Datasets:
Tasks:
Text Retrieval
Modalities:
Text
Formats:
parquet
Sub-tasks:
document-retrieval
Languages:
Danish
Size:
10K - 100K
ArXiv:
License:
metadata
annotations_creators:
- derived
language:
- dan
license: cc0-1.0
multilinguality: monolingual
source_datasets:
- alexandrainst/nordjylland-news-summarization
task_categories:
- text-retrieval
task_ids:
- document-retrieval
dataset_info:
- config_name: corpus
features:
- name: _id
dtype: string
- name: text
dtype: string
- name: title
dtype: string
splits:
- name: train
num_bytes: 2913187
num_examples: 2048
- name: val
num_bytes: 2941337
num_examples: 2048
- name: test
num_bytes: 3057840
num_examples: 2048
download_size: 5419469
dataset_size: 8912364
- config_name: qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: int64
splits:
- name: train
num_bytes: 48042
num_examples: 2048
- name: val
num_bytes: 48042
num_examples: 2048
- name: test
num_bytes: 48042
num_examples: 2048
download_size: 74769
dataset_size: 144126
- config_name: queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 291251
num_examples: 2048
- name: val
num_bytes: 290108
num_examples: 2048
- name: test
num_bytes: 289689
num_examples: 2048
download_size: 603120
dataset_size: 871048
configs:
- config_name: corpus
data_files:
- split: train
path: corpus/train-*
- split: val
path: corpus/val-*
- split: test
path: corpus/test-*
- config_name: qrels
data_files:
- split: train
path: qrels/train-*
- split: val
path: qrels/val-*
- split: test
path: qrels/test-*
- config_name: queries
data_files:
- split: train
path: queries/train-*
- split: val
path: queries/val-*
- split: test
path: queries/test-*
tags:
- mteb
- text
News Article and corresponding summaries extracted from the Danish newspaper TV2 Nord.
Task category | t2t |
Domains | News, Non-fiction, Written |
Reference | https://huggingface.co/datasets/alexandrainst/nordjylland-news-summarization |
How to evaluate on this task
You can evaluate an embedding model on this dataset using the following code:
import mteb
task = mteb.get_task("TV2Nordretrieval")
evaluator = mteb.MTEB([task])
model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
To learn more about how to run models on mteb
task check out the GitHub repository.
Citation
If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.
@inproceedings{flansmose-mikkelsen-etal-2022-ddisco,
abstract = {To date, there has been no resource for studying discourse coherence on real-world Danish texts. Discourse coherence has mostly been approached with the assumption that incoherent texts can be represented by coherent texts in which sentences have been shuffled. However, incoherent real-world texts rarely resemble that. We thus present DDisCo, a dataset including text from the Danish Wikipedia and Reddit annotated for discourse coherence. We choose to annotate real-world texts instead of relying on artificially incoherent text for training and testing models. Then, we evaluate the performance of several methods, including neural networks, on the dataset.},
address = {Marseille, France},
author = {Flansmose Mikkelsen, Linea and
Kinch, Oliver and
Jess Pedersen, Anders and
Lacroix, Oph{\'e}lie},
booktitle = {Proceedings of the Thirteenth Language Resources and Evaluation Conference},
editor = {Calzolari, Nicoletta and
B{\'e}chet, Fr{\'e}d{\'e}ric and
Blache, Philippe and
Choukri, Khalid and
Cieri, Christopher and
Declerck, Thierry and
Goggi, Sara and
Isahara, Hitoshi and
Maegaard, Bente and
Mariani, Joseph and
Mazo, H{\'e}l{\`e}ne and
Odijk, Jan and
Piperidis, Stelios},
month = jun,
pages = {2440--2445},
publisher = {European Language Resources Association},
title = {{DD}is{C}o: A Discourse Coherence Dataset for {D}anish},
url = {https://aclanthology.org/2022.lrec-1.260},
year = {2022},
}
@article{enevoldsen2025mmtebmassivemultilingualtext,
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
publisher = {arXiv},
journal={arXiv preprint arXiv:2502.13595},
year={2025},
url={https://arxiv.org/abs/2502.13595},
doi = {10.48550/arXiv.2502.13595},
}
@article{muennighoff2022mteb,
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Loïc and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
url = {https://arxiv.org/abs/2210.07316},
doi = {10.48550/ARXIV.2210.07316},
}
Dataset Statistics
Dataset Statistics
The following code contains the descriptive statistics from the task. These can also be obtained using:
import mteb
task = mteb.get_task("TV2Nordretrieval")
desc_stats = task.metadata.descriptive_stats
{}
This dataset card was automatically generated using MTEB