "No\n" }, { "input": "RDULULDURURLLDULRRR", "output": "No\n" }, { "input": "ULURV", "output": "No\n" }, { "input": "EULL", "output": "No\n" }, { "input": "RCULULDURURLLDULRRR", "output": "No\n" }, { "input": "UKURU", "output": "No\n" }, { "input": "EULM", "output": "No\n" }, { "input": "RCVLULDURURLLDULRRR", "output": "No\n" }, { "input": "UJURU", "output": "No\n" }, { "input": "RCVLULDURURKLDULRRR", "output": "No\n" }, { "input": "URUJU", "output": "No\n" }, { "input": "RCVLUUDURLRKLDULRRR", "output": "No\n" }, { "input": "RCVLUUDURLRKLDVLRRR", "output": "No\n" }, { "input": "RRRLVDLKRLRUDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RCVLUVDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RCVLUWDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDWULVCR", "output": "No\n" }, { "input": "RQRLWRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRLRLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDKLVDWUWVCR", "output": "No\n" }, { "input": "RCVWUWDVLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUWDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUVDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RRRRLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVDR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCS", "output": "No\n" }, { "input": "RRRQLPLDDKMWKVUWVCS", "output": "No\n" }, { "input": "RRMQLPLDDKRWKVUWVCS", "output": "No\n" }, { "input": "WRMQLPLDDKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKDDLPLQMRW", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRW", "output": "No\n" }, { "input": "WRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "VRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRV", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPDLMRV", "output": "No\n" }, { "input": "SCVWKVKRRUQDLPDLMRV", "output": "No\n" }, { "input": "VRMLDPLDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLDPKDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLCPKDQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKDQVRRKVKWVDS", "output": "No\n" }, { "input": "SDVWKVKRRVQDKPCLMRV", "output": "No\n" }, { "input": "VRMLCQKDQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCQKDQKRRVVKWVDS", "output": "No\n" }, { "input": "VRMLCQKVQKRRDVKWVDS", "output": "No\n" }, { "input": "VVMLCQKVQKRRDRKWVDS", "output": "No\n" }, { "input": "DVMLCQKVQKRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKWVVS", "output": "No\n" }, { "input": "SVVWKRDRRJQVKQCLMVD", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVWS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRWSVWK", "output": "No\n" }, { "input": "DVMLCQKVQJQRCRWSVWK", "output": "No\n" }, { "input": "KWVSWRCRQJQVKQCLMVD", "output": "No\n" }, { "input": "KWVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKUQCLMVD", "output": "No\n" }, { "input": "DVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCSWSVXK", "output": "No\n" }, { "input": "EVMLCQUSPJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWSCRQJPSUQCLMVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPWE", "output": "No\n" }, { "input": "EWPLCQUSMJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWRCRQJMSUQCLPWE", "output": "No\n" }, { "input": "KXVKWCCRQJMSUQRLPWE", "output": "No\n" }, { "input": "KXVKPCCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQQMSUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLRBCSQPQLWLWRUJE", "output": "No\n" } ]
0/::0
Takahashi will do a tap dance. The dance is described by a string S where each character is `L`, `R`, `U`, or `D`. These characters indicate the positions on which Takahashi should step. He will follow these instructions one by one in order, starting with the first character. S is said to be easily playable if and only if it satisfies both of the following conditions: * Every character in an odd position (1-st, 3-rd, 5-th, \ldots) is `R`, `U`, or `D`. * Every character in an even position (2-nd, 4-th, 6-th, \ldots) is `L`, `U`, or `D`. Your task is to print `Yes` if S is easily playable, and `No` otherwise. Constraints * S is a string of length between 1 and 100 (inclusive). * Each character of S is `L`, `R`, `U`, or `D`. Input Input is given from Standard Input in the following format: S Output Print `Yes` if S is easily playable, and `No` otherwise. Examples Input RUDLUDR Output Yes Input DULL Output No Input UUUUUUUUUUUUUUU Output Yes Input ULURU Output No Input RDULULDURURLRDULRLR Output Yes
[ "\n", "S = input()\n", "S = input()\nN = len(S)\n", "S = input()\nN = len(S)\nprint('Yes' if not any(S[i] == 'LR'[i % 2] for i in range(N)) else 'No')\n" ]
4
[ { "input": "RUDLUDR", "output": "Yes" }, { "input": "DULL", "output": "No" }, { "input": "RDULULDURURLRDULRLR", "output": "Yes" }, { "input": "UUUUUUUUUUUUUUU", "output": "Yes" }, { "input": "ULURU", "output": "No" } ]
[ { "input": "RDULDUR", "output": "Yes\n" }, { "input": "LLUD", "output": "No\n" }, { "input": "RDULULDURURLLDULRRR", "output": "No\n" }, { "input": "ULURV", "output": "No\n" }, { "input": "EULL", "output": "No\n" }, { "input": "RCULULDURURLLDULRRR", "output": "No\n" }, { "input": "UKURU", "output": "No\n" }, { "input": "EULM", "output": "No\n" }, { "input": "RCVLULDURURLLDULRRR", "output": "No\n" }, { "input": "UJURU", "output": "No\n" }, { "input": "RCVLULDURURKLDULRRR", "output": "No\n" }, { "input": "URUJU", "output": "No\n" }, { "input": "RCVLUUDURLRKLDULRRR", "output": "No\n" }, { "input": "RCVLUUDURLRKLDVLRRR", "output": "No\n" }, { "input": "RRRLVDLKRLRUDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RCVLUVDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RCVLUWDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDWULVCR", "output": "No\n" }, { "input": "RQRLWRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRLRLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDKLVDWUWVCR", "output": "No\n" }, { "input": "RCVWUWDVLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUWDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUVDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RRRRLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVDR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCS", "output": "No\n" }, { "input": "RRRQLPLDDKMWKVUWVCS", "output": "No\n" }, { "input": "RRMQLPLDDKRWKVUWVCS", "output": "No\n" }, { "input": "WRMQLPLDDKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKDDLPLQMRW", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRW", "output": "No\n" }, { "input": "WRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "VRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRV", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPDLMRV", "output": "No\n" }, { "input": "SCVWKVKRRUQDLPDLMRV", "output": "No\n" }, { "input": "VRMLDPLDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLDPKDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLCPKDQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKDQVRRKVKWVDS", "output": "No\n" }, { "input": "SDVWKVKRRVQDKPCLMRV", "output": "No\n" }, { "input": "VRMLCQKDQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCQKDQKRRVVKWVDS", "output": "No\n" }, { "input": "VRMLCQKVQKRRDVKWVDS", "output": "No\n" }, { "input": "VVMLCQKVQKRRDRKWVDS", "output": "No\n" }, { "input": "DVMLCQKVQKRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKWVVS", "output": "No\n" }, { "input": "SVVWKRDRRJQVKQCLMVD", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVWS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRWSVWK", "output": "No\n" }, { "input": "DVMLCQKVQJQRCRWSVWK", "output": "No\n" }, { "input": "KWVSWRCRQJQVKQCLMVD", "output": "No\n" }, { "input": "KWVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKUQCLMVD", "output": "No\n" }, { "input": "DVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCSWSVXK", "output": "No\n" }, { "input": "EVMLCQUSPJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWSCRQJPSUQCLMVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPWE", "output": "No\n" }, { "input": "EWPLCQUSMJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWRCRQJMSUQCLPWE", "output": "No\n" }, { "input": "KXVKWCCRQJMSUQRLPWE", "output": "No\n" }, { "input": "KXVKPCCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQQMSUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLRBCSQPQLWLWRUJE", "output": "No\n" } ]
0/::0
Takahashi will do a tap dance. The dance is described by a string S where each character is `L`, `R`, `U`, or `D`. These characters indicate the positions on which Takahashi should step. He will follow these instructions one by one in order, starting with the first character. S is said to be easily playable if and only if it satisfies both of the following conditions: * Every character in an odd position (1-st, 3-rd, 5-th, \ldots) is `R`, `U`, or `D`. * Every character in an even position (2-nd, 4-th, 6-th, \ldots) is `L`, `U`, or `D`. Your task is to print `Yes` if S is easily playable, and `No` otherwise. Constraints * S is a string of length between 1 and 100 (inclusive). * Each character of S is `L`, `R`, `U`, or `D`. Input Input is given from Standard Input in the following format: S Output Print `Yes` if S is easily playable, and `No` otherwise. Examples Input RUDLUDR Output Yes Input DULL Output No Input UUUUUUUUUUUUUUU Output Yes Input ULURU Output No Input RDULULDURURLRDULRLR Output Yes
[ "\n", "s=input()\no=s[::2]\n", "s=input()\no=s[::2]\ne=s[1::2]\n", "s=input()\no=s[::2]\ne=s[1::2]\nif (\"L\" in o or \"R\" in e):\n print(\"No\")\n", "s=input()\no=s[::2]\ne=s[1::2]\nif (\"L\" in o or \"R\" in e):\n print(\"No\")\nelse:\n print(\"Yes\")\n" ]
5
[ { "input": "RUDLUDR", "output": "Yes" }, { "input": "DULL", "output": "No" }, { "input": "RDULULDURURLRDULRLR", "output": "Yes" }, { "input": "UUUUUUUUUUUUUUU", "output": "Yes" }, { "input": "ULURU", "output": "No" } ]
[ { "input": "RDULDUR", "output": "Yes\n" }, { "input": "LLUD", "output": "No\n" }, { "input": "RDULULDURURLLDULRRR", "output": "No\n" }, { "input": "ULURV", "output": "No\n" }, { "input": "EULL", "output": "No\n" }, { "input": "RCULULDURURLLDULRRR", "output": "No\n" }, { "input": "UKURU", "output": "No\n" }, { "input": "EULM", "output": "No\n" }, { "input": "RCVLULDURURLLDULRRR", "output": "No\n" }, { "input": "UJURU", "output": "No\n" }, { "input": "RCVLULDURURKLDULRRR", "output": "No\n" }, { "input": "URUJU", "output": "No\n" }, { "input": "RCVLUUDURLRKLDULRRR", "output": "No\n" }, { "input": "RCVLUUDURLRKLDVLRRR", "output": "No\n" }, { "input": "RRRLVDLKRLRUDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RCVLUVDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RCVLUWDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDWULVCR", "output": "No\n" }, { "input": "RQRLWRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRLRLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDKLVDWUWVCR", "output": "No\n" }, { "input": "RCVWUWDVLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUWDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUVDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RRRRLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVDR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCS", "output": "No\n" }, { "input": "RRRQLPLDDKMWKVUWVCS", "output": "No\n" }, { "input": "RRMQLPLDDKRWKVUWVCS", "output": "No\n" }, { "input": "WRMQLPLDDKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKDDLPLQMRW", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRW", "output": "No\n" }, { "input": "WRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "VRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRV", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPDLMRV", "output": "No\n" }, { "input": "SCVWKVKRRUQDLPDLMRV", "output": "No\n" }, { "input": "VRMLDPLDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLDPKDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLCPKDQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKDQVRRKVKWVDS", "output": "No\n" }, { "input": "SDVWKVKRRVQDKPCLMRV", "output": "No\n" }, { "input": "VRMLCQKDQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCQKDQKRRVVKWVDS", "output": "No\n" }, { "input": "VRMLCQKVQKRRDVKWVDS", "output": "No\n" }, { "input": "VVMLCQKVQKRRDRKWVDS", "output": "No\n" }, { "input": "DVMLCQKVQKRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKWVVS", "output": "No\n" }, { "input": "SVVWKRDRRJQVKQCLMVD", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVWS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRWSVWK", "output": "No\n" }, { "input": "DVMLCQKVQJQRCRWSVWK", "output": "No\n" }, { "input": "KWVSWRCRQJQVKQCLMVD", "output": "No\n" }, { "input": "KWVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKUQCLMVD", "output": "No\n" }, { "input": "DVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCSWSVXK", "output": "No\n" }, { "input": "EVMLCQUSPJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWSCRQJPSUQCLMVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPWE", "output": "No\n" }, { "input": "EWPLCQUSMJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWRCRQJMSUQCLPWE", "output": "No\n" }, { "input": "KXVKWCCRQJMSUQRLPWE", "output": "No\n" }, { "input": "KXVKPCCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQQMSUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLRBCSQPQLWLWRUJE", "output": "No\n" } ]
0/::0
Takahashi will do a tap dance. The dance is described by a string S where each character is `L`, `R`, `U`, or `D`. These characters indicate the positions on which Takahashi should step. He will follow these instructions one by one in order, starting with the first character. S is said to be easily playable if and only if it satisfies both of the following conditions: * Every character in an odd position (1-st, 3-rd, 5-th, \ldots) is `R`, `U`, or `D`. * Every character in an even position (2-nd, 4-th, 6-th, \ldots) is `L`, `U`, or `D`. Your task is to print `Yes` if S is easily playable, and `No` otherwise. Constraints * S is a string of length between 1 and 100 (inclusive). * Each character of S is `L`, `R`, `U`, or `D`. Input Input is given from Standard Input in the following format: S Output Print `Yes` if S is easily playable, and `No` otherwise. Examples Input RUDLUDR Output Yes Input DULL Output No Input UUUUUUUUUUUUUUU Output Yes Input ULURU Output No Input RDULULDURURLRDULRLR Output Yes
[ "\n", "S = input()\n", "S = input()\n\nif 'R' in S[1::2]:\n print('No')\n", "S = input()\n\nif 'R' in S[1::2]:\n print('No')\nelif 'L' in S[::2]:\n print('No')\n", "S = input()\n\nif 'R' in S[1::2]:\n print('No')\nelif 'L' in S[::2]:\n print('No')\nelse:\n print('Yes')\n" ]
5
[ { "input": "RUDLUDR", "output": "Yes" }, { "input": "DULL", "output": "No" }, { "input": "RDULULDURURLRDULRLR", "output": "Yes" }, { "input": "UUUUUUUUUUUUUUU", "output": "Yes" }, { "input": "ULURU", "output": "No" } ]
[ { "input": "RDULDUR", "output": "Yes\n" }, { "input": "LLUD", "output": "No\n" }, { "input": "RDULULDURURLLDULRRR", "output": "No\n" }, { "input": "ULURV", "output": "No\n" }, { "input": "EULL", "output": "No\n" }, { "input": "RCULULDURURLLDULRRR", "output": "No\n" }, { "input": "UKURU", "output": "No\n" }, { "input": "EULM", "output": "No\n" }, { "input": "RCVLULDURURLLDULRRR", "output": "No\n" }, { "input": "UJURU", "output": "No\n" }, { "input": "RCVLULDURURKLDULRRR", "output": "No\n" }, { "input": "URUJU", "output": "No\n" }, { "input": "RCVLUUDURLRKLDULRRR", "output": "No\n" }, { "input": "RCVLUUDURLRKLDVLRRR", "output": "No\n" }, { "input": "RRRLVDLKRLRUDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RCVLUVDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RCVLUWDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDWULVCR", "output": "No\n" }, { "input": "RQRLWRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRLRLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDKLVDWUWVCR", "output": "No\n" }, { "input": "RCVWUWDVLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUWDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUVDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RRRRLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVDR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCS", "output": "No\n" }, { "input": "RRRQLPLDDKMWKVUWVCS", "output": "No\n" }, { "input": "RRMQLPLDDKRWKVUWVCS", "output": "No\n" }, { "input": "WRMQLPLDDKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKDDLPLQMRW", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRW", "output": "No\n" }, { "input": "WRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "VRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRV", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPDLMRV", "output": "No\n" }, { "input": "SCVWKVKRRUQDLPDLMRV", "output": "No\n" }, { "input": "VRMLDPLDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLDPKDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLCPKDQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKDQVRRKVKWVDS", "output": "No\n" }, { "input": "SDVWKVKRRVQDKPCLMRV", "output": "No\n" }, { "input": "VRMLCQKDQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCQKDQKRRVVKWVDS", "output": "No\n" }, { "input": "VRMLCQKVQKRRDVKWVDS", "output": "No\n" }, { "input": "VVMLCQKVQKRRDRKWVDS", "output": "No\n" }, { "input": "DVMLCQKVQKRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKWVVS", "output": "No\n" }, { "input": "SVVWKRDRRJQVKQCLMVD", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVWS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRWSVWK", "output": "No\n" }, { "input": "DVMLCQKVQJQRCRWSVWK", "output": "No\n" }, { "input": "KWVSWRCRQJQVKQCLMVD", "output": "No\n" }, { "input": "KWVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKUQCLMVD", "output": "No\n" }, { "input": "DVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCSWSVXK", "output": "No\n" }, { "input": "EVMLCQUSPJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWSCRQJPSUQCLMVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPWE", "output": "No\n" }, { "input": "EWPLCQUSMJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWRCRQJMSUQCLPWE", "output": "No\n" }, { "input": "KXVKWCCRQJMSUQRLPWE", "output": "No\n" }, { "input": "KXVKPCCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQQMSUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLRBCSQPQLWLWRUJE", "output": "No\n" } ]
0/::0
Takahashi will do a tap dance. The dance is described by a string S where each character is `L`, `R`, `U`, or `D`. These characters indicate the positions on which Takahashi should step. He will follow these instructions one by one in order, starting with the first character. S is said to be easily playable if and only if it satisfies both of the following conditions: * Every character in an odd position (1-st, 3-rd, 5-th, \ldots) is `R`, `U`, or `D`. * Every character in an even position (2-nd, 4-th, 6-th, \ldots) is `L`, `U`, or `D`. Your task is to print `Yes` if S is easily playable, and `No` otherwise. Constraints * S is a string of length between 1 and 100 (inclusive). * Each character of S is `L`, `R`, `U`, or `D`. Input Input is given from Standard Input in the following format: S Output Print `Yes` if S is easily playable, and `No` otherwise. Examples Input RUDLUDR Output Yes Input DULL Output No Input UUUUUUUUUUUUUUU Output Yes Input ULURU Output No Input RDULULDURURLRDULRLR Output Yes
[ "\n", "s = input()\n", "s = input()\nif 'L' not in s[::2] and 'R' not in s[1::2]:\n print('Yes')\n", "s = input()\nif 'L' not in s[::2] and 'R' not in s[1::2]:\n print('Yes')\nelse:\n print('No')\n" ]
4
[ { "input": "RUDLUDR", "output": "Yes" }, { "input": "DULL", "output": "No" }, { "input": "RDULULDURURLRDULRLR", "output": "Yes" }, { "input": "UUUUUUUUUUUUUUU", "output": "Yes" }, { "input": "ULURU", "output": "No" } ]
[ { "input": "RDULDUR", "output": "Yes\n" }, { "input": "LLUD", "output": "No\n" }, { "input": "RDULULDURURLLDULRRR", "output": "No\n" }, { "input": "ULURV", "output": "No\n" }, { "input": "EULL", "output": "No\n" }, { "input": "RCULULDURURLLDULRRR", "output": "No\n" }, { "input": "UKURU", "output": "No\n" }, { "input": "EULM", "output": "No\n" }, { "input": "RCVLULDURURLLDULRRR", "output": "No\n" }, { "input": "UJURU", "output": "No\n" }, { "input": "RCVLULDURURKLDULRRR", "output": "No\n" }, { "input": "URUJU", "output": "No\n" }, { "input": "RCVLUUDURLRKLDULRRR", "output": "No\n" }, { "input": "RCVLUUDURLRKLDVLRRR", "output": "No\n" }, { "input": "RRRLVDLKRLRUDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RCVLUVDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RCVLUWDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDWULVCR", "output": "No\n" }, { "input": "RQRLWRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRLRLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDKLVDWUWVCR", "output": "No\n" }, { "input": "RCVWUWDVLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUWDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUVDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RRRRLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVDR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCS", "output": "No\n" }, { "input": "RRRQLPLDDKMWKVUWVCS", "output": "No\n" }, { "input": "RRMQLPLDDKRWKVUWVCS", "output": "No\n" }, { "input": "WRMQLPLDDKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKDDLPLQMRW", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRW", "output": "No\n" }, { "input": "WRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "VRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRV", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPDLMRV", "output": "No\n" }, { "input": "SCVWKVKRRUQDLPDLMRV", "output": "No\n" }, { "input": "VRMLDPLDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLDPKDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLCPKDQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKDQVRRKVKWVDS", "output": "No\n" }, { "input": "SDVWKVKRRVQDKPCLMRV", "output": "No\n" }, { "input": "VRMLCQKDQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCQKDQKRRVVKWVDS", "output": "No\n" }, { "input": "VRMLCQKVQKRRDVKWVDS", "output": "No\n" }, { "input": "VVMLCQKVQKRRDRKWVDS", "output": "No\n" }, { "input": "DVMLCQKVQKRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKWVVS", "output": "No\n" }, { "input": "SVVWKRDRRJQVKQCLMVD", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVWS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRWSVWK", "output": "No\n" }, { "input": "DVMLCQKVQJQRCRWSVWK", "output": "No\n" }, { "input": "KWVSWRCRQJQVKQCLMVD", "output": "No\n" }, { "input": "KWVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKUQCLMVD", "output": "No\n" }, { "input": "DVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCSWSVXK", "output": "No\n" }, { "input": "EVMLCQUSPJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWSCRQJPSUQCLMVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPWE", "output": "No\n" }, { "input": "EWPLCQUSMJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWRCRQJMSUQCLPWE", "output": "No\n" }, { "input": "KXVKWCCRQJMSUQRLPWE", "output": "No\n" }, { "input": "KXVKPCCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQQMSUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLRBCSQPQLWLWRUJE", "output": "No\n" } ]
0/::0
Takahashi will do a tap dance. The dance is described by a string S where each character is `L`, `R`, `U`, or `D`. These characters indicate the positions on which Takahashi should step. He will follow these instructions one by one in order, starting with the first character. S is said to be easily playable if and only if it satisfies both of the following conditions: * Every character in an odd position (1-st, 3-rd, 5-th, \ldots) is `R`, `U`, or `D`. * Every character in an even position (2-nd, 4-th, 6-th, \ldots) is `L`, `U`, or `D`. Your task is to print `Yes` if S is easily playable, and `No` otherwise. Constraints * S is a string of length between 1 and 100 (inclusive). * Each character of S is `L`, `R`, `U`, or `D`. Input Input is given from Standard Input in the following format: S Output Print `Yes` if S is easily playable, and `No` otherwise. Examples Input RUDLUDR Output Yes Input DULL Output No Input UUUUUUUUUUUUUUU Output Yes Input ULURU Output No Input RDULULDURURLRDULRLR Output Yes
[ "\n", "print('Yes' if 0==sum([(i%2==0 and s=='L')or(i%2==1 and s=='R')for i,s in enumerate(input())]) else 'No')\n" ]
2
[ { "input": "RUDLUDR", "output": "Yes" }, { "input": "DULL", "output": "No" }, { "input": "RDULULDURURLRDULRLR", "output": "Yes" }, { "input": "UUUUUUUUUUUUUUU", "output": "Yes" }, { "input": "ULURU", "output": "No" } ]
[ { "input": "RDULDUR", "output": "Yes\n" }, { "input": "LLUD", "output": "No\n" }, { "input": "RDULULDURURLLDULRRR", "output": "No\n" }, { "input": "ULURV", "output": "No\n" }, { "input": "EULL", "output": "No\n" }, { "input": "RCULULDURURLLDULRRR", "output": "No\n" }, { "input": "UKURU", "output": "No\n" }, { "input": "EULM", "output": "No\n" }, { "input": "RCVLULDURURLLDULRRR", "output": "No\n" }, { "input": "UJURU", "output": "No\n" }, { "input": "RCVLULDURURKLDULRRR", "output": "No\n" }, { "input": "URUJU", "output": "No\n" }, { "input": "RCVLUUDURLRKLDULRRR", "output": "No\n" }, { "input": "RCVLUUDURLRKLDVLRRR", "output": "No\n" }, { "input": "RRRLVDLKRLRUDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RCVLUVDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RCVLUWDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDWULVCR", "output": "No\n" }, { "input": "RQRLWRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRLRLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDKLVDWUWVCR", "output": "No\n" }, { "input": "RCVWUWDVLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUWDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUVDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RRRRLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVDR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCS", "output": "No\n" }, { "input": "RRRQLPLDDKMWKVUWVCS", "output": "No\n" }, { "input": "RRMQLPLDDKRWKVUWVCS", "output": "No\n" }, { "input": "WRMQLPLDDKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKDDLPLQMRW", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRW", "output": "No\n" }, { "input": "WRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "VRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRV", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPDLMRV", "output": "No\n" }, { "input": "SCVWKVKRRUQDLPDLMRV", "output": "No\n" }, { "input": "VRMLDPLDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLDPKDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLCPKDQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKDQVRRKVKWVDS", "output": "No\n" }, { "input": "SDVWKVKRRVQDKPCLMRV", "output": "No\n" }, { "input": "VRMLCQKDQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCQKDQKRRVVKWVDS", "output": "No\n" }, { "input": "VRMLCQKVQKRRDVKWVDS", "output": "No\n" }, { "input": "VVMLCQKVQKRRDRKWVDS", "output": "No\n" }, { "input": "DVMLCQKVQKRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKWVVS", "output": "No\n" }, { "input": "SVVWKRDRRJQVKQCLMVD", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVWS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRWSVWK", "output": "No\n" }, { "input": "DVMLCQKVQJQRCRWSVWK", "output": "No\n" }, { "input": "KWVSWRCRQJQVKQCLMVD", "output": "No\n" }, { "input": "KWVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKUQCLMVD", "output": "No\n" }, { "input": "DVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCSWSVXK", "output": "No\n" }, { "input": "EVMLCQUSPJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWSCRQJPSUQCLMVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPWE", "output": "No\n" }, { "input": "EWPLCQUSMJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWRCRQJMSUQCLPWE", "output": "No\n" }, { "input": "KXVKWCCRQJMSUQRLPWE", "output": "No\n" }, { "input": "KXVKPCCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQQMSUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLRBCSQPQLWLWRUJE", "output": "No\n" } ]
0/::0
Takahashi will do a tap dance. The dance is described by a string S where each character is `L`, `R`, `U`, or `D`. These characters indicate the positions on which Takahashi should step. He will follow these instructions one by one in order, starting with the first character. S is said to be easily playable if and only if it satisfies both of the following conditions: * Every character in an odd position (1-st, 3-rd, 5-th, \ldots) is `R`, `U`, or `D`. * Every character in an even position (2-nd, 4-th, 6-th, \ldots) is `L`, `U`, or `D`. Your task is to print `Yes` if S is easily playable, and `No` otherwise. Constraints * S is a string of length between 1 and 100 (inclusive). * Each character of S is `L`, `R`, `U`, or `D`. Input Input is given from Standard Input in the following format: S Output Print `Yes` if S is easily playable, and `No` otherwise. Examples Input RUDLUDR Output Yes Input DULL Output No Input UUUUUUUUUUUUUUU Output Yes Input ULURU Output No Input RDULULDURURLRDULRLR Output Yes
[ "\n", "s = input()\n", "s = input()\n\nif 'L' in s[::2] or 'R' in s[1::2]:\n ans = 'No'\n", "s = input()\n\nif 'L' in s[::2] or 'R' in s[1::2]:\n ans = 'No'\nelse:\n ans = 'Yes'\n", "s = input()\n\nif 'L' in s[::2] or 'R' in s[1::2]:\n ans = 'No'\nelse:\n ans = 'Yes'\nprint(ans)\n" ]
5
[ { "input": "RUDLUDR", "output": "Yes" }, { "input": "DULL", "output": "No" }, { "input": "RDULULDURURLRDULRLR", "output": "Yes" }, { "input": "UUUUUUUUUUUUUUU", "output": "Yes" }, { "input": "ULURU", "output": "No" } ]
[ { "input": "RDULDUR", "output": "Yes\n" }, { "input": "LLUD", "output": "No\n" }, { "input": "RDULULDURURLLDULRRR", "output": "No\n" }, { "input": "ULURV", "output": "No\n" }, { "input": "EULL", "output": "No\n" }, { "input": "RCULULDURURLLDULRRR", "output": "No\n" }, { "input": "UKURU", "output": "No\n" }, { "input": "EULM", "output": "No\n" }, { "input": "RCVLULDURURLLDULRRR", "output": "No\n" }, { "input": "UJURU", "output": "No\n" }, { "input": "RCVLULDURURKLDULRRR", "output": "No\n" }, { "input": "URUJU", "output": "No\n" }, { "input": "RCVLUUDURLRKLDULRRR", "output": "No\n" }, { "input": "RCVLUUDURLRKLDVLRRR", "output": "No\n" }, { "input": "RRRLVDLKRLRUDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RCVLUVDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RCVLUWDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDWULVCR", "output": "No\n" }, { "input": "RQRLWRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRLRLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDKLVDWUWVCR", "output": "No\n" }, { "input": "RCVWUWDVLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUWDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUVDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RRRRLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVDR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCS", "output": "No\n" }, { "input": "RRRQLPLDDKMWKVUWVCS", "output": "No\n" }, { "input": "RRMQLPLDDKRWKVUWVCS", "output": "No\n" }, { "input": "WRMQLPLDDKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKDDLPLQMRW", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRW", "output": "No\n" }, { "input": "WRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "VRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRV", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPDLMRV", "output": "No\n" }, { "input": "SCVWKVKRRUQDLPDLMRV", "output": "No\n" }, { "input": "VRMLDPLDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLDPKDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLCPKDQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKDQVRRKVKWVDS", "output": "No\n" }, { "input": "SDVWKVKRRVQDKPCLMRV", "output": "No\n" }, { "input": "VRMLCQKDQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCQKDQKRRVVKWVDS", "output": "No\n" }, { "input": "VRMLCQKVQKRRDVKWVDS", "output": "No\n" }, { "input": "VVMLCQKVQKRRDRKWVDS", "output": "No\n" }, { "input": "DVMLCQKVQKRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKWVVS", "output": "No\n" }, { "input": "SVVWKRDRRJQVKQCLMVD", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVWS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRWSVWK", "output": "No\n" }, { "input": "DVMLCQKVQJQRCRWSVWK", "output": "No\n" }, { "input": "KWVSWRCRQJQVKQCLMVD", "output": "No\n" }, { "input": "KWVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKUQCLMVD", "output": "No\n" }, { "input": "DVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCSWSVXK", "output": "No\n" }, { "input": "EVMLCQUSPJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWSCRQJPSUQCLMVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPWE", "output": "No\n" }, { "input": "EWPLCQUSMJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWRCRQJMSUQCLPWE", "output": "No\n" }, { "input": "KXVKWCCRQJMSUQRLPWE", "output": "No\n" }, { "input": "KXVKPCCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQQMSUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLRBCSQPQLWLWRUJE", "output": "No\n" } ]
0/::0
Takahashi will do a tap dance. The dance is described by a string S where each character is `L`, `R`, `U`, or `D`. These characters indicate the positions on which Takahashi should step. He will follow these instructions one by one in order, starting with the first character. S is said to be easily playable if and only if it satisfies both of the following conditions: * Every character in an odd position (1-st, 3-rd, 5-th, \ldots) is `R`, `U`, or `D`. * Every character in an even position (2-nd, 4-th, 6-th, \ldots) is `L`, `U`, or `D`. Your task is to print `Yes` if S is easily playable, and `No` otherwise. Constraints * S is a string of length between 1 and 100 (inclusive). * Each character of S is `L`, `R`, `U`, or `D`. Input Input is given from Standard Input in the following format: S Output Print `Yes` if S is easily playable, and `No` otherwise. Examples Input RUDLUDR Output Yes Input DULL Output No Input UUUUUUUUUUUUUUU Output Yes Input ULURU Output No Input RDULULDURURLRDULRLR Output Yes
[ "\n", "s=input();\n", "s=input();print('YNeos'['L' in s[::2] or 'R' in s[1::2]::2])\n" ]
3
[ { "input": "RUDLUDR", "output": "Yes" }, { "input": "DULL", "output": "No" }, { "input": "RDULULDURURLRDULRLR", "output": "Yes" }, { "input": "UUUUUUUUUUUUUUU", "output": "Yes" }, { "input": "ULURU", "output": "No" } ]
[ { "input": "RDULDUR", "output": "Yes\n" }, { "input": "LLUD", "output": "No\n" }, { "input": "RDULULDURURLLDULRRR", "output": "No\n" }, { "input": "ULURV", "output": "No\n" }, { "input": "EULL", "output": "No\n" }, { "input": "RCULULDURURLLDULRRR", "output": "No\n" }, { "input": "UKURU", "output": "No\n" }, { "input": "EULM", "output": "No\n" }, { "input": "RCVLULDURURLLDULRRR", "output": "No\n" }, { "input": "UJURU", "output": "No\n" }, { "input": "RCVLULDURURKLDULRRR", "output": "No\n" }, { "input": "URUJU", "output": "No\n" }, { "input": "RCVLUUDURLRKLDULRRR", "output": "No\n" }, { "input": "RCVLUUDURLRKLDVLRRR", "output": "No\n" }, { "input": "RRRLVDLKRLRUDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RCVLUVDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RCVLUWDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDWULVCR", "output": "No\n" }, { "input": "RQRLWRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRLRLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDKLVDWUWVCR", "output": "No\n" }, { "input": "RCVWUWDVLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUWDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUVDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RRRRLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVDR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCS", "output": "No\n" }, { "input": "RRRQLPLDDKMWKVUWVCS", "output": "No\n" }, { "input": "RRMQLPLDDKRWKVUWVCS", "output": "No\n" }, { "input": "WRMQLPLDDKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKDDLPLQMRW", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRW", "output": "No\n" }, { "input": "WRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "VRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRV", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPDLMRV", "output": "No\n" }, { "input": "SCVWKVKRRUQDLPDLMRV", "output": "No\n" }, { "input": "VRMLDPLDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLDPKDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLCPKDQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKDQVRRKVKWVDS", "output": "No\n" }, { "input": "SDVWKVKRRVQDKPCLMRV", "output": "No\n" }, { "input": "VRMLCQKDQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCQKDQKRRVVKWVDS", "output": "No\n" }, { "input": "VRMLCQKVQKRRDVKWVDS", "output": "No\n" }, { "input": "VVMLCQKVQKRRDRKWVDS", "output": "No\n" }, { "input": "DVMLCQKVQKRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKWVVS", "output": "No\n" }, { "input": "SVVWKRDRRJQVKQCLMVD", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVWS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRWSVWK", "output": "No\n" }, { "input": "DVMLCQKVQJQRCRWSVWK", "output": "No\n" }, { "input": "KWVSWRCRQJQVKQCLMVD", "output": "No\n" }, { "input": "KWVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKUQCLMVD", "output": "No\n" }, { "input": "DVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCSWSVXK", "output": "No\n" }, { "input": "EVMLCQUSPJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWSCRQJPSUQCLMVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPWE", "output": "No\n" }, { "input": "EWPLCQUSMJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWRCRQJMSUQCLPWE", "output": "No\n" }, { "input": "KXVKWCCRQJMSUQRLPWE", "output": "No\n" }, { "input": "KXVKPCCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQQMSUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLRBCSQPQLWLWRUJE", "output": "No\n" } ]
0/::0
Takahashi will do a tap dance. The dance is described by a string S where each character is `L`, `R`, `U`, or `D`. These characters indicate the positions on which Takahashi should step. He will follow these instructions one by one in order, starting with the first character. S is said to be easily playable if and only if it satisfies both of the following conditions: * Every character in an odd position (1-st, 3-rd, 5-th, \ldots) is `R`, `U`, or `D`. * Every character in an even position (2-nd, 4-th, 6-th, \ldots) is `L`, `U`, or `D`. Your task is to print `Yes` if S is easily playable, and `No` otherwise. Constraints * S is a string of length between 1 and 100 (inclusive). * Each character of S is `L`, `R`, `U`, or `D`. Input Input is given from Standard Input in the following format: S Output Print `Yes` if S is easily playable, and `No` otherwise. Examples Input RUDLUDR Output Yes Input DULL Output No Input UUUUUUUUUUUUUUU Output Yes Input ULURU Output No Input RDULULDURURLRDULRLR Output Yes
[ "\n", "a=input()\n", "a=input()\nif ('L' in a[::2]) or ('R' in a[1::2]):\n print('No')\n", "a=input()\nif ('L' in a[::2]) or ('R' in a[1::2]):\n print('No')\nelse:\n print('Yes')\n" ]
4
[ { "input": "RUDLUDR", "output": "Yes" }, { "input": "DULL", "output": "No" }, { "input": "RDULULDURURLRDULRLR", "output": "Yes" }, { "input": "UUUUUUUUUUUUUUU", "output": "Yes" }, { "input": "ULURU", "output": "No" } ]
[ { "input": "RDULDUR", "output": "Yes\n" }, { "input": "LLUD", "output": "No\n" }, { "input": "RDULULDURURLLDULRRR", "output": "No\n" }, { "input": "ULURV", "output": "No\n" }, { "input": "EULL", "output": "No\n" }, { "input": "RCULULDURURLLDULRRR", "output": "No\n" }, { "input": "UKURU", "output": "No\n" }, { "input": "EULM", "output": "No\n" }, { "input": "RCVLULDURURLLDULRRR", "output": "No\n" }, { "input": "UJURU", "output": "No\n" }, { "input": "RCVLULDURURKLDULRRR", "output": "No\n" }, { "input": "URUJU", "output": "No\n" }, { "input": "RCVLUUDURLRKLDULRRR", "output": "No\n" }, { "input": "RCVLUUDURLRKLDVLRRR", "output": "No\n" }, { "input": "RRRLVDLKRLRUDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RCVLUVDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RCVLUWDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDWULVCR", "output": "No\n" }, { "input": "RQRLWRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRLRLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDKLVDWUWVCR", "output": "No\n" }, { "input": "RCVWUWDVLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUWDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUVDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RRRRLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVDR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCS", "output": "No\n" }, { "input": "RRRQLPLDDKMWKVUWVCS", "output": "No\n" }, { "input": "RRMQLPLDDKRWKVUWVCS", "output": "No\n" }, { "input": "WRMQLPLDDKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKDDLPLQMRW", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRW", "output": "No\n" }, { "input": "WRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "VRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRV", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPDLMRV", "output": "No\n" }, { "input": "SCVWKVKRRUQDLPDLMRV", "output": "No\n" }, { "input": "VRMLDPLDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLDPKDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLCPKDQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKDQVRRKVKWVDS", "output": "No\n" }, { "input": "SDVWKVKRRVQDKPCLMRV", "output": "No\n" }, { "input": "VRMLCQKDQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCQKDQKRRVVKWVDS", "output": "No\n" }, { "input": "VRMLCQKVQKRRDVKWVDS", "output": "No\n" }, { "input": "VVMLCQKVQKRRDRKWVDS", "output": "No\n" }, { "input": "DVMLCQKVQKRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKWVVS", "output": "No\n" }, { "input": "SVVWKRDRRJQVKQCLMVD", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVWS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRWSVWK", "output": "No\n" }, { "input": "DVMLCQKVQJQRCRWSVWK", "output": "No\n" }, { "input": "KWVSWRCRQJQVKQCLMVD", "output": "No\n" }, { "input": "KWVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKUQCLMVD", "output": "No\n" }, { "input": "DVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCSWSVXK", "output": "No\n" }, { "input": "EVMLCQUSPJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWSCRQJPSUQCLMVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPWE", "output": "No\n" }, { "input": "EWPLCQUSMJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWRCRQJMSUQCLPWE", "output": "No\n" }, { "input": "KXVKWCCRQJMSUQRLPWE", "output": "No\n" }, { "input": "KXVKPCCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQQMSUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLRBCSQPQLWLWRUJE", "output": "No\n" } ]
0/::0
Takahashi will do a tap dance. The dance is described by a string S where each character is `L`, `R`, `U`, or `D`. These characters indicate the positions on which Takahashi should step. He will follow these instructions one by one in order, starting with the first character. S is said to be easily playable if and only if it satisfies both of the following conditions: * Every character in an odd position (1-st, 3-rd, 5-th, \ldots) is `R`, `U`, or `D`. * Every character in an even position (2-nd, 4-th, 6-th, \ldots) is `L`, `U`, or `D`. Your task is to print `Yes` if S is easily playable, and `No` otherwise. Constraints * S is a string of length between 1 and 100 (inclusive). * Each character of S is `L`, `R`, `U`, or `D`. Input Input is given from Standard Input in the following format: S Output Print `Yes` if S is easily playable, and `No` otherwise. Examples Input RUDLUDR Output Yes Input DULL Output No Input UUUUUUUUUUUUUUU Output Yes Input ULURU Output No Input RDULULDURURLRDULRLR Output Yes
[ "\n", "s = list(str(input()))\n", "s = list(str(input()))\nif \"L\" in s[::2] or \"R\" in s[1::2]:\n print(\"No\")\n", "s = list(str(input()))\nif \"L\" in s[::2] or \"R\" in s[1::2]:\n print(\"No\")\nelse:\n print(\"Yes\")\n" ]
4
[ { "input": "RUDLUDR", "output": "Yes" }, { "input": "DULL", "output": "No" }, { "input": "RDULULDURURLRDULRLR", "output": "Yes" }, { "input": "UUUUUUUUUUUUUUU", "output": "Yes" }, { "input": "ULURU", "output": "No" } ]
[ { "input": "RDULDUR", "output": "Yes\n" }, { "input": "LLUD", "output": "No\n" }, { "input": "RDULULDURURLLDULRRR", "output": "No\n" }, { "input": "ULURV", "output": "No\n" }, { "input": "EULL", "output": "No\n" }, { "input": "RCULULDURURLLDULRRR", "output": "No\n" }, { "input": "UKURU", "output": "No\n" }, { "input": "EULM", "output": "No\n" }, { "input": "RCVLULDURURLLDULRRR", "output": "No\n" }, { "input": "UJURU", "output": "No\n" }, { "input": "RCVLULDURURKLDULRRR", "output": "No\n" }, { "input": "URUJU", "output": "No\n" }, { "input": "RCVLUUDURLRKLDULRRR", "output": "No\n" }, { "input": "RCVLUUDURLRKLDVLRRR", "output": "No\n" }, { "input": "RRRLVDLKRLRUDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RCVLUVDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RCVLUWDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDWULVCR", "output": "No\n" }, { "input": "RQRLWRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRLRLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDKLVDWUWVCR", "output": "No\n" }, { "input": "RCVWUWDVLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUWDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUVDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RRRRLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVDR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCS", "output": "No\n" }, { "input": "RRRQLPLDDKMWKVUWVCS", "output": "No\n" }, { "input": "RRMQLPLDDKRWKVUWVCS", "output": "No\n" }, { "input": "WRMQLPLDDKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKDDLPLQMRW", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRW", "output": "No\n" }, { "input": "WRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "VRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRV", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPDLMRV", "output": "No\n" }, { "input": "SCVWKVKRRUQDLPDLMRV", "output": "No\n" }, { "input": "VRMLDPLDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLDPKDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLCPKDQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKDQVRRKVKWVDS", "output": "No\n" }, { "input": "SDVWKVKRRVQDKPCLMRV", "output": "No\n" }, { "input": "VRMLCQKDQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCQKDQKRRVVKWVDS", "output": "No\n" }, { "input": "VRMLCQKVQKRRDVKWVDS", "output": "No\n" }, { "input": "VVMLCQKVQKRRDRKWVDS", "output": "No\n" }, { "input": "DVMLCQKVQKRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKWVVS", "output": "No\n" }, { "input": "SVVWKRDRRJQVKQCLMVD", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVWS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRWSVWK", "output": "No\n" }, { "input": "DVMLCQKVQJQRCRWSVWK", "output": "No\n" }, { "input": "KWVSWRCRQJQVKQCLMVD", "output": "No\n" }, { "input": "KWVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKUQCLMVD", "output": "No\n" }, { "input": "DVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCSWSVXK", "output": "No\n" }, { "input": "EVMLCQUSPJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWSCRQJPSUQCLMVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPWE", "output": "No\n" }, { "input": "EWPLCQUSMJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWRCRQJMSUQCLPWE", "output": "No\n" }, { "input": "KXVKWCCRQJMSUQRLPWE", "output": "No\n" }, { "input": "KXVKPCCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQQMSUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLRBCSQPQLWLWRUJE", "output": "No\n" } ]
0/::0
Takahashi will do a tap dance. The dance is described by a string S where each character is `L`, `R`, `U`, or `D`. These characters indicate the positions on which Takahashi should step. He will follow these instructions one by one in order, starting with the first character. S is said to be easily playable if and only if it satisfies both of the following conditions: * Every character in an odd position (1-st, 3-rd, 5-th, \ldots) is `R`, `U`, or `D`. * Every character in an even position (2-nd, 4-th, 6-th, \ldots) is `L`, `U`, or `D`. Your task is to print `Yes` if S is easily playable, and `No` otherwise. Constraints * S is a string of length between 1 and 100 (inclusive). * Each character of S is `L`, `R`, `U`, or `D`. Input Input is given from Standard Input in the following format: S Output Print `Yes` if S is easily playable, and `No` otherwise. Examples Input RUDLUDR Output Yes Input DULL Output No Input UUUUUUUUUUUUUUU Output Yes Input ULURU Output No Input RDULULDURURLRDULRLR Output Yes
[ "\n", "s = input()\n", "s = input()\nprint('Yes' if set(s[::2]) <= {'R', 'U', 'D'} and set(s[1::2]) <= {'L', 'U', 'D'} else 'No')\n" ]
3
[ { "input": "RUDLUDR", "output": "Yes" }, { "input": "DULL", "output": "No" }, { "input": "RDULULDURURLRDULRLR", "output": "Yes" }, { "input": "UUUUUUUUUUUUUUU", "output": "Yes" }, { "input": "ULURU", "output": "No" } ]
[ { "input": "RDULDUR", "output": "Yes\n" }, { "input": "LLUD", "output": "No\n" }, { "input": "RDULULDURURLLDULRRR", "output": "No\n" }, { "input": "ULURV", "output": "No\n" }, { "input": "EULL", "output": "No\n" }, { "input": "RCULULDURURLLDULRRR", "output": "No\n" }, { "input": "UKURU", "output": "No\n" }, { "input": "EULM", "output": "No\n" }, { "input": "RCVLULDURURLLDULRRR", "output": "No\n" }, { "input": "UJURU", "output": "No\n" }, { "input": "RCVLULDURURKLDULRRR", "output": "No\n" }, { "input": "URUJU", "output": "No\n" }, { "input": "RCVLUUDURLRKLDULRRR", "output": "No\n" }, { "input": "RCVLUUDURLRKLDVLRRR", "output": "No\n" }, { "input": "RRRLVDLKRLRUDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RCVLUVDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RCVLUWDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDWULVCR", "output": "No\n" }, { "input": "RQRLWRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRLRLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDKLVDWUWVCR", "output": "No\n" }, { "input": "RCVWUWDVLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUWDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUVDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RRRRLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVDR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCS", "output": "No\n" }, { "input": "RRRQLPLDDKMWKVUWVCS", "output": "No\n" }, { "input": "RRMQLPLDDKRWKVUWVCS", "output": "No\n" }, { "input": "WRMQLPLDDKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKDDLPLQMRW", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRW", "output": "No\n" }, { "input": "WRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "VRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRV", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPDLMRV", "output": "No\n" }, { "input": "SCVWKVKRRUQDLPDLMRV", "output": "No\n" }, { "input": "VRMLDPLDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLDPKDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLCPKDQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKDQVRRKVKWVDS", "output": "No\n" }, { "input": "SDVWKVKRRVQDKPCLMRV", "output": "No\n" }, { "input": "VRMLCQKDQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCQKDQKRRVVKWVDS", "output": "No\n" }, { "input": "VRMLCQKVQKRRDVKWVDS", "output": "No\n" }, { "input": "VVMLCQKVQKRRDRKWVDS", "output": "No\n" }, { "input": "DVMLCQKVQKRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKWVVS", "output": "No\n" }, { "input": "SVVWKRDRRJQVKQCLMVD", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVWS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRWSVWK", "output": "No\n" }, { "input": "DVMLCQKVQJQRCRWSVWK", "output": "No\n" }, { "input": "KWVSWRCRQJQVKQCLMVD", "output": "No\n" }, { "input": "KWVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKUQCLMVD", "output": "No\n" }, { "input": "DVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCSWSVXK", "output": "No\n" }, { "input": "EVMLCQUSPJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWSCRQJPSUQCLMVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPWE", "output": "No\n" }, { "input": "EWPLCQUSMJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWRCRQJMSUQCLPWE", "output": "No\n" }, { "input": "KXVKWCCRQJMSUQRLPWE", "output": "No\n" }, { "input": "KXVKPCCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQQMSUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLRBCSQPQLWLWRUJE", "output": "No\n" } ]
0/::0
Takahashi will do a tap dance. The dance is described by a string S where each character is `L`, `R`, `U`, or `D`. These characters indicate the positions on which Takahashi should step. He will follow these instructions one by one in order, starting with the first character. S is said to be easily playable if and only if it satisfies both of the following conditions: * Every character in an odd position (1-st, 3-rd, 5-th, \ldots) is `R`, `U`, or `D`. * Every character in an even position (2-nd, 4-th, 6-th, \ldots) is `L`, `U`, or `D`. Your task is to print `Yes` if S is easily playable, and `No` otherwise. Constraints * S is a string of length between 1 and 100 (inclusive). * Each character of S is `L`, `R`, `U`, or `D`. Input Input is given from Standard Input in the following format: S Output Print `Yes` if S is easily playable, and `No` otherwise. Examples Input RUDLUDR Output Yes Input DULL Output No Input UUUUUUUUUUUUUUU Output Yes Input ULURU Output No Input RDULULDURURLRDULRLR Output Yes
[ "\n", "s = input().rstrip()\n", "s = input().rstrip()\n\ns1 = s[::2]\n", "s = input().rstrip()\n\ns1 = s[::2]\ns2 = s[1::2]\n", "s = input().rstrip()\n\ns1 = s[::2]\ns2 = s[1::2]\n\nif 'L' in s1 or 'R' in s2:\n print('No')\n", "s = input().rstrip()\n\ns1 = s[::2]\ns2 = s[1::2]\n\nif 'L' in s1 or 'R' in s2:\n print('No')\nelse:\n print('Yes')\n" ]
6
[ { "input": "RUDLUDR", "output": "Yes" }, { "input": "DULL", "output": "No" }, { "input": "RDULULDURURLRDULRLR", "output": "Yes" }, { "input": "UUUUUUUUUUUUUUU", "output": "Yes" }, { "input": "ULURU", "output": "No" } ]
[ { "input": "RDULDUR", "output": "Yes\n" }, { "input": "LLUD", "output": "No\n" }, { "input": "RDULULDURURLLDULRRR", "output": "No\n" }, { "input": "ULURV", "output": "No\n" }, { "input": "EULL", "output": "No\n" }, { "input": "RCULULDURURLLDULRRR", "output": "No\n" }, { "input": "UKURU", "output": "No\n" }, { "input": "EULM", "output": "No\n" }, { "input": "RCVLULDURURLLDULRRR", "output": "No\n" }, { "input": "UJURU", "output": "No\n" }, { "input": "RCVLULDURURKLDULRRR", "output": "No\n" }, { "input": "URUJU", "output": "No\n" }, { "input": "RCVLUUDURLRKLDULRRR", "output": "No\n" }, { "input": "RCVLUUDURLRKLDVLRRR", "output": "No\n" }, { "input": "RRRLVDLKRLRUDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RCVLUVDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RCVLUWDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDWULVCR", "output": "No\n" }, { "input": "RQRLWRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRLRLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDKLVDWUWVCR", "output": "No\n" }, { "input": "RCVWUWDVLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUWDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUVDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RRRRLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVDR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCS", "output": "No\n" }, { "input": "RRRQLPLDDKMWKVUWVCS", "output": "No\n" }, { "input": "RRMQLPLDDKRWKVUWVCS", "output": "No\n" }, { "input": "WRMQLPLDDKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKDDLPLQMRW", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRW", "output": "No\n" }, { "input": "WRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "VRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRV", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPDLMRV", "output": "No\n" }, { "input": "SCVWKVKRRUQDLPDLMRV", "output": "No\n" }, { "input": "VRMLDPLDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLDPKDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLCPKDQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKDQVRRKVKWVDS", "output": "No\n" }, { "input": "SDVWKVKRRVQDKPCLMRV", "output": "No\n" }, { "input": "VRMLCQKDQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCQKDQKRRVVKWVDS", "output": "No\n" }, { "input": "VRMLCQKVQKRRDVKWVDS", "output": "No\n" }, { "input": "VVMLCQKVQKRRDRKWVDS", "output": "No\n" }, { "input": "DVMLCQKVQKRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKWVVS", "output": "No\n" }, { "input": "SVVWKRDRRJQVKQCLMVD", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVWS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRWSVWK", "output": "No\n" }, { "input": "DVMLCQKVQJQRCRWSVWK", "output": "No\n" }, { "input": "KWVSWRCRQJQVKQCLMVD", "output": "No\n" }, { "input": "KWVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKUQCLMVD", "output": "No\n" }, { "input": "DVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCSWSVXK", "output": "No\n" }, { "input": "EVMLCQUSPJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWSCRQJPSUQCLMVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPWE", "output": "No\n" }, { "input": "EWPLCQUSMJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWRCRQJMSUQCLPWE", "output": "No\n" }, { "input": "KXVKWCCRQJMSUQRLPWE", "output": "No\n" }, { "input": "KXVKPCCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQQMSUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLRBCSQPQLWLWRUJE", "output": "No\n" } ]
0/::0
Takahashi will do a tap dance. The dance is described by a string S where each character is `L`, `R`, `U`, or `D`. These characters indicate the positions on which Takahashi should step. He will follow these instructions one by one in order, starting with the first character. S is said to be easily playable if and only if it satisfies both of the following conditions: * Every character in an odd position (1-st, 3-rd, 5-th, \ldots) is `R`, `U`, or `D`. * Every character in an even position (2-nd, 4-th, 6-th, \ldots) is `L`, `U`, or `D`. Your task is to print `Yes` if S is easily playable, and `No` otherwise. Constraints * S is a string of length between 1 and 100 (inclusive). * Each character of S is `L`, `R`, `U`, or `D`. Input Input is given from Standard Input in the following format: S Output Print `Yes` if S is easily playable, and `No` otherwise. Examples Input RUDLUDR Output Yes Input DULL Output No Input UUUUUUUUUUUUUUU Output Yes Input ULURU Output No Input RDULULDURURLRDULRLR Output Yes
[ "\n", "import re\n", "import re\ns = input()\n", "import re\ns = input()\np = re.compile(r'^([^L][^R])*[^L]?$')\n", "import re\ns = input()\np = re.compile(r'^([^L][^R])*[^L]?$')\nif p.match(s):\n print(\"Yes\")\n", "import re\ns = input()\np = re.compile(r'^([^L][^R])*[^L]?$')\nif p.match(s):\n print(\"Yes\")\nelse:\n print(\"No\")\n" ]
6
[ { "input": "RUDLUDR", "output": "Yes" }, { "input": "DULL", "output": "No" }, { "input": "RDULULDURURLRDULRLR", "output": "Yes" }, { "input": "UUUUUUUUUUUUUUU", "output": "Yes" }, { "input": "ULURU", "output": "No" } ]
[ { "input": "RDULDUR", "output": "Yes\n" }, { "input": "LLUD", "output": "No\n" }, { "input": "RDULULDURURLLDULRRR", "output": "No\n" }, { "input": "ULURV", "output": "No\n" }, { "input": "EULL", "output": "No\n" }, { "input": "RCULULDURURLLDULRRR", "output": "No\n" }, { "input": "UKURU", "output": "No\n" }, { "input": "EULM", "output": "No\n" }, { "input": "RCVLULDURURLLDULRRR", "output": "No\n" }, { "input": "UJURU", "output": "No\n" }, { "input": "RCVLULDURURKLDULRRR", "output": "No\n" }, { "input": "URUJU", "output": "No\n" }, { "input": "RCVLUUDURLRKLDULRRR", "output": "No\n" }, { "input": "RCVLUUDURLRKLDVLRRR", "output": "No\n" }, { "input": "RRRLVDLKRLRUDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RCVLUVDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RCVLUWDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDWULVCR", "output": "No\n" }, { "input": "RQRLWRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRLRLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDKLVDWUWVCR", "output": "No\n" }, { "input": "RCVWUWDVLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUWDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUVDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RRRRLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVDR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCS", "output": "No\n" }, { "input": "RRRQLPLDDKMWKVUWVCS", "output": "No\n" }, { "input": "RRMQLPLDDKRWKVUWVCS", "output": "No\n" }, { "input": "WRMQLPLDDKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKDDLPLQMRW", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRW", "output": "No\n" }, { "input": "WRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "VRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRV", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPDLMRV", "output": "No\n" }, { "input": "SCVWKVKRRUQDLPDLMRV", "output": "No\n" }, { "input": "VRMLDPLDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLDPKDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLCPKDQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKDQVRRKVKWVDS", "output": "No\n" }, { "input": "SDVWKVKRRVQDKPCLMRV", "output": "No\n" }, { "input": "VRMLCQKDQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCQKDQKRRVVKWVDS", "output": "No\n" }, { "input": "VRMLCQKVQKRRDVKWVDS", "output": "No\n" }, { "input": "VVMLCQKVQKRRDRKWVDS", "output": "No\n" }, { "input": "DVMLCQKVQKRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKWVVS", "output": "No\n" }, { "input": "SVVWKRDRRJQVKQCLMVD", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVWS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRWSVWK", "output": "No\n" }, { "input": "DVMLCQKVQJQRCRWSVWK", "output": "No\n" }, { "input": "KWVSWRCRQJQVKQCLMVD", "output": "No\n" }, { "input": "KWVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKUQCLMVD", "output": "No\n" }, { "input": "DVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCSWSVXK", "output": "No\n" }, { "input": "EVMLCQUSPJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWSCRQJPSUQCLMVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPWE", "output": "No\n" }, { "input": "EWPLCQUSMJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWRCRQJMSUQCLPWE", "output": "No\n" }, { "input": "KXVKWCCRQJMSUQRLPWE", "output": "No\n" }, { "input": "KXVKPCCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQQMSUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLRBCSQPQLWLWRUJE", "output": "No\n" } ]
0/::0
Takahashi will do a tap dance. The dance is described by a string S where each character is `L`, `R`, `U`, or `D`. These characters indicate the positions on which Takahashi should step. He will follow these instructions one by one in order, starting with the first character. S is said to be easily playable if and only if it satisfies both of the following conditions: * Every character in an odd position (1-st, 3-rd, 5-th, \ldots) is `R`, `U`, or `D`. * Every character in an even position (2-nd, 4-th, 6-th, \ldots) is `L`, `U`, or `D`. Your task is to print `Yes` if S is easily playable, and `No` otherwise. Constraints * S is a string of length between 1 and 100 (inclusive). * Each character of S is `L`, `R`, `U`, or `D`. Input Input is given from Standard Input in the following format: S Output Print `Yes` if S is easily playable, and `No` otherwise. Examples Input RUDLUDR Output Yes Input DULL Output No Input UUUUUUUUUUUUUUU Output Yes Input ULURU Output No Input RDULULDURURLRDULRLR Output Yes
[ "\n", "S = input()\n", "S = input()\nprint(\"No\" if \"L\" in S[0::2] or \"R\" in S[1::2] else \"Yes\")\n" ]
3
[ { "input": "RUDLUDR", "output": "Yes" }, { "input": "DULL", "output": "No" }, { "input": "RDULULDURURLRDULRLR", "output": "Yes" }, { "input": "UUUUUUUUUUUUUUU", "output": "Yes" }, { "input": "ULURU", "output": "No" } ]
[ { "input": "RDULDUR", "output": "Yes\n" }, { "input": "LLUD", "output": "No\n" }, { "input": "RDULULDURURLLDULRRR", "output": "No\n" }, { "input": "ULURV", "output": "No\n" }, { "input": "EULL", "output": "No\n" }, { "input": "RCULULDURURLLDULRRR", "output": "No\n" }, { "input": "UKURU", "output": "No\n" }, { "input": "EULM", "output": "No\n" }, { "input": "RCVLULDURURLLDULRRR", "output": "No\n" }, { "input": "UJURU", "output": "No\n" }, { "input": "RCVLULDURURKLDULRRR", "output": "No\n" }, { "input": "URUJU", "output": "No\n" }, { "input": "RCVLUUDURLRKLDULRRR", "output": "No\n" }, { "input": "RCVLUUDURLRKLDVLRRR", "output": "No\n" }, { "input": "RRRLVDLKRLRUDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RCVLUVDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RCVLUWDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDWULVCR", "output": "No\n" }, { "input": "RQRLWRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRLRLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDKLVDWUWVCR", "output": "No\n" }, { "input": "RCVWUWDVLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUWDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUVDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RRRRLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVDR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCS", "output": "No\n" }, { "input": "RRRQLPLDDKMWKVUWVCS", "output": "No\n" }, { "input": "RRMQLPLDDKRWKVUWVCS", "output": "No\n" }, { "input": "WRMQLPLDDKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKDDLPLQMRW", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRW", "output": "No\n" }, { "input": "WRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "VRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRV", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPDLMRV", "output": "No\n" }, { "input": "SCVWKVKRRUQDLPDLMRV", "output": "No\n" }, { "input": "VRMLDPLDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLDPKDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLCPKDQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKDQVRRKVKWVDS", "output": "No\n" }, { "input": "SDVWKVKRRVQDKPCLMRV", "output": "No\n" }, { "input": "VRMLCQKDQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCQKDQKRRVVKWVDS", "output": "No\n" }, { "input": "VRMLCQKVQKRRDVKWVDS", "output": "No\n" }, { "input": "VVMLCQKVQKRRDRKWVDS", "output": "No\n" }, { "input": "DVMLCQKVQKRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKWVVS", "output": "No\n" }, { "input": "SVVWKRDRRJQVKQCLMVD", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVWS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRWSVWK", "output": "No\n" }, { "input": "DVMLCQKVQJQRCRWSVWK", "output": "No\n" }, { "input": "KWVSWRCRQJQVKQCLMVD", "output": "No\n" }, { "input": "KWVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKUQCLMVD", "output": "No\n" }, { "input": "DVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCSWSVXK", "output": "No\n" }, { "input": "EVMLCQUSPJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWSCRQJPSUQCLMVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPWE", "output": "No\n" }, { "input": "EWPLCQUSMJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWRCRQJMSUQCLPWE", "output": "No\n" }, { "input": "KXVKWCCRQJMSUQRLPWE", "output": "No\n" }, { "input": "KXVKPCCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQQMSUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLRBCSQPQLWLWRUJE", "output": "No\n" } ]
0/::0
Takahashi will do a tap dance. The dance is described by a string S where each character is `L`, `R`, `U`, or `D`. These characters indicate the positions on which Takahashi should step. He will follow these instructions one by one in order, starting with the first character. S is said to be easily playable if and only if it satisfies both of the following conditions: * Every character in an odd position (1-st, 3-rd, 5-th, \ldots) is `R`, `U`, or `D`. * Every character in an even position (2-nd, 4-th, 6-th, \ldots) is `L`, `U`, or `D`. Your task is to print `Yes` if S is easily playable, and `No` otherwise. Constraints * S is a string of length between 1 and 100 (inclusive). * Each character of S is `L`, `R`, `U`, or `D`. Input Input is given from Standard Input in the following format: S Output Print `Yes` if S is easily playable, and `No` otherwise. Examples Input RUDLUDR Output Yes Input DULL Output No Input UUUUUUUUUUUUUUU Output Yes Input ULURU Output No Input RDULULDURURLRDULRLR Output Yes
[ "\n", "S = input()\na = \"Yes\"\n\n\nprint(a)\n", "S = input()\na = \"Yes\"\n\nif \"L\" in S[0::2] or \"R\" in S[1::2]:\n a = \"No\"\n\nprint(a)\n" ]
3
[ { "input": "RUDLUDR", "output": "Yes" }, { "input": "DULL", "output": "No" }, { "input": "RDULULDURURLRDULRLR", "output": "Yes" }, { "input": "UUUUUUUUUUUUUUU", "output": "Yes" }, { "input": "ULURU", "output": "No" } ]
[ { "input": "RDULDUR", "output": "Yes\n" }, { "input": "LLUD", "output": "No\n" }, { "input": "RDULULDURURLLDULRRR", "output": "No\n" }, { "input": "ULURV", "output": "No\n" }, { "input": "EULL", "output": "No\n" }, { "input": "RCULULDURURLLDULRRR", "output": "No\n" }, { "input": "UKURU", "output": "No\n" }, { "input": "EULM", "output": "No\n" }, { "input": "RCVLULDURURLLDULRRR", "output": "No\n" }, { "input": "UJURU", "output": "No\n" }, { "input": "RCVLULDURURKLDULRRR", "output": "No\n" }, { "input": "URUJU", "output": "No\n" }, { "input": "RCVLUUDURLRKLDULRRR", "output": "No\n" }, { "input": "RCVLUUDURLRKLDVLRRR", "output": "No\n" }, { "input": "RRRLVDLKRLRUDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RCVLUVDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RCVLUWDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDWULVCR", "output": "No\n" }, { "input": "RQRLWRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRLRLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDKLVDWUWVCR", "output": "No\n" }, { "input": "RCVWUWDVLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUWDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUVDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RRRRLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVDR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCS", "output": "No\n" }, { "input": "RRRQLPLDDKMWKVUWVCS", "output": "No\n" }, { "input": "RRMQLPLDDKRWKVUWVCS", "output": "No\n" }, { "input": "WRMQLPLDDKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKDDLPLQMRW", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRW", "output": "No\n" }, { "input": "WRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "VRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRV", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPDLMRV", "output": "No\n" }, { "input": "SCVWKVKRRUQDLPDLMRV", "output": "No\n" }, { "input": "VRMLDPLDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLDPKDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLCPKDQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKDQVRRKVKWVDS", "output": "No\n" }, { "input": "SDVWKVKRRVQDKPCLMRV", "output": "No\n" }, { "input": "VRMLCQKDQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCQKDQKRRVVKWVDS", "output": "No\n" }, { "input": "VRMLCQKVQKRRDVKWVDS", "output": "No\n" }, { "input": "VVMLCQKVQKRRDRKWVDS", "output": "No\n" }, { "input": "DVMLCQKVQKRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKWVVS", "output": "No\n" }, { "input": "SVVWKRDRRJQVKQCLMVD", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVWS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRWSVWK", "output": "No\n" }, { "input": "DVMLCQKVQJQRCRWSVWK", "output": "No\n" }, { "input": "KWVSWRCRQJQVKQCLMVD", "output": "No\n" }, { "input": "KWVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKUQCLMVD", "output": "No\n" }, { "input": "DVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCSWSVXK", "output": "No\n" }, { "input": "EVMLCQUSPJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWSCRQJPSUQCLMVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPWE", "output": "No\n" }, { "input": "EWPLCQUSMJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWRCRQJMSUQCLPWE", "output": "No\n" }, { "input": "KXVKWCCRQJMSUQRLPWE", "output": "No\n" }, { "input": "KXVKPCCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQQMSUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLRBCSQPQLWLWRUJE", "output": "No\n" } ]
0/::0
Takahashi will do a tap dance. The dance is described by a string S where each character is `L`, `R`, `U`, or `D`. These characters indicate the positions on which Takahashi should step. He will follow these instructions one by one in order, starting with the first character. S is said to be easily playable if and only if it satisfies both of the following conditions: * Every character in an odd position (1-st, 3-rd, 5-th, \ldots) is `R`, `U`, or `D`. * Every character in an even position (2-nd, 4-th, 6-th, \ldots) is `L`, `U`, or `D`. Your task is to print `Yes` if S is easily playable, and `No` otherwise. Constraints * S is a string of length between 1 and 100 (inclusive). * Each character of S is `L`, `R`, `U`, or `D`. Input Input is given from Standard Input in the following format: S Output Print `Yes` if S is easily playable, and `No` otherwise. Examples Input RUDLUDR Output Yes Input DULL Output No Input UUUUUUUUUUUUUUU Output Yes Input ULURU Output No Input RDULULDURURLRDULRLR Output Yes
[ "\n", "S = input()\n", "S = input()\nif 'L' in S[::2]:\n print('No')\n", "S = input()\nif 'L' in S[::2]:\n print('No')\nelif 'R' in S[1::2]:\n print('No')\n", "S = input()\nif 'L' in S[::2]:\n print('No')\nelif 'R' in S[1::2]:\n print('No')\nelse:\n print('Yes')\n" ]
5
[ { "input": "RUDLUDR", "output": "Yes" }, { "input": "DULL", "output": "No" }, { "input": "RDULULDURURLRDULRLR", "output": "Yes" }, { "input": "UUUUUUUUUUUUUUU", "output": "Yes" }, { "input": "ULURU", "output": "No" } ]
[ { "input": "RDULDUR", "output": "Yes\n" }, { "input": "LLUD", "output": "No\n" }, { "input": "RDULULDURURLLDULRRR", "output": "No\n" }, { "input": "ULURV", "output": "No\n" }, { "input": "EULL", "output": "No\n" }, { "input": "RCULULDURURLLDULRRR", "output": "No\n" }, { "input": "UKURU", "output": "No\n" }, { "input": "EULM", "output": "No\n" }, { "input": "RCVLULDURURLLDULRRR", "output": "No\n" }, { "input": "UJURU", "output": "No\n" }, { "input": "RCVLULDURURKLDULRRR", "output": "No\n" }, { "input": "URUJU", "output": "No\n" }, { "input": "RCVLUUDURLRKLDULRRR", "output": "No\n" }, { "input": "RCVLUUDURLRKLDVLRRR", "output": "No\n" }, { "input": "RRRLVDLKRLRUDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RCVLUVDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RCVLUWDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDWULVCR", "output": "No\n" }, { "input": "RQRLWRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRLRLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDKLVDWUWVCR", "output": "No\n" }, { "input": "RCVWUWDVLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUWDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUVDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RRRRLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVDR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCS", "output": "No\n" }, { "input": "RRRQLPLDDKMWKVUWVCS", "output": "No\n" }, { "input": "RRMQLPLDDKRWKVUWVCS", "output": "No\n" }, { "input": "WRMQLPLDDKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKDDLPLQMRW", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRW", "output": "No\n" }, { "input": "WRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "VRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRV", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPDLMRV", "output": "No\n" }, { "input": "SCVWKVKRRUQDLPDLMRV", "output": "No\n" }, { "input": "VRMLDPLDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLDPKDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLCPKDQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKDQVRRKVKWVDS", "output": "No\n" }, { "input": "SDVWKVKRRVQDKPCLMRV", "output": "No\n" }, { "input": "VRMLCQKDQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCQKDQKRRVVKWVDS", "output": "No\n" }, { "input": "VRMLCQKVQKRRDVKWVDS", "output": "No\n" }, { "input": "VVMLCQKVQKRRDRKWVDS", "output": "No\n" }, { "input": "DVMLCQKVQKRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKWVVS", "output": "No\n" }, { "input": "SVVWKRDRRJQVKQCLMVD", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVWS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRWSVWK", "output": "No\n" }, { "input": "DVMLCQKVQJQRCRWSVWK", "output": "No\n" }, { "input": "KWVSWRCRQJQVKQCLMVD", "output": "No\n" }, { "input": "KWVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKUQCLMVD", "output": "No\n" }, { "input": "DVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCSWSVXK", "output": "No\n" }, { "input": "EVMLCQUSPJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWSCRQJPSUQCLMVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPWE", "output": "No\n" }, { "input": "EWPLCQUSMJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWRCRQJMSUQCLPWE", "output": "No\n" }, { "input": "KXVKWCCRQJMSUQRLPWE", "output": "No\n" }, { "input": "KXVKPCCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQQMSUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLRBCSQPQLWLWRUJE", "output": "No\n" } ]
0/::0
Takahashi will do a tap dance. The dance is described by a string S where each character is `L`, `R`, `U`, or `D`. These characters indicate the positions on which Takahashi should step. He will follow these instructions one by one in order, starting with the first character. S is said to be easily playable if and only if it satisfies both of the following conditions: * Every character in an odd position (1-st, 3-rd, 5-th, \ldots) is `R`, `U`, or `D`. * Every character in an even position (2-nd, 4-th, 6-th, \ldots) is `L`, `U`, or `D`. Your task is to print `Yes` if S is easily playable, and `No` otherwise. Constraints * S is a string of length between 1 and 100 (inclusive). * Each character of S is `L`, `R`, `U`, or `D`. Input Input is given from Standard Input in the following format: S Output Print `Yes` if S is easily playable, and `No` otherwise. Examples Input RUDLUDR Output Yes Input DULL Output No Input UUUUUUUUUUUUUUU Output Yes Input ULURU Output No Input RDULULDURURLRDULRLR Output Yes
[ "\n", "s=input()\n", "s=input()\nif \"L\" not in s[::2] and \"R\" not in s[1::2]:\n print(\"Yes\")\n", "s=input()\nif \"L\" not in s[::2] and \"R\" not in s[1::2]:\n print(\"Yes\")\nelse:\n print(\"No\")\n" ]
4
[ { "input": "RUDLUDR", "output": "Yes" }, { "input": "DULL", "output": "No" }, { "input": "RDULULDURURLRDULRLR", "output": "Yes" }, { "input": "UUUUUUUUUUUUUUU", "output": "Yes" }, { "input": "ULURU", "output": "No" } ]
[ { "input": "RDULDUR", "output": "Yes\n" }, { "input": "LLUD", "output": "No\n" }, { "input": "RDULULDURURLLDULRRR", "output": "No\n" }, { "input": "ULURV", "output": "No\n" }, { "input": "EULL", "output": "No\n" }, { "input": "RCULULDURURLLDULRRR", "output": "No\n" }, { "input": "UKURU", "output": "No\n" }, { "input": "EULM", "output": "No\n" }, { "input": "RCVLULDURURLLDULRRR", "output": "No\n" }, { "input": "UJURU", "output": "No\n" }, { "input": "RCVLULDURURKLDULRRR", "output": "No\n" }, { "input": "URUJU", "output": "No\n" }, { "input": "RCVLUUDURLRKLDULRRR", "output": "No\n" }, { "input": "RCVLUUDURLRKLDVLRRR", "output": "No\n" }, { "input": "RRRLVDLKRLRUDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RCVLUVDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RCVLUWDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDWULVCR", "output": "No\n" }, { "input": "RQRLWRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRLRLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDKLVDWUWVCR", "output": "No\n" }, { "input": "RCVWUWDVLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUWDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUVDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RRRRLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVDR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCS", "output": "No\n" }, { "input": "RRRQLPLDDKMWKVUWVCS", "output": "No\n" }, { "input": "RRMQLPLDDKRWKVUWVCS", "output": "No\n" }, { "input": "WRMQLPLDDKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKDDLPLQMRW", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRW", "output": "No\n" }, { "input": "WRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "VRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRV", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPDLMRV", "output": "No\n" }, { "input": "SCVWKVKRRUQDLPDLMRV", "output": "No\n" }, { "input": "VRMLDPLDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLDPKDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLCPKDQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKDQVRRKVKWVDS", "output": "No\n" }, { "input": "SDVWKVKRRVQDKPCLMRV", "output": "No\n" }, { "input": "VRMLCQKDQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCQKDQKRRVVKWVDS", "output": "No\n" }, { "input": "VRMLCQKVQKRRDVKWVDS", "output": "No\n" }, { "input": "VVMLCQKVQKRRDRKWVDS", "output": "No\n" }, { "input": "DVMLCQKVQKRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKWVVS", "output": "No\n" }, { "input": "SVVWKRDRRJQVKQCLMVD", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVWS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRWSVWK", "output": "No\n" }, { "input": "DVMLCQKVQJQRCRWSVWK", "output": "No\n" }, { "input": "KWVSWRCRQJQVKQCLMVD", "output": "No\n" }, { "input": "KWVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKUQCLMVD", "output": "No\n" }, { "input": "DVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCSWSVXK", "output": "No\n" }, { "input": "EVMLCQUSPJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWSCRQJPSUQCLMVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPWE", "output": "No\n" }, { "input": "EWPLCQUSMJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWRCRQJMSUQCLPWE", "output": "No\n" }, { "input": "KXVKWCCRQJMSUQRLPWE", "output": "No\n" }, { "input": "KXVKPCCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQQMSUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLRBCSQPQLWLWRUJE", "output": "No\n" } ]
0/::0
Takahashi will do a tap dance. The dance is described by a string S where each character is `L`, `R`, `U`, or `D`. These characters indicate the positions on which Takahashi should step. He will follow these instructions one by one in order, starting with the first character. S is said to be easily playable if and only if it satisfies both of the following conditions: * Every character in an odd position (1-st, 3-rd, 5-th, \ldots) is `R`, `U`, or `D`. * Every character in an even position (2-nd, 4-th, 6-th, \ldots) is `L`, `U`, or `D`. Your task is to print `Yes` if S is easily playable, and `No` otherwise. Constraints * S is a string of length between 1 and 100 (inclusive). * Each character of S is `L`, `R`, `U`, or `D`. Input Input is given from Standard Input in the following format: S Output Print `Yes` if S is easily playable, and `No` otherwise. Examples Input RUDLUDR Output Yes Input DULL Output No Input UUUUUUUUUUUUUUU Output Yes Input ULURU Output No Input RDULULDURURLRDULRLR Output Yes
[ "\n", "S=list(input())\nA=S[::2]\n", "S=list(input())\nA=S[::2]\nB=S[1::2]\n", "S=list(input())\nA=S[::2]\nB=S[1::2]\nif 'L' in A:\n print('No')\n", "S=list(input())\nA=S[::2]\nB=S[1::2]\nif 'L' in A:\n print('No')\nelif 'R' in B:\n print('No')\n", "S=list(input())\nA=S[::2]\nB=S[1::2]\nif 'L' in A:\n print('No')\nelif 'R' in B:\n print('No')\nelse:\n print('Yes')\n" ]
6
[ { "input": "RUDLUDR", "output": "Yes" }, { "input": "DULL", "output": "No" }, { "input": "RDULULDURURLRDULRLR", "output": "Yes" }, { "input": "UUUUUUUUUUUUUUU", "output": "Yes" }, { "input": "ULURU", "output": "No" } ]
[ { "input": "RDULDUR", "output": "Yes\n" }, { "input": "LLUD", "output": "No\n" }, { "input": "RDULULDURURLLDULRRR", "output": "No\n" }, { "input": "ULURV", "output": "No\n" }, { "input": "EULL", "output": "No\n" }, { "input": "RCULULDURURLLDULRRR", "output": "No\n" }, { "input": "UKURU", "output": "No\n" }, { "input": "EULM", "output": "No\n" }, { "input": "RCVLULDURURLLDULRRR", "output": "No\n" }, { "input": "UJURU", "output": "No\n" }, { "input": "RCVLULDURURKLDULRRR", "output": "No\n" }, { "input": "URUJU", "output": "No\n" }, { "input": "RCVLUUDURLRKLDULRRR", "output": "No\n" }, { "input": "RCVLUUDURLRKLDVLRRR", "output": "No\n" }, { "input": "RRRLVDLKRLRUDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDUULVCR", "output": "No\n" }, { "input": "RRRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVDLKRLRVDVULVCR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RCVLUVDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RCVLUWDVRLDKLRVLRQR", "output": "No\n" }, { "input": "RQRLVRLKDLRVDWULVCR", "output": "No\n" }, { "input": "RQRLWRLKDLRVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDVULVCR", "output": "No\n" }, { "input": "RQRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRWRLKDLLVDWULVCR", "output": "No\n" }, { "input": "RPRRLRLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDLLVDWUWVCR", "output": "No\n" }, { "input": "RRRRLPLKDKLVDWUWVCR", "output": "No\n" }, { "input": "RCVWUWDVLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUWDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RCVWUVDWLKDKLPLRRRR", "output": "No\n" }, { "input": "RRRRLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLKDKLWDVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVDR", "output": "No\n" }, { "input": "RRRQLPLDDKLWKVUWVCS", "output": "No\n" }, { "input": "RRRQLPLDDKMWKVUWVCS", "output": "No\n" }, { "input": "RRMQLPLDDKRWKVUWVCS", "output": "No\n" }, { "input": "WRMQLPLDDKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKDDLPLQMRW", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRW", "output": "No\n" }, { "input": "WRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "VRMDLPLDQKRRKVUWVCS", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPLDMRV", "output": "No\n" }, { "input": "SCVWUVKRRKQDLPDLMRV", "output": "No\n" }, { "input": "SCVWKVKRRUQDLPDLMRV", "output": "No\n" }, { "input": "VRMLDPLDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLDPKDQURRKVKWVCS", "output": "No\n" }, { "input": "VRMLCPKDQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQURRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKEQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCPKDQVRRKVKWVDS", "output": "No\n" }, { "input": "SDVWKVKRRVQDKPCLMRV", "output": "No\n" }, { "input": "VRMLCQKDQVRRKVKWVDS", "output": "No\n" }, { "input": "VRMLCQKDQKRRVVKWVDS", "output": "No\n" }, { "input": "VRMLCQKVQKRRDVKWVDS", "output": "No\n" }, { "input": "VVMLCQKVQKRRDRKWVDS", "output": "No\n" }, { "input": "DVMLCQKVQKRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKWVVS", "output": "No\n" }, { "input": "SVVWKRDRRJQVKQCLMVD", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVVS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKWVWS", "output": "No\n" }, { "input": "DVMLCRKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRDRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRKSVWW", "output": "No\n" }, { "input": "DVMLCQKVQJRRCRWSVWK", "output": "No\n" }, { "input": "DVMLCQKVQJQRCRWSVWK", "output": "No\n" }, { "input": "KWVSWRCRQJQVKQCLMVD", "output": "No\n" }, { "input": "KWVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKVQCLMVD", "output": "No\n" }, { "input": "KXVSWRCRQJQKUQCLMVD", "output": "No\n" }, { "input": "DVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKQJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCRWSVXK", "output": "No\n" }, { "input": "EVMLCQUKPJQRCSWSVXK", "output": "No\n" }, { "input": "EVMLCQUSPJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWSCRQJPSUQCLMVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPVE", "output": "No\n" }, { "input": "KXVKWSCRQJMSUQCLPWE", "output": "No\n" }, { "input": "EWPLCQUSMJQRCSWKVXK", "output": "No\n" }, { "input": "KXVKWRCRQJMSUQCLPWE", "output": "No\n" }, { "input": "KXVKWCCRQJMSUQRLPWE", "output": "No\n" }, { "input": "KXVKPCCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQRLWWE", "output": "No\n" }, { "input": "KXVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKPBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVKQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQJMSUQWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQQMSUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQUJWLWRE", "output": "No\n" }, { "input": "KWVLQBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSMQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWJWLURE", "output": "No\n" }, { "input": "KWVLPBCRQSLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPLQWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWRWLUJE", "output": "No\n" }, { "input": "KWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLSBCRQPQLWLWRUJE", "output": "No\n" }, { "input": "LWVLRBCSQPQLWLWRUJE", "output": "No\n" } ]