theory_file
stringclasses
970 values
lemma_name
stringlengths
6
108
lemma_command
stringlengths
15
14.6k
lemma_object
stringlengths
6
17.2k
template
stringlengths
7
16.1k
symbols
listlengths
0
101
types
listlengths
0
101
defs
listlengths
0
83
output_key
stringclasses
1 value
input
stringlengths
37
79.6k
output
stringlengths
24
16.1k
Cardinals/Wellorder_Extension
Wellorder_Extension.downset_on_empty
lemma downset_on_empty [simp]: "downset_on {} p"
downset_on {} ?p
?H1 ?H2 x_1
[ "Set.empty", "Wellorder_Extension.downset_on" ]
[ "'a set", "'a set \\<Rightarrow> ('a \\<times> 'a) set \\<Rightarrow> bool" ]
[ "abbreviation empty :: \"'a set\" (\"{}\")\n where \"{} \\<equiv> bot\"", "definition downset_on where\n \"downset_on A r = (\\<forall>x y. (x, y) \\<in> r \\<and> y \\<in> A \\<longrightarrow> x \\<in> A)\"" ]
template
###lemma downset_on {} ?p ###symbols Set.empty :::: 'a set Wellorder_Extension.downset_on :::: 'a set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> bool ###defs abbreviation empty :: "'a set" ("{}") where "{} \<equiv> bot" definition downset_on where "downset_on A r = (\<forall>x y. (x, y) \<in> r \<and> y \<in> A \<longrightarrow> x \<in> A)"
###output ?H1 ?H2 x_1###end
Nominal/Nominal
Nominal.supports_finite
lemma supports_finite: fixes S :: "'x set" and x :: "'a" assumes a1: "S supports x" and a2: "finite S" shows "finite ((supp x)::'x set)"
?S supports ?x \<Longrightarrow> finite ?S \<Longrightarrow> finite (supp ?x)
\<lbrakk> ?H1 x_1 x_2; ?H2 x_1\<rbrakk> \<Longrightarrow> ?H2 (?H3 x_2)
[ "Nominal.supp", "Finite_Set.finite", "Nominal.supports" ]
[ "'a \\<Rightarrow> 'b set", "'a set \\<Rightarrow> bool", "'a set \\<Rightarrow> 'b \\<Rightarrow> bool" ]
[ "definition supp :: \"'a \\<Rightarrow> ('x set)\" where \n \"supp x = {a . (infinite {b . [(a,b)]\\<bullet>x \\<noteq> x})}\"", "class finite =\n assumes finite_UNIV: \"finite (UNIV :: 'a set)\"\nbegin", "definition supports :: \"'x set \\<Rightarrow> 'a \\<Rightarrow> bool\" (infixl \\<open>supports\\<close> 80) where\n \"S supports x \\<longleftrightarrow> (\\<forall>a b. (a\\<notin>S \\<and> b\\<notin>S \\<longrightarrow> [(a,b)]\\<bullet>x=x))\"" ]
template
###lemma ?S supports ?x \<Longrightarrow> finite ?S \<Longrightarrow> finite (supp ?x) ###symbols Nominal.supp :::: 'a \<Rightarrow> 'b set Finite_Set.finite :::: 'a set \<Rightarrow> bool Nominal.supports :::: 'a set \<Rightarrow> 'b \<Rightarrow> bool ###defs definition supp :: "'a \<Rightarrow> ('x set)" where "supp x = {a . (infinite {b . [(a,b)]\<bullet>x \<noteq> x})}" class finite = assumes finite_UNIV: "finite (UNIV :: 'a set)" begin definition supports :: "'x set \<Rightarrow> 'a \<Rightarrow> bool" (infixl \<open>supports\<close> 80) where "S supports x \<longleftrightarrow> (\<forall>a b. (a\<notin>S \<and> b\<notin>S \<longrightarrow> [(a,b)]\<bullet>x=x))"
###output \<lbrakk> ?H1 x_1 x_2; ?H2 x_1\<rbrakk> \<Longrightarrow> ?H2 (?H3 x_2)###end
Transitive_Closure
Transitive_Closure.rtrancl_induct
null
(?a, ?b) \<in> ?r\<^sup>* \<Longrightarrow> ?P ?a \<Longrightarrow> (\<And>y z. (?a, y) \<in> ?r\<^sup>* \<Longrightarrow> (y, z) \<in> ?r \<Longrightarrow> ?P y \<Longrightarrow> ?P z) \<Longrightarrow> ?P ?b
\<lbrakk>(x_1, x_2) \<in> ?H1 x_3; x_4 x_1; \<And>y_0 y_1. \<lbrakk>(x_1, y_0) \<in> ?H1 x_3; (y_0, y_1) \<in> x_3; x_4 y_0\<rbrakk> \<Longrightarrow> x_4 y_1\<rbrakk> \<Longrightarrow> x_4 x_2
[ "Transitive_Closure.rtrancl" ]
[ "('a \\<times> 'a) set \\<Rightarrow> ('a \\<times> 'a) set" ]
[ "inductive_set rtrancl :: \"('a \\<times> 'a) set \\<Rightarrow> ('a \\<times> 'a) set\" (\"(_\\<^sup>*)\" [1000] 999)\n for r :: \"('a \\<times> 'a) set\"\n where\n rtrancl_refl [intro!, Pure.intro!, simp]: \"(a, a) \\<in> r\\<^sup>*\"\n | rtrancl_into_rtrancl [Pure.intro]: \"(a, b) \\<in> r\\<^sup>* \\<Longrightarrow> (b, c) \\<in> r \\<Longrightarrow> (a, c) \\<in> r\\<^sup>*\"" ]
template
###lemma (?a, ?b) \<in> ?r\<^sup>* \<Longrightarrow> ?P ?a \<Longrightarrow> (\<And>y z. (?a, y) \<in> ?r\<^sup>* \<Longrightarrow> (y, z) \<in> ?r \<Longrightarrow> ?P y \<Longrightarrow> ?P z) \<Longrightarrow> ?P ?b ###symbols Transitive_Closure.rtrancl :::: ('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set ###defs inductive_set rtrancl :: "('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set" ("(_\<^sup>*)" [1000] 999) for r :: "('a \<times> 'a) set" where rtrancl_refl [intro!, Pure.intro!, simp]: "(a, a) \<in> r\<^sup>*" | rtrancl_into_rtrancl [Pure.intro]: "(a, b) \<in> r\<^sup>* \<Longrightarrow> (b, c) \<in> r \<Longrightarrow> (a, c) \<in> r\<^sup>*"
###output \<lbrakk>(x_1, x_2) \<in> ?H1 x_3; x_4 x_1; \<And>y_0 y_1. \<lbrakk>(x_1, y_0) \<in> ?H1 x_3; (y_0, y_1) \<in> x_3; x_4 y_0\<rbrakk> \<Longrightarrow> x_4 y_1\<rbrakk> \<Longrightarrow> x_4 x_2###end
Probability/Probability
Probability_Measure.distributedI_real
null
sets ?M1.0 = sigma_sets (space ?M1.0) ?E \<Longrightarrow> Int_stable ?E \<Longrightarrow> range ?A \<subseteq> ?E \<Longrightarrow> \<Union> (range ?A) = space ?M1.0 \<Longrightarrow> (\<And>i. emeasure (distr ?M ?M1.0 ?X) (?A i) \<noteq> \<infinity>) \<Longrightarrow> ?X \<in> ?M \<rightarrow>\<^sub>M ?M1.0 \<Longrightarrow> ?f \<in> borel_measurable ?M1.0 \<Longrightarrow> AE x in ?M1.0. 0 \<le> ?f x \<Longrightarrow> (\<And>A. A \<in> ?E \<Longrightarrow> emeasure ?M (?X -` A \<inter> space ?M) = \<integral>\<^sup>+ x. ennreal (?f x * indicat_real A x) \<partial> ?M1.0) \<Longrightarrow> distributed ?M ?M1.0 ?X (\<lambda>x. ennreal (?f x))
\<lbrakk> ?H1 x_1 = ?H2 (?H3 x_1) x_2; ?H4 x_2; ?H5 (?H6 x_3) x_2; ?H7 (?H6 x_3) = ?H3 x_1; \<And>y_1. ?H8 (?H9 x_4 x_1 x_5) (x_3 y_1) \<noteq> ?H10; x_5 \<in> ?H11 x_4 x_1; x_6 \<in> ?H12 x_1; ?H13 x_1 (\<lambda>y_2. ?H14 \<le> x_6 y_2); \<And>y_3. y_3 \<in> x_2 \<Longrightarrow> ?H8 x_4 (?H15 (?H16 x_5 y_3) (?H3 x_4)) = ?H17 x_1 (\<lambda>y_4. ?H18 (?H19 (x_6 y_4) (?H20 y_3 y_4)))\<rbrakk> \<Longrightarrow> ?H21 x_4 x_1 x_5 (\<lambda>y_5. ?H18 (x_6 y_5))
[ "Probability_Measure.distributed", "Indicator_Function.indicat_real", "Groups.times_class.times", "Extended_Nonnegative_Real.ennreal", "Nonnegative_Lebesgue_Integration.nn_integral", "Set.vimage", "Set.inter", "Groups.zero_class.zero", "Measure_Space.almost_everywhere", "Borel_Space.borel_measurable", "Sigma_Algebra.measurable", "Extended_Nat.infinity_class.infinity", "Measure_Space.distr", "Sigma_Algebra.emeasure", "Complete_Lattices.Union", "Set.range", "Set.subset_eq", "Sigma_Algebra.Int_stable", "Sigma_Algebra.space", "Sigma_Algebra.sigma_sets", "Sigma_Algebra.sets" ]
[ "'a measure \\<Rightarrow> 'b measure \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> ('b \\<Rightarrow> ennreal) \\<Rightarrow> bool", "'a set \\<Rightarrow> 'a \\<Rightarrow> real", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "real \\<Rightarrow> ennreal", "'a measure \\<Rightarrow> ('a \\<Rightarrow> ennreal) \\<Rightarrow> ennreal", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'b set \\<Rightarrow> 'a set", "'a set \\<Rightarrow> 'a set \\<Rightarrow> 'a set", "'a", "'a measure \\<Rightarrow> ('a \\<Rightarrow> bool) \\<Rightarrow> bool", "'a measure \\<Rightarrow> ('a \\<Rightarrow> 'b) set", "'a measure \\<Rightarrow> 'b measure \\<Rightarrow> ('a \\<Rightarrow> 'b) set", "'a", "'a measure \\<Rightarrow> 'b measure \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> 'b measure", "'a measure \\<Rightarrow> 'a set \\<Rightarrow> ennreal", "'a set set \\<Rightarrow> 'a set", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'b set", "'a set \\<Rightarrow> 'a set \\<Rightarrow> bool", "'a set set \\<Rightarrow> bool", "'a measure \\<Rightarrow> 'a set", "'a set \\<Rightarrow> 'a set set \\<Rightarrow> 'a set set", "'a measure \\<Rightarrow> 'a set set" ]
[ "definition distributed :: \"'a measure \\<Rightarrow> 'b measure \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> ('b \\<Rightarrow> ennreal) \\<Rightarrow> bool\"\nwhere\n \"distributed M N X f \\<longleftrightarrow>\n distr M N X = density N f \\<and> f \\<in> borel_measurable N \\<and> X \\<in> measurable M N\"", "abbreviation indicat_real :: \"'a set \\<Rightarrow> 'a \\<Rightarrow> real\" where \"indicat_real S \\<equiv> indicator S\"", "class times =\n fixes times :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"*\" 70)", "typedef ennreal = \"{x :: ereal. 0 \\<le> x}\"\n morphisms enn2ereal e2ennreal'", "definition vimage :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'b set \\<Rightarrow> 'a set\" (infixr \"-`\" 90)\n where \"f -` B \\<equiv> {x. f x \\<in> B}\"", "abbreviation inter :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> 'a set\" (infixl \"\\<inter>\" 70)\n where \"(\\<inter>) \\<equiv> inf\"", "class zero =\n fixes zero :: 'a (\"0\")", "abbreviation almost_everywhere :: \"'a measure \\<Rightarrow> ('a \\<Rightarrow> bool) \\<Rightarrow> bool\" where\n \"almost_everywhere M P \\<equiv> eventually P (ae_filter M)\"", "abbreviation \"borel_measurable M \\<equiv> measurable M borel\"", "class infinity =\n fixes infinity :: \"'a\" (\"\\<infinity>\")", "abbreviation Union :: \"'a set set \\<Rightarrow> 'a set\" (\"\\<Union>\")\n where \"\\<Union>S \\<equiv> \\<Squnion>S\"", "abbreviation range :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'b set\" \\<comment> \\<open>of function\\<close>\n where \"range f \\<equiv> f ` UNIV\"", "abbreviation subset_eq :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> bool\"\n where \"subset_eq \\<equiv> less_eq\"" ]
template
###lemma sets ?M1.0 = sigma_sets (space ?M1.0) ?E \<Longrightarrow> Int_stable ?E \<Longrightarrow> range ?A \<subseteq> ?E \<Longrightarrow> \<Union> (range ?A) = space ?M1.0 \<Longrightarrow> (\<And>i. emeasure (distr ?M ?M1.0 ?X) (?A i) \<noteq> \<infinity>) \<Longrightarrow> ?X \<in> ?M \<rightarrow>\<^sub>M ?M1.0 \<Longrightarrow> ?f \<in> borel_measurable ?M1.0 \<Longrightarrow> AE x in ?M1.0. 0 \<le> ?f x \<Longrightarrow> (\<And>A. A \<in> ?E \<Longrightarrow> emeasure ?M (?X -` A \<inter> space ?M) = \<integral>\<^sup>+ x. ennreal (?f x * indicat_real A x) \<partial> ?M1.0) \<Longrightarrow> distributed ?M ?M1.0 ?X (\<lambda>x. ennreal (?f x)) ###symbols Probability_Measure.distributed :::: 'a measure \<Rightarrow> 'b measure \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> ennreal) \<Rightarrow> bool Indicator_Function.indicat_real :::: 'a set \<Rightarrow> 'a \<Rightarrow> real Groups.times_class.times :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Extended_Nonnegative_Real.ennreal :::: real \<Rightarrow> ennreal Nonnegative_Lebesgue_Integration.nn_integral :::: 'a measure \<Rightarrow> ('a \<Rightarrow> ennreal) \<Rightarrow> ennreal Set.vimage :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'b set \<Rightarrow> 'a set Set.inter :::: 'a set \<Rightarrow> 'a set \<Rightarrow> 'a set Groups.zero_class.zero :::: 'a Measure_Space.almost_everywhere :::: 'a measure \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool Borel_Space.borel_measurable :::: 'a measure \<Rightarrow> ('a \<Rightarrow> 'b) set Sigma_Algebra.measurable :::: 'a measure \<Rightarrow> 'b measure \<Rightarrow> ('a \<Rightarrow> 'b) set Extended_Nat.infinity_class.infinity :::: 'a Measure_Space.distr :::: 'a measure \<Rightarrow> 'b measure \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'b measure Sigma_Algebra.emeasure :::: 'a measure \<Rightarrow> 'a set \<Rightarrow> ennreal Complete_Lattices.Union :::: 'a set set \<Rightarrow> 'a set Set.range :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'b set Set.subset_eq :::: 'a set \<Rightarrow> 'a set \<Rightarrow> bool Sigma_Algebra.Int_stable :::: 'a set set \<Rightarrow> bool Sigma_Algebra.space :::: 'a measure \<Rightarrow> 'a set Sigma_Algebra.sigma_sets :::: 'a set \<Rightarrow> 'a set set \<Rightarrow> 'a set set Sigma_Algebra.sets :::: 'a measure \<Rightarrow> 'a set set ###defs definition distributed :: "'a measure \<Rightarrow> 'b measure \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> ennreal) \<Rightarrow> bool" where "distributed M N X f \<longleftrightarrow> distr M N X = density N f \<and> f \<in> borel_measurable N \<and> X \<in> measurable M N" abbreviation indicat_real :: "'a set \<Rightarrow> 'a \<Rightarrow> real" where "indicat_real S \<equiv> indicator S" class times = fixes times :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "*" 70) typedef ennreal = "{x :: ereal. 0 \<le> x}" morphisms enn2ereal e2ennreal' definition vimage :: "('a \<Rightarrow> 'b) \<Rightarrow> 'b set \<Rightarrow> 'a set" (infixr "-`" 90) where "f -` B \<equiv> {x. f x \<in> B}" abbreviation inter :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "\<inter>" 70) where "(\<inter>) \<equiv> inf" class zero = fixes zero :: 'a ("0") abbreviation almost_everywhere :: "'a measure \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool" where "almost_everywhere M P \<equiv> eventually P (ae_filter M)" abbreviation "borel_measurable M \<equiv> measurable M borel" class infinity = fixes infinity :: "'a" ("\<infinity>") abbreviation Union :: "'a set set \<Rightarrow> 'a set" ("\<Union>") where "\<Union>S \<equiv> \<Squnion>S" abbreviation range :: "('a \<Rightarrow> 'b) \<Rightarrow> 'b set" \<comment> \<open>of function\<close> where "range f \<equiv> f ` UNIV" abbreviation subset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where "subset_eq \<equiv> less_eq"
###output \<lbrakk> ?H1 x_1 = ?H2 (?H3 x_1) x_2; ?H4 x_2; ?H5 (?H6 x_3) x_2; ?H7 (?H6 x_3) = ?H3 x_1; \<And>y_1. ?H8 (?H9 x_4 x_1 x_5) (x_3 y_1) \<noteq> ?H10; x_5 \<in> ?H11 x_4 x_1; x_6 \<in> ?H12 x_1; ?H13 x_1 (\<lambda>y_2. ?H14 \<le> x_6 y_2); \<And>y_3. y_3 \<in> x_2 \<Longrightarrow> ?H8 x_4 (?H15 (?H16 x_5 y_3) (?H3 x_4)) = ?H17 x_1 (\<lambda>y_4. ?H18 (?H19 (x_6 y_4) (?H20 y_3 y_4)))\<rbrakk> \<Longrightarrow> ?H21 x_4 x_1 x_5 (\<lambda>y_5. ?H18 (x_6 y_5))###end
Library/Extended_Nat
Extended_Nat.plus_enat_simps(3)
lemma plus_enat_simps [simp, code]: fixes q :: enat shows "enat m + enat n = enat (m + n)" and "\<infinity> + q = \<infinity>" and "q + \<infinity> = \<infinity>"
?q + \<infinity> = \<infinity>
?H1 x_1 ?H2 = ?H2
[ "Extended_Nat.infinity_class.infinity", "Groups.plus_class.plus" ]
[ "'a", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a" ]
[ "class infinity =\n fixes infinity :: \"'a\" (\"\\<infinity>\")", "class plus =\n fixes plus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"+\" 65)" ]
template
###lemma ?q + \<infinity> = \<infinity> ###symbols Extended_Nat.infinity_class.infinity :::: 'a Groups.plus_class.plus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a ###defs class infinity = fixes infinity :: "'a" ("\<infinity>") class plus = fixes plus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "+" 65)
###output ?H1 x_1 ?H2 = ?H2###end
Analysis/Weierstrass_Theorems
Weierstrass_Theorems.path_polynomial_function
lemma path_polynomial_function: fixes g :: "real \<Rightarrow> 'b::euclidean_space" shows "polynomial_function g \<Longrightarrow> path g"
polynomial_function ?g \<Longrightarrow> path ?g
?H1 x_1 \<Longrightarrow> ?H2 x_1
[ "Path_Connected.path", "Weierstrass_Theorems.polynomial_function" ]
[ "(real \\<Rightarrow> 'a) \\<Rightarrow> bool", "('a \\<Rightarrow> 'b) \\<Rightarrow> bool" ]
[]
template
###lemma polynomial_function ?g \<Longrightarrow> path ?g ###symbols Path_Connected.path :::: (real \<Rightarrow> 'a) \<Rightarrow> bool Weierstrass_Theorems.polynomial_function :::: ('a \<Rightarrow> 'b) \<Rightarrow> bool ###defs
###output ?H1 x_1 \<Longrightarrow> ?H2 x_1###end
TLA/Intensional
Intensional.int_simps(20)
lemma int_simps: "\<turnstile> (x=x) = #True" "\<turnstile> (\<not>#True) = #False" "\<turnstile> (\<not>#False) = #True" "\<turnstile> (\<not>\<not> P) = P" "\<turnstile> ((\<not>P) = P) = #False" "\<turnstile> (P = (\<not>P)) = #False" "\<turnstile> (P \<noteq> Q) = (P = (\<not>Q))" "\<turnstile> (#True=P) = P" "\<turnstile> (P=#True) = P" "\<turnstile> (#True \<longrightarrow> P) = P" "\<turnstile> (#False \<longrightarrow> P) = #True" "\<turnstile> (P \<longrightarrow> #True) = #True" "\<turnstile> (P \<longrightarrow> P) = #True" "\<turnstile> (P \<longrightarrow> #False) = (\<not>P)" "\<turnstile> (P \<longrightarrow> \<not>P) = (\<not>P)" "\<turnstile> (P \<and> #True) = P" "\<turnstile> (#True \<and> P) = P" "\<turnstile> (P \<and> #False) = #False" "\<turnstile> (#False \<and> P) = #False" "\<turnstile> (P \<and> P) = P" "\<turnstile> (P \<and> \<not>P) = #False" "\<turnstile> (\<not>P \<and> P) = #False" "\<turnstile> (P \<or> #True) = #True" "\<turnstile> (#True \<or> P) = #True" "\<turnstile> (P \<or> #False) = P" "\<turnstile> (#False \<or> P) = P" "\<turnstile> (P \<or> P) = P" "\<turnstile> (P \<or> \<not>P) = #True" "\<turnstile> (\<not>P \<or> P) = #True" "\<turnstile> (\<forall>x. P) = P" "\<turnstile> (\<exists>x. P) = P" "\<turnstile> (\<not>Q \<longrightarrow> \<not>P) = (P \<longrightarrow> Q)" "\<turnstile> (P\<or>Q \<longrightarrow> R) = ((P\<longrightarrow>R)\<and>(Q\<longrightarrow>R))"
\<turnstile> (?P \<and> ?P) = ?P
?H1 (?H2 (=) (?H2 (\<and>) x_1 x_1) x_1)
[ "Intensional.lift2", "Intensional.Valid" ]
[ "('a \\<Rightarrow> 'b \\<Rightarrow> 'c) \\<Rightarrow> ('d \\<Rightarrow> 'a) \\<Rightarrow> ('d \\<Rightarrow> 'b) \\<Rightarrow> 'd \\<Rightarrow> 'c", "('a \\<Rightarrow> bool) \\<Rightarrow> bool" ]
[ "definition lift2 :: \"['a \\<Rightarrow> 'b \\<Rightarrow> 'c, ('w::world,'a) expr, ('w,'b) expr] \\<Rightarrow> ('w,'c) expr\"\n where unl_lift2: \"lift2 f x y w \\<equiv> f (x w) (y w)\"", "definition Valid :: \"('w::world) form \\<Rightarrow> bool\"\n where \"Valid A \\<equiv> \\<forall>w. A w\"" ]
template
###lemma \<turnstile> (?P \<and> ?P) = ?P ###symbols Intensional.lift2 :::: ('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> ('d \<Rightarrow> 'a) \<Rightarrow> ('d \<Rightarrow> 'b) \<Rightarrow> 'd \<Rightarrow> 'c Intensional.Valid :::: ('a \<Rightarrow> bool) \<Rightarrow> bool ###defs definition lift2 :: "['a \<Rightarrow> 'b \<Rightarrow> 'c, ('w::world,'a) expr, ('w,'b) expr] \<Rightarrow> ('w,'c) expr" where unl_lift2: "lift2 f x y w \<equiv> f (x w) (y w)" definition Valid :: "('w::world) form \<Rightarrow> bool" where "Valid A \<equiv> \<forall>w. A w"
###output ?H1 (?H2 (=) (?H2 (\<and>) x_1 x_1) x_1)###end
Library/Nonpos_Ints
Nonpos_Ints.uminus_in_Nats_iff
lemma uminus_in_Nats_iff: "-x \<in> \<nat> \<longleftrightarrow> x \<in> \<int>\<^sub>\<le>\<^sub>0"
(- ?x \<in> \<nat>) = (?x \<in> \<int>\<^sub>\<le>\<^sub>0)
(?H1 x_1 \<in> ?H2) = (x_1 \<in> ?H3)
[ "Nonpos_Ints.nonpos_Ints", "Nat.semiring_1_class.Nats", "Groups.uminus_class.uminus" ]
[ "'a set", "'a set", "'a \\<Rightarrow> 'a" ]
[ "definition nonpos_Ints (\"\\<int>\\<^sub>\\<le>\\<^sub>0\") where \"\\<int>\\<^sub>\\<le>\\<^sub>0 = {of_int n |n. n \\<le> 0}\"", "class uminus =\n fixes uminus :: \"'a \\<Rightarrow> 'a\" (\"- _\" [81] 80)" ]
template
###lemma (- ?x \<in> \<nat>) = (?x \<in> \<int>\<^sub>\<le>\<^sub>0) ###symbols Nonpos_Ints.nonpos_Ints :::: 'a set Nat.semiring_1_class.Nats :::: 'a set Groups.uminus_class.uminus :::: 'a \<Rightarrow> 'a ###defs definition nonpos_Ints ("\<int>\<^sub>\<le>\<^sub>0") where "\<int>\<^sub>\<le>\<^sub>0 = {of_int n |n. n \<le> 0}" class uminus = fixes uminus :: "'a \<Rightarrow> 'a" ("- _" [81] 80)
###output (?H1 x_1 \<in> ?H2) = (x_1 \<in> ?H3)###end
Nonstandard_Analysis/HyperDef
HyperDef.Standard_scaleR
lemma Standard_scaleR [simp]: "x \<in> Standard \<Longrightarrow> scaleR r x \<in> Standard"
?x \<in> Standard \<Longrightarrow> ?r *\<^sub>R ?x \<in> Standard
x_1 \<in> ?H1 \<Longrightarrow> ?H2 x_2 x_1 \<in> ?H1
[ "Real_Vector_Spaces.scaleR_class.scaleR", "StarDef.Standard" ]
[ "real \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a star set" ]
[ "class scaleR =\n fixes scaleR :: \"real \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixr \"*\\<^sub>R\" 75)\nbegin", "definition Standard :: \"'a star set\"\n where \"Standard = range star_of\"" ]
template
###lemma ?x \<in> Standard \<Longrightarrow> ?r *\<^sub>R ?x \<in> Standard ###symbols Real_Vector_Spaces.scaleR_class.scaleR :::: real \<Rightarrow> 'a \<Rightarrow> 'a StarDef.Standard :::: 'a star set ###defs class scaleR = fixes scaleR :: "real \<Rightarrow> 'a \<Rightarrow> 'a" (infixr "*\<^sub>R" 75) begin definition Standard :: "'a star set" where "Standard = range star_of"
###output x_1 \<in> ?H1 \<Longrightarrow> ?H2 x_2 x_1 \<in> ?H1###end
Set
Set.insert_ident
lemma insert_ident: "x \<notin> A \<Longrightarrow> x \<notin> B \<Longrightarrow> insert x A = insert x B \<longleftrightarrow> A = B"
?x \<notin> ?A \<Longrightarrow> ?x \<notin> ?B \<Longrightarrow> (insert ?x ?A = insert ?x ?B) = (?A = ?B)
\<lbrakk> ?H1 x_1 x_2; ?H1 x_1 x_3\<rbrakk> \<Longrightarrow> (?H2 x_1 x_2 = ?H2 x_1 x_3) = (x_2 = x_3)
[ "Set.insert", "Set.not_member" ]
[ "'a \\<Rightarrow> 'a set \\<Rightarrow> 'a set", "'a \\<Rightarrow> 'a set \\<Rightarrow> bool" ]
[ "definition insert :: \"'a \\<Rightarrow> 'a set \\<Rightarrow> 'a set\"\n where insert_compr: \"insert a B = {x. x = a \\<or> x \\<in> B}\"", "abbreviation not_member\n where \"not_member x A \\<equiv> \\<not> (x \\<in> A)\" \\<comment> \\<open>non-membership\\<close>" ]
template
###lemma ?x \<notin> ?A \<Longrightarrow> ?x \<notin> ?B \<Longrightarrow> (insert ?x ?A = insert ?x ?B) = (?A = ?B) ###symbols Set.insert :::: 'a \<Rightarrow> 'a set \<Rightarrow> 'a set Set.not_member :::: 'a \<Rightarrow> 'a set \<Rightarrow> bool ###defs definition insert :: "'a \<Rightarrow> 'a set \<Rightarrow> 'a set" where insert_compr: "insert a B = {x. x = a \<or> x \<in> B}" abbreviation not_member where "not_member x A \<equiv> \<not> (x \<in> A)" \<comment> \<open>non-membership\<close>
###output \<lbrakk> ?H1 x_1 x_2; ?H1 x_1 x_3\<rbrakk> \<Longrightarrow> (?H2 x_1 x_2 = ?H2 x_1 x_3) = (x_2 = x_3)###end
Nominal/Examples/Height
Height.abs_fresh(1)
null
?b \<sharp> [ ?a]. ?x = (?b = ?a \<or> ?b \<sharp> ?x)
?H1 x_1 (?H2 x_2 x_3) = (x_1 = x_2 \<or> ?H1 x_1 x_3)
[ "Nominal.abs_fun", "Nominal.fresh" ]
[ "'a \\<Rightarrow> 'b \\<Rightarrow> 'a \\<Rightarrow> 'b noption", "'a \\<Rightarrow> 'b \\<Rightarrow> bool" ]
[ "definition abs_fun :: \"'x\\<Rightarrow>'a\\<Rightarrow>('x\\<Rightarrow>('a noption))\" (\\<open>[_]._\\<close> [100,100] 100) where \n \"[a].x \\<equiv> (\\<lambda>b. (if b=a then nSome(x) else (if b\\<sharp>x then nSome([(a,b)]\\<bullet>x) else nNone)))\"", "definition fresh :: \"'x \\<Rightarrow> 'a \\<Rightarrow> bool\" (\\<open>_ \\<sharp> _\\<close> [80,80] 80) where\n \"a \\<sharp> x \\<longleftrightarrow> a \\<notin> supp x\"" ]
template
###lemma ?b \<sharp> [ ?a]. ?x = (?b = ?a \<or> ?b \<sharp> ?x) ###symbols Nominal.abs_fun :::: 'a \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> 'b noption Nominal.fresh :::: 'a \<Rightarrow> 'b \<Rightarrow> bool ###defs definition abs_fun :: "'x\<Rightarrow>'a\<Rightarrow>('x\<Rightarrow>('a noption))" (\<open>[_]._\<close> [100,100] 100) where "[a].x \<equiv> (\<lambda>b. (if b=a then nSome(x) else (if b\<sharp>x then nSome([(a,b)]\<bullet>x) else nNone)))" definition fresh :: "'x \<Rightarrow> 'a \<Rightarrow> bool" (\<open>_ \<sharp> _\<close> [80,80] 80) where "a \<sharp> x \<longleftrightarrow> a \<notin> supp x"
###output ?H1 x_1 (?H2 x_2 x_3) = (x_1 = x_2 \<or> ?H1 x_1 x_3)###end
Analysis/Further_Topology
Further_Topology.inessential_on_clopen_Union
lemma inessential_on_clopen_Union: fixes \<F> :: "'a::euclidean_space set set" assumes T: "path_connected T" and "\<And>S. S \<in> \<F> \<Longrightarrow> closedin (top_of_set (\<Union>\<F>)) S" and "\<And>S. S \<in> \<F> \<Longrightarrow> openin (top_of_set (\<Union>\<F>)) S" and hom: "\<And>S. S \<in> \<F> \<Longrightarrow> \<exists>a. homotopic_with_canon (\<lambda>x. True) S T f (\<lambda>x. a)" obtains a where "homotopic_with_canon (\<lambda>x. True) (\<Union>\<F>) T f (\<lambda>x. a)"
path_connected ?T \<Longrightarrow> (\<And>S. S \<in> ?\<F> \<Longrightarrow> closedin (top_of_set (\<Union> ?\<F>)) S) \<Longrightarrow> (\<And>S. S \<in> ?\<F> \<Longrightarrow> openin (top_of_set (\<Union> ?\<F>)) S) \<Longrightarrow> (\<And>S. S \<in> ?\<F> \<Longrightarrow> \<exists>a. homotopic_with_canon (\<lambda>x. True) S ?T ?f (\<lambda>x. a)) \<Longrightarrow> (\<And>a. homotopic_with_canon (\<lambda>x. True) (\<Union> ?\<F>) ?T ?f (\<lambda>x. a) \<Longrightarrow> ?thesis) \<Longrightarrow> ?thesis
\<lbrakk> ?H1 x_1; \<And>y_0. y_0 \<in> x_2 \<Longrightarrow> ?H2 (?H3 (?H4 x_2)) y_0; \<And>y_1. y_1 \<in> x_2 \<Longrightarrow> ?H5 (?H3 (?H4 x_2)) y_1; \<And>y_2. y_2 \<in> x_2 \<Longrightarrow> \<exists>y_3. ?H6 (\<lambda>y_4. True) y_2 x_1 x_3 (\<lambda>y_5. y_3); \<And>y_6. ?H6 (\<lambda>y_7. True) (?H4 x_2) x_1 x_3 (\<lambda>y_8. y_6) \<Longrightarrow> x_4\<rbrakk> \<Longrightarrow> x_4
[ "Homotopy.homotopic_with_canon", "Abstract_Topology.topology.openin", "Complete_Lattices.Union", "Abstract_Topology.top_of_set", "Abstract_Topology.closedin", "Path_Connected.path_connected" ]
[ "(('a \\<Rightarrow> 'b) \\<Rightarrow> bool) \\<Rightarrow> 'a set \\<Rightarrow> 'b set \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> bool", "'a topology \\<Rightarrow> 'a set \\<Rightarrow> bool", "'a set set \\<Rightarrow> 'a set", "'a set \\<Rightarrow> 'a topology", "'a topology \\<Rightarrow> 'a set \\<Rightarrow> bool", "'a set \\<Rightarrow> bool" ]
[ "abbreviation homotopic_with_canon ::\n \"[('a::topological_space \\<Rightarrow> 'b::topological_space) \\<Rightarrow> bool, 'a set, 'b set, 'a \\<Rightarrow> 'b, 'a \\<Rightarrow> 'b] \\<Rightarrow> bool\"\nwhere\n \"homotopic_with_canon P S T p q \\<equiv> homotopic_with P (top_of_set S) (top_of_set T) p q\"", "abbreviation Union :: \"'a set set \\<Rightarrow> 'a set\" (\"\\<Union>\")\n where \"\\<Union>S \\<equiv> \\<Squnion>S\"", "abbreviation top_of_set :: \"'a::topological_space set \\<Rightarrow> 'a topology\"\n where \"top_of_set \\<equiv> subtopology (topology open)\"" ]
template
###lemma path_connected ?T \<Longrightarrow> (\<And>S. S \<in> ?\<F> \<Longrightarrow> closedin (top_of_set (\<Union> ?\<F>)) S) \<Longrightarrow> (\<And>S. S \<in> ?\<F> \<Longrightarrow> openin (top_of_set (\<Union> ?\<F>)) S) \<Longrightarrow> (\<And>S. S \<in> ?\<F> \<Longrightarrow> \<exists>a. homotopic_with_canon (\<lambda>x. True) S ?T ?f (\<lambda>x. a)) \<Longrightarrow> (\<And>a. homotopic_with_canon (\<lambda>x. True) (\<Union> ?\<F>) ?T ?f (\<lambda>x. a) \<Longrightarrow> ?thesis) \<Longrightarrow> ?thesis ###symbols Homotopy.homotopic_with_canon :::: (('a \<Rightarrow> 'b) \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool Abstract_Topology.topology.openin :::: 'a topology \<Rightarrow> 'a set \<Rightarrow> bool Complete_Lattices.Union :::: 'a set set \<Rightarrow> 'a set Abstract_Topology.top_of_set :::: 'a set \<Rightarrow> 'a topology Abstract_Topology.closedin :::: 'a topology \<Rightarrow> 'a set \<Rightarrow> bool Path_Connected.path_connected :::: 'a set \<Rightarrow> bool ###defs abbreviation homotopic_with_canon :: "[('a::topological_space \<Rightarrow> 'b::topological_space) \<Rightarrow> bool, 'a set, 'b set, 'a \<Rightarrow> 'b, 'a \<Rightarrow> 'b] \<Rightarrow> bool" where "homotopic_with_canon P S T p q \<equiv> homotopic_with P (top_of_set S) (top_of_set T) p q" abbreviation Union :: "'a set set \<Rightarrow> 'a set" ("\<Union>") where "\<Union>S \<equiv> \<Squnion>S" abbreviation top_of_set :: "'a::topological_space set \<Rightarrow> 'a topology" where "top_of_set \<equiv> subtopology (topology open)"
###output \<lbrakk> ?H1 x_1; \<And>y_0. y_0 \<in> x_2 \<Longrightarrow> ?H2 (?H3 (?H4 x_2)) y_0; \<And>y_1. y_1 \<in> x_2 \<Longrightarrow> ?H5 (?H3 (?H4 x_2)) y_1; \<And>y_2. y_2 \<in> x_2 \<Longrightarrow> \<exists>y_3. ?H6 (\<lambda>y_4. True) y_2 x_1 x_3 (\<lambda>y_5. y_3); \<And>y_6. ?H6 (\<lambda>y_7. True) (?H4 x_2) x_1 x_3 (\<lambda>y_8. y_6) \<Longrightarrow> x_4\<rbrakk> \<Longrightarrow> x_4###end
Nominal/Examples/Crary
Crary.fresh_eqvt
null
?pi \<bullet> ?a \<sharp> ?x = ?pi \<bullet> ?a \<sharp> ?pi \<bullet> ?x
?H1 x_1 (?H2 x_2 x_3) = ?H2 (?H1 x_1 x_2) (?H1 x_1 x_3)
[ "Nominal.fresh", "Nominal.perm" ]
[ "'a \\<Rightarrow> 'b \\<Rightarrow> bool", "('a \\<times> 'a) list \\<Rightarrow> 'b \\<Rightarrow> 'b" ]
[ "definition fresh :: \"'x \\<Rightarrow> 'a \\<Rightarrow> bool\" (\\<open>_ \\<sharp> _\\<close> [80,80] 80) where\n \"a \\<sharp> x \\<longleftrightarrow> a \\<notin> supp x\"", "consts \n perm :: \"'x prm \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixr \\<open>\\<bullet>\\<close> 80)\n swap :: \"('x \\<times> 'x) \\<Rightarrow> 'x \\<Rightarrow> 'x\"" ]
template
###lemma ?pi \<bullet> ?a \<sharp> ?x = ?pi \<bullet> ?a \<sharp> ?pi \<bullet> ?x ###symbols Nominal.fresh :::: 'a \<Rightarrow> 'b \<Rightarrow> bool Nominal.perm :::: ('a \<times> 'a) list \<Rightarrow> 'b \<Rightarrow> 'b ###defs definition fresh :: "'x \<Rightarrow> 'a \<Rightarrow> bool" (\<open>_ \<sharp> _\<close> [80,80] 80) where "a \<sharp> x \<longleftrightarrow> a \<notin> supp x" consts perm :: "'x prm \<Rightarrow> 'a \<Rightarrow> 'a" (infixr \<open>\<bullet>\<close> 80) swap :: "('x \<times> 'x) \<Rightarrow> 'x \<Rightarrow> 'x"
###output ?H1 x_1 (?H2 x_2 x_3) = ?H2 (?H1 x_1 x_2) (?H1 x_1 x_3)###end
Library/Extended_Real
Extended_Real.ereal_LimI_finite_iff
lemma ereal_LimI_finite_iff: fixes x :: ereal assumes "\<bar>x\<bar> \<noteq> \<infinity>" shows "u \<longlonglongrightarrow> x \<longleftrightarrow> (\<forall>r. 0 < r \<longrightarrow> (\<exists>N. \<forall>n\<ge>N. u n < x + r \<and> x < u n + r))" (is "?lhs \<longleftrightarrow> ?rhs")
\<bar> ?x\<bar> \<noteq> \<infinity> \<Longrightarrow> ?u \<longlonglongrightarrow> ?x = (\<forall>r>0. \<exists>N. \<forall>n\<ge>N. ?u n < ?x + r \<and> ?x < ?u n + r)
?H1 x_1 \<noteq> ?H2 \<Longrightarrow> ?H3 x_2 x_1 = (\<forall>y_0> ?H4. \<exists>y_1. \<forall>y_2\<ge>y_1. x_2 y_2 < ?H5 x_1 y_0 \<and> x_1 < ?H5 (x_2 y_2) y_0)
[ "Groups.plus_class.plus", "Groups.zero_class.zero", "Topological_Spaces.topological_space_class.LIMSEQ", "Extended_Nat.infinity_class.infinity", "Groups.abs_class.abs" ]
[ "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a", "(nat \\<Rightarrow> 'a) \\<Rightarrow> 'a \\<Rightarrow> bool", "'a", "'a \\<Rightarrow> 'a" ]
[ "class plus =\n fixes plus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"+\" 65)", "class zero =\n fixes zero :: 'a (\"0\")", "class topological_space = \"open\" +\n assumes open_UNIV [simp, intro]: \"open UNIV\"\n assumes open_Int [intro]: \"open S \\<Longrightarrow> open T \\<Longrightarrow> open (S \\<inter> T)\"\n assumes open_Union [intro]: \"\\<forall>S\\<in>K. open S \\<Longrightarrow> open (\\<Union>K)\"\nbegin", "class infinity =\n fixes infinity :: \"'a\" (\"\\<infinity>\")", "class abs =\n fixes abs :: \"'a \\<Rightarrow> 'a\" (\"\\<bar>_\\<bar>\")" ]
template
###lemma \<bar> ?x\<bar> \<noteq> \<infinity> \<Longrightarrow> ?u \<longlonglongrightarrow> ?x = (\<forall>r>0. \<exists>N. \<forall>n\<ge>N. ?u n < ?x + r \<and> ?x < ?u n + r) ###symbols Groups.plus_class.plus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Groups.zero_class.zero :::: 'a Topological_Spaces.topological_space_class.LIMSEQ :::: (nat \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> bool Extended_Nat.infinity_class.infinity :::: 'a Groups.abs_class.abs :::: 'a \<Rightarrow> 'a ###defs class plus = fixes plus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "+" 65) class zero = fixes zero :: 'a ("0") class topological_space = "open" + assumes open_UNIV [simp, intro]: "open UNIV" assumes open_Int [intro]: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<inter> T)" assumes open_Union [intro]: "\<forall>S\<in>K. open S \<Longrightarrow> open (\<Union>K)" begin class infinity = fixes infinity :: "'a" ("\<infinity>") class abs = fixes abs :: "'a \<Rightarrow> 'a" ("\<bar>_\<bar>")
###output ?H1 x_1 \<noteq> ?H2 \<Longrightarrow> ?H3 x_2 x_1 = (\<forall>y_0> ?H4. \<exists>y_1. \<forall>y_2\<ge>y_1. x_2 y_2 < ?H5 x_1 y_0 \<and> x_1 < ?H5 (x_2 y_2) y_0)###end
Analysis/Product_Topology
Product_Topology.homeomorphic_space_prod_topology_sing1
lemma homeomorphic_space_prod_topology_sing1: "b \<in> topspace Y \<Longrightarrow> X homeomorphic_space (prod_topology X (subtopology Y {b}))"
?b \<in> topspace ?Y \<Longrightarrow> ?X homeomorphic_space prod_topology ?X (subtopology ?Y { ?b})
x_1 \<in> ?H1 x_2 \<Longrightarrow> ?H2 x_3 (?H3 x_3 (?H4 x_2 (?H5 x_1 ?H6)))
[ "Set.empty", "Set.insert", "Abstract_Topology.subtopology", "Product_Topology.prod_topology", "Abstract_Topology.homeomorphic_space", "Abstract_Topology.topspace" ]
[ "'a set", "'a \\<Rightarrow> 'a set \\<Rightarrow> 'a set", "'a topology \\<Rightarrow> 'a set \\<Rightarrow> 'a topology", "'a topology \\<Rightarrow> 'b topology \\<Rightarrow> ('a \\<times> 'b) topology", "'a topology \\<Rightarrow> 'b topology \\<Rightarrow> bool", "'a topology \\<Rightarrow> 'a set" ]
[ "abbreviation empty :: \"'a set\" (\"{}\")\n where \"{} \\<equiv> bot\"", "definition insert :: \"'a \\<Rightarrow> 'a set \\<Rightarrow> 'a set\"\n where insert_compr: \"insert a B = {x. x = a \\<or> x \\<in> B}\"", "definition prod_topology :: \"'a topology \\<Rightarrow> 'b topology \\<Rightarrow> ('a \\<times> 'b) topology\" where\n \"prod_topology X Y \\<equiv> topology (arbitrary union_of (\\<lambda>U. U \\<in> {S \\<times> T |S T. openin X S \\<and> openin Y T}))\"", "definition homeomorphic_space (infixr \"homeomorphic'_space\" 50)\n where \"X homeomorphic_space Y \\<equiv> \\<exists>f g. homeomorphic_maps X Y f g\"", "definition \"topspace T = \\<Union>{S. openin T S}\"" ]
template
###lemma ?b \<in> topspace ?Y \<Longrightarrow> ?X homeomorphic_space prod_topology ?X (subtopology ?Y { ?b}) ###symbols Set.empty :::: 'a set Set.insert :::: 'a \<Rightarrow> 'a set \<Rightarrow> 'a set Abstract_Topology.subtopology :::: 'a topology \<Rightarrow> 'a set \<Rightarrow> 'a topology Product_Topology.prod_topology :::: 'a topology \<Rightarrow> 'b topology \<Rightarrow> ('a \<times> 'b) topology Abstract_Topology.homeomorphic_space :::: 'a topology \<Rightarrow> 'b topology \<Rightarrow> bool Abstract_Topology.topspace :::: 'a topology \<Rightarrow> 'a set ###defs abbreviation empty :: "'a set" ("{}") where "{} \<equiv> bot" definition insert :: "'a \<Rightarrow> 'a set \<Rightarrow> 'a set" where insert_compr: "insert a B = {x. x = a \<or> x \<in> B}" definition prod_topology :: "'a topology \<Rightarrow> 'b topology \<Rightarrow> ('a \<times> 'b) topology" where "prod_topology X Y \<equiv> topology (arbitrary union_of (\<lambda>U. U \<in> {S \<times> T |S T. openin X S \<and> openin Y T}))" definition homeomorphic_space (infixr "homeomorphic'_space" 50) where "X homeomorphic_space Y \<equiv> \<exists>f g. homeomorphic_maps X Y f g" definition "topspace T = \<Union>{S. openin T S}"
###output x_1 \<in> ?H1 x_2 \<Longrightarrow> ?H2 x_3 (?H3 x_3 (?H4 x_2 (?H5 x_1 ?H6)))###end
Library/Countable_Set_Type
Countable_Set_Type.cInt_cDiff
null
cDiff (cInt ?A ?B) ?C = cInt ?A (cDiff ?B ?C)
?H1 (?H2 x_1 x_2) x_3 = ?H2 x_1 (?H1 x_2 x_3)
[ "Countable_Set_Type.cInt", "Countable_Set_Type.cDiff" ]
[ "'a cset \\<Rightarrow> 'a cset \\<Rightarrow> 'a cset", "'a cset \\<Rightarrow> 'a cset \\<Rightarrow> 'a cset" ]
[ "abbreviation cInt :: \"'a cset \\<Rightarrow> 'a cset \\<Rightarrow> 'a cset\" where \"cInt xs ys \\<equiv> inf xs ys\"", "abbreviation cDiff :: \"'a cset \\<Rightarrow> 'a cset \\<Rightarrow> 'a cset\" where \"cDiff xs ys \\<equiv> minus xs ys\"" ]
template
###lemma cDiff (cInt ?A ?B) ?C = cInt ?A (cDiff ?B ?C) ###symbols Countable_Set_Type.cInt :::: 'a cset \<Rightarrow> 'a cset \<Rightarrow> 'a cset Countable_Set_Type.cDiff :::: 'a cset \<Rightarrow> 'a cset \<Rightarrow> 'a cset ###defs abbreviation cInt :: "'a cset \<Rightarrow> 'a cset \<Rightarrow> 'a cset" where "cInt xs ys \<equiv> inf xs ys" abbreviation cDiff :: "'a cset \<Rightarrow> 'a cset \<Rightarrow> 'a cset" where "cDiff xs ys \<equiv> minus xs ys"
###output ?H1 (?H2 x_1 x_2) x_3 = ?H2 x_1 (?H1 x_2 x_3)###end
Analysis/Cartesian_Space
Cartesian_Space.full_rank_surjective
lemma full_rank_surjective: fixes A :: "real^'n^'m" shows "rank A = CARD('m) \<longleftrightarrow> surj ((*v) A)"
(rank ?A = CARD(?'m)) = surj ((*v) ?A)
(?H1 x_1 = ?H2 ?H3) = ?H4 (?H5 x_1)
[ "Finite_Cartesian_Product.matrix_vector_mult", "Fun.surj", "Set.UNIV", "Finite_Set.card", "Cartesian_Space.rank" ]
[ "(('a, 'b) vec, 'c) vec \\<Rightarrow> ('a, 'b) vec \\<Rightarrow> ('a, 'c) vec", "('a \\<Rightarrow> 'b) \\<Rightarrow> bool", "'a set", "'a set \\<Rightarrow> nat", "(('a, 'b) vec, 'c) vec \\<Rightarrow> nat" ]
[ "abbreviation surj :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> bool\"\n where \"surj f \\<equiv> range f = UNIV\"", "abbreviation UNIV :: \"'a set\"\n where \"UNIV \\<equiv> top\"" ]
template
###lemma (rank ?A = CARD(?'m)) = surj ((*v) ?A) ###symbols Finite_Cartesian_Product.matrix_vector_mult :::: (('a, 'b) vec, 'c) vec \<Rightarrow> ('a, 'b) vec \<Rightarrow> ('a, 'c) vec Fun.surj :::: ('a \<Rightarrow> 'b) \<Rightarrow> bool Set.UNIV :::: 'a set Finite_Set.card :::: 'a set \<Rightarrow> nat Cartesian_Space.rank :::: (('a, 'b) vec, 'c) vec \<Rightarrow> nat ###defs abbreviation surj :: "('a \<Rightarrow> 'b) \<Rightarrow> bool" where "surj f \<equiv> range f = UNIV" abbreviation UNIV :: "'a set" where "UNIV \<equiv> top"
###output (?H1 x_1 = ?H2 ?H3) = ?H4 (?H5 x_1)###end
List
List.in_listspI
lemma in_listspI [intro!]: "\<forall>x\<in>set xs. A x \<Longrightarrow> listsp A xs"
\<forall>x\<in>set ?xs. ?A x \<Longrightarrow> listsp ?A ?xs
\<forall>y_0\<in> ?H1 x_1. x_2 y_0 \<Longrightarrow> ?H2 x_2 x_1
[ "List.listsp", "List.list.set" ]
[ "('a \\<Rightarrow> bool) \\<Rightarrow> 'a list \\<Rightarrow> bool", "'a list \\<Rightarrow> 'a set" ]
[ "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"" ]
template
###lemma \<forall>x\<in>set ?xs. ?A x \<Longrightarrow> listsp ?A ?xs ###symbols List.listsp :::: ('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> bool List.list.set :::: 'a list \<Rightarrow> 'a set ###defs datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []"
###output \<forall>y_0\<in> ?H1 x_1. x_2 y_0 \<Longrightarrow> ?H2 x_2 x_1###end
Transfer
Transfer.transfer_raw(203)
null
Transfer.Rel (rel_fun (rel_prod ?A ?B) ?B) snd snd
?H1 (?H2 (?H3 x_1 x_2) x_2) ?H4 ?H4
[ "Product_Type.prod.snd", "Basic_BNFs.rel_prod", "BNF_Def.rel_fun", "Transfer.Rel" ]
[ "'a \\<times> 'b \\<Rightarrow> 'b", "('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> ('c \\<Rightarrow> 'd \\<Rightarrow> bool) \\<Rightarrow> 'a \\<times> 'c \\<Rightarrow> 'b \\<times> 'd \\<Rightarrow> bool", "('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> ('c \\<Rightarrow> 'd \\<Rightarrow> bool) \\<Rightarrow> ('a \\<Rightarrow> 'c) \\<Rightarrow> ('b \\<Rightarrow> 'd) \\<Rightarrow> bool", "('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> 'a \\<Rightarrow> 'b \\<Rightarrow> bool" ]
[ "definition \"prod = {f. \\<exists>a b. f = Pair_Rep (a::'a) (b::'b)}\"", "inductive\n rel_prod :: \"('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> ('c \\<Rightarrow> 'd \\<Rightarrow> bool) \\<Rightarrow> 'a \\<times> 'c \\<Rightarrow> 'b \\<times> 'd \\<Rightarrow> bool\" for R1 R2\nwhere\n \"\\<lbrakk>R1 a b; R2 c d\\<rbrakk> \\<Longrightarrow> rel_prod R1 R2 (a, c) (b, d)\"", "definition\n rel_fun :: \"('a \\<Rightarrow> 'c \\<Rightarrow> bool) \\<Rightarrow> ('b \\<Rightarrow> 'd \\<Rightarrow> bool) \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> ('c \\<Rightarrow> 'd) \\<Rightarrow> bool\"\nwhere\n \"rel_fun A B = (\\<lambda>f g. \\<forall>x y. A x y \\<longrightarrow> B (f x) (g y))\"", "definition Rel :: \"('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> 'a \\<Rightarrow> 'b \\<Rightarrow> bool\"\n where \"Rel r \\<equiv> r\"" ]
template
###lemma Transfer.Rel (rel_fun (rel_prod ?A ?B) ?B) snd snd ###symbols Product_Type.prod.snd :::: 'a \<times> 'b \<Rightarrow> 'b Basic_BNFs.rel_prod :::: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('c \<Rightarrow> 'd \<Rightarrow> bool) \<Rightarrow> 'a \<times> 'c \<Rightarrow> 'b \<times> 'd \<Rightarrow> bool BNF_Def.rel_fun :::: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('c \<Rightarrow> 'd \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'c) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> bool Transfer.Rel :::: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool ###defs definition "prod = {f. \<exists>a b. f = Pair_Rep (a::'a) (b::'b)}" inductive rel_prod :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('c \<Rightarrow> 'd \<Rightarrow> bool) \<Rightarrow> 'a \<times> 'c \<Rightarrow> 'b \<times> 'd \<Rightarrow> bool" for R1 R2 where "\<lbrakk>R1 a b; R2 c d\<rbrakk> \<Longrightarrow> rel_prod R1 R2 (a, c) (b, d)" definition rel_fun :: "('a \<Rightarrow> 'c \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'd \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('c \<Rightarrow> 'd) \<Rightarrow> bool" where "rel_fun A B = (\<lambda>f g. \<forall>x y. A x y \<longrightarrow> B (f x) (g y))" definition Rel :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool" where "Rel r \<equiv> r"
###output ?H1 (?H2 (?H3 x_1 x_2) x_2) ?H4 ?H4###end
Number_Theory/Pocklington
Pocklington.finite_number_segment
lemma finite_number_segment: "card { m. 0 < m \<and> m < n } = n - 1"
card {m. 0 < m \<and> m < ?n} = ?n - 1
?H1 (?H2 (\<lambda>y_0. ?H3 < y_0 \<and> y_0 < x_1)) = ?H4 x_1 ?H5
[ "Groups.one_class.one", "Groups.minus_class.minus", "Groups.zero_class.zero", "Set.Collect", "Finite_Set.card" ]
[ "'a", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a", "('a \\<Rightarrow> bool) \\<Rightarrow> 'a set", "'a set \\<Rightarrow> nat" ]
[ "class one =\n fixes one :: 'a (\"1\")", "class minus =\n fixes minus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"-\" 65)", "class zero =\n fixes zero :: 'a (\"0\")" ]
template
###lemma card {m. 0 < m \<and> m < ?n} = ?n - 1 ###symbols Groups.one_class.one :::: 'a Groups.minus_class.minus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Groups.zero_class.zero :::: 'a Set.Collect :::: ('a \<Rightarrow> bool) \<Rightarrow> 'a set Finite_Set.card :::: 'a set \<Rightarrow> nat ###defs class one = fixes one :: 'a ("1") class minus = fixes minus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "-" 65) class zero = fixes zero :: 'a ("0")
###output ?H1 (?H2 (\<lambda>y_0. ?H3 < y_0 \<and> y_0 < x_1)) = ?H4 x_1 ?H5###end
Bali/Trans
Transfer.transfer_start
null
?P \<Longrightarrow> Transfer.Rel (=) ?P ?Q \<Longrightarrow> ?Q
\<lbrakk>x_1; ?H1 (=) x_1 x_2\<rbrakk> \<Longrightarrow> x_2
[ "Transfer.Rel" ]
[ "('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> 'a \\<Rightarrow> 'b \\<Rightarrow> bool" ]
[ "definition Rel :: \"('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> 'a \\<Rightarrow> 'b \\<Rightarrow> bool\"\n where \"Rel r \\<equiv> r\"" ]
template
###lemma ?P \<Longrightarrow> Transfer.Rel (=) ?P ?Q \<Longrightarrow> ?Q ###symbols Transfer.Rel :::: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool ###defs definition Rel :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool" where "Rel r \<equiv> r"
###output \<lbrakk>x_1; ?H1 (=) x_1 x_2\<rbrakk> \<Longrightarrow> x_2###end
Analysis/Derivative
Derivative.field_differentiable_minus
lemma field_differentiable_minus [derivative_intros]: "f field_differentiable F \<Longrightarrow> (\<lambda>z. - (f z)) field_differentiable F"
?f field_differentiable ?F \<Longrightarrow> (\<lambda>z. - ?f z) field_differentiable ?F
?H1 x_1 x_2 \<Longrightarrow> ?H1 (\<lambda>y_0. ?H2 (x_1 y_0)) x_2
[ "Groups.uminus_class.uminus", "Derivative.field_differentiable" ]
[ "'a \\<Rightarrow> 'a", "('a \\<Rightarrow> 'a) \\<Rightarrow> 'a filter \\<Rightarrow> bool" ]
[ "class uminus =\n fixes uminus :: \"'a \\<Rightarrow> 'a\" (\"- _\" [81] 80)" ]
template
###lemma ?f field_differentiable ?F \<Longrightarrow> (\<lambda>z. - ?f z) field_differentiable ?F ###symbols Groups.uminus_class.uminus :::: 'a \<Rightarrow> 'a Derivative.field_differentiable :::: ('a \<Rightarrow> 'a) \<Rightarrow> 'a filter \<Rightarrow> bool ###defs class uminus = fixes uminus :: "'a \<Rightarrow> 'a" ("- _" [81] 80)
###output ?H1 x_1 x_2 \<Longrightarrow> ?H1 (\<lambda>y_0. ?H2 (x_1 y_0)) x_2###end
Library/Countable_Set_Type
Countable_Set_Type.cDiff_idemp
null
cDiff (cDiff ?A ?B) ?B = cDiff ?A ?B
?H1 (?H1 x_1 x_2) x_2 = ?H1 x_1 x_2
[ "Countable_Set_Type.cDiff" ]
[ "'a cset \\<Rightarrow> 'a cset \\<Rightarrow> 'a cset" ]
[ "abbreviation cDiff :: \"'a cset \\<Rightarrow> 'a cset \\<Rightarrow> 'a cset\" where \"cDiff xs ys \\<equiv> minus xs ys\"" ]
template
###lemma cDiff (cDiff ?A ?B) ?B = cDiff ?A ?B ###symbols Countable_Set_Type.cDiff :::: 'a cset \<Rightarrow> 'a cset \<Rightarrow> 'a cset ###defs abbreviation cDiff :: "'a cset \<Rightarrow> 'a cset \<Rightarrow> 'a cset" where "cDiff xs ys \<equiv> minus xs ys"
###output ?H1 (?H1 x_1 x_2) x_2 = ?H1 x_1 x_2###end
HOLCF/UpperPD
UpperPD.upper_le_minimal
lemma upper_le_minimal [simp]: "PDUnit compact_bot \<le>\<sharp> t"
PDUnit compact_bot \<le>\<sharp> ?t
?H1 (?H2 ?H3) x_1
[ "Universal.compact_bot", "Compact_Basis.PDUnit", "UpperPD.upper_le" ]
[ "'a compact_basis", "'a compact_basis \\<Rightarrow> 'a pd_basis", "'a pd_basis \\<Rightarrow> 'a pd_basis \\<Rightarrow> bool" ]
[ "definition\n compact_bot :: \"'a::pcpo compact_basis\" where\n \"compact_bot = Abs_compact_basis \\<bottom>\"", "definition\n PDUnit :: \"'a compact_basis \\<Rightarrow> 'a pd_basis\" where\n \"PDUnit = (\\<lambda>x. Abs_pd_basis {x})\"", "definition\n upper_le :: \"'a pd_basis \\<Rightarrow> 'a pd_basis \\<Rightarrow> bool\" (infix \"\\<le>\\<sharp>\" 50) where\n \"upper_le = (\\<lambda>u v. \\<forall>y\\<in>Rep_pd_basis v. \\<exists>x\\<in>Rep_pd_basis u. x \\<sqsubseteq> y)\"" ]
template
###lemma PDUnit compact_bot \<le>\<sharp> ?t ###symbols Universal.compact_bot :::: 'a compact_basis Compact_Basis.PDUnit :::: 'a compact_basis \<Rightarrow> 'a pd_basis UpperPD.upper_le :::: 'a pd_basis \<Rightarrow> 'a pd_basis \<Rightarrow> bool ###defs definition compact_bot :: "'a::pcpo compact_basis" where "compact_bot = Abs_compact_basis \<bottom>" definition PDUnit :: "'a compact_basis \<Rightarrow> 'a pd_basis" where "PDUnit = (\<lambda>x. Abs_pd_basis {x})" definition upper_le :: "'a pd_basis \<Rightarrow> 'a pd_basis \<Rightarrow> bool" (infix "\<le>\<sharp>" 50) where "upper_le = (\<lambda>u v. \<forall>y\<in>Rep_pd_basis v. \<exists>x\<in>Rep_pd_basis u. x \<sqsubseteq> y)"
###output ?H1 (?H2 ?H3) x_1###end
Probability/Probability_Mass_Function
Probability_Mass_Function.map_pmf_cong
lemma map_pmf_cong: "p = q \<Longrightarrow> (\<And>x. x \<in> set_pmf q \<Longrightarrow> f x = g x) \<Longrightarrow> map_pmf f p = map_pmf g q"
?p = ?q \<Longrightarrow> (\<And>x. x \<in> set_pmf ?q \<Longrightarrow> ?f x = ?g x) \<Longrightarrow> map_pmf ?f ?p = map_pmf ?g ?q
\<lbrakk>x_1 = x_2; \<And>y_0. y_0 \<in> ?H1 x_2 \<Longrightarrow> x_3 y_0 = x_4 y_0\<rbrakk> \<Longrightarrow> ?H2 x_3 x_1 = ?H2 x_4 x_2
[ "Probability_Mass_Function.map_pmf", "Probability_Mass_Function.set_pmf" ]
[ "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a pmf \\<Rightarrow> 'b pmf", "'a pmf \\<Rightarrow> 'a set" ]
[ "definition \"map_pmf f M = bind_pmf M (\\<lambda>x. return_pmf (f x))\"" ]
template
###lemma ?p = ?q \<Longrightarrow> (\<And>x. x \<in> set_pmf ?q \<Longrightarrow> ?f x = ?g x) \<Longrightarrow> map_pmf ?f ?p = map_pmf ?g ?q ###symbols Probability_Mass_Function.map_pmf :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a pmf \<Rightarrow> 'b pmf Probability_Mass_Function.set_pmf :::: 'a pmf \<Rightarrow> 'a set ###defs definition "map_pmf f M = bind_pmf M (\<lambda>x. return_pmf (f x))"
###output \<lbrakk>x_1 = x_2; \<And>y_0. y_0 \<in> ?H1 x_2 \<Longrightarrow> x_3 y_0 = x_4 y_0\<rbrakk> \<Longrightarrow> ?H2 x_3 x_1 = ?H2 x_4 x_2###end
Isar_Examples/Group
Groups.ac_simps(42)
null
lcm ?b (lcm ?a ?c) = lcm ?a (lcm ?b ?c)
?H1 x_1 (?H1 x_2 x_3) = ?H1 x_2 (?H1 x_1 x_3)
[ "GCD.gcd_class.lcm" ]
[ "'a \\<Rightarrow> 'a \\<Rightarrow> 'a" ]
[ "class gcd = zero + one + dvd +\n fixes gcd :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\"\n and lcm :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\"" ]
template
###lemma lcm ?b (lcm ?a ?c) = lcm ?a (lcm ?b ?c) ###symbols GCD.gcd_class.lcm :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a ###defs class gcd = zero + one + dvd + fixes gcd :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" and lcm :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"
###output ?H1 x_1 (?H1 x_2 x_3) = ?H1 x_2 (?H1 x_1 x_3)###end
Real_Asymp/Multiseries_Expansion
Multiseries_Expansion.real_asymp_reify_simps(2)
null
cosh ?z = (exp ?z + exp (- ?z)) / (2:: ?'a)
?H1 x_1 = ?H2 (?H3 (?H4 x_1) (?H4 (?H5 x_1))) (?H6 (?H7 ?H8))
[ "Num.num.One", "Num.num.Bit0", "Num.numeral_class.numeral", "Groups.uminus_class.uminus", "Transcendental.exp", "Groups.plus_class.plus", "Fields.inverse_class.inverse_divide", "Transcendental.cosh" ]
[ "num", "num \\<Rightarrow> num", "num \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a" ]
[ "datatype num = One | Bit0 num | Bit1 num", "datatype num = One | Bit0 num | Bit1 num", "primrec numeral :: \"num \\<Rightarrow> 'a\"\n where\n numeral_One: \"numeral One = 1\"\n | numeral_Bit0: \"numeral (Bit0 n) = numeral n + numeral n\"\n | numeral_Bit1: \"numeral (Bit1 n) = numeral n + numeral n + 1\"", "class uminus =\n fixes uminus :: \"'a \\<Rightarrow> 'a\" (\"- _\" [81] 80)", "definition exp :: \"'a \\<Rightarrow> 'a::{real_normed_algebra_1,banach}\"\n where \"exp = (\\<lambda>x. \\<Sum>n. x^n /\\<^sub>R fact n)\"", "class plus =\n fixes plus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"+\" 65)", "class inverse = divide +\n fixes inverse :: \"'a \\<Rightarrow> 'a\"\nbegin", "definition cosh :: \"'a :: {banach, real_normed_algebra_1} \\<Rightarrow> 'a\" where\n \"cosh x = (exp x + exp (-x)) /\\<^sub>R 2\"" ]
template
###lemma cosh ?z = (exp ?z + exp (- ?z)) / (2:: ?'a) ###symbols Num.num.One :::: num Num.num.Bit0 :::: num \<Rightarrow> num Num.numeral_class.numeral :::: num \<Rightarrow> 'a Groups.uminus_class.uminus :::: 'a \<Rightarrow> 'a Transcendental.exp :::: 'a \<Rightarrow> 'a Groups.plus_class.plus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Fields.inverse_class.inverse_divide :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Transcendental.cosh :::: 'a \<Rightarrow> 'a ###defs datatype num = One | Bit0 num | Bit1 num datatype num = One | Bit0 num | Bit1 num primrec numeral :: "num \<Rightarrow> 'a" where numeral_One: "numeral One = 1" | numeral_Bit0: "numeral (Bit0 n) = numeral n + numeral n" | numeral_Bit1: "numeral (Bit1 n) = numeral n + numeral n + 1" class uminus = fixes uminus :: "'a \<Rightarrow> 'a" ("- _" [81] 80) definition exp :: "'a \<Rightarrow> 'a::{real_normed_algebra_1,banach}" where "exp = (\<lambda>x. \<Sum>n. x^n /\<^sub>R fact n)" class plus = fixes plus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "+" 65) class inverse = divide + fixes inverse :: "'a \<Rightarrow> 'a" begin definition cosh :: "'a :: {banach, real_normed_algebra_1} \<Rightarrow> 'a" where "cosh x = (exp x + exp (-x)) /\<^sub>R 2"
###output ?H1 x_1 = ?H2 (?H3 (?H4 x_1) (?H4 (?H5 x_1))) (?H6 (?H7 ?H8))###end
List
List.lenlex_append2
lemma lenlex_append2 [simp]: assumes "irrefl R" shows "(us @ xs, us @ ys) \<in> lenlex R \<longleftrightarrow> (xs, ys) \<in> lenlex R"
irrefl ?R \<Longrightarrow> ((?us @ ?xs, ?us @ ?ys) \<in> lenlex ?R) = ((?xs, ?ys) \<in> lenlex ?R)
?H1 x_1 \<Longrightarrow> ((?H2 x_2 x_3, ?H2 x_2 x_4) \<in> ?H3 x_1) = ((x_3, x_4) \<in> ?H3 x_1)
[ "List.lenlex", "List.append", "Relation.irrefl" ]
[ "('a \\<times> 'a) set \\<Rightarrow> ('a list \\<times> 'a list) set", "'a list \\<Rightarrow> 'a list \\<Rightarrow> 'a list", "('a \\<times> 'a) set \\<Rightarrow> bool" ]
[ "definition lenlex :: \"('a \\<times> 'a) set => ('a list \\<times> 'a list) set\" where\n\"lenlex r = inv_image (less_than <*lex*> lex r) (\\<lambda>xs. (length xs, xs))\"\n \\<comment> \\<open>Compares lists by their length and then lexicographically\\<close>", "primrec append :: \"'a list \\<Rightarrow> 'a list \\<Rightarrow> 'a list\" (infixr \"@\" 65) where\nappend_Nil: \"[] @ ys = ys\" |\nappend_Cons: \"(x#xs) @ ys = x # xs @ ys\"", "abbreviation irrefl :: \"'a rel \\<Rightarrow> bool\" where\n \"irrefl \\<equiv> irrefl_on UNIV\"" ]
template
###lemma irrefl ?R \<Longrightarrow> ((?us @ ?xs, ?us @ ?ys) \<in> lenlex ?R) = ((?xs, ?ys) \<in> lenlex ?R) ###symbols List.lenlex :::: ('a \<times> 'a) set \<Rightarrow> ('a list \<times> 'a list) set List.append :::: 'a list \<Rightarrow> 'a list \<Rightarrow> 'a list Relation.irrefl :::: ('a \<times> 'a) set \<Rightarrow> bool ###defs definition lenlex :: "('a \<times> 'a) set => ('a list \<times> 'a list) set" where "lenlex r = inv_image (less_than <*lex*> lex r) (\<lambda>xs. (length xs, xs))" \<comment> \<open>Compares lists by their length and then lexicographically\<close> primrec append :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" (infixr "@" 65) where append_Nil: "[] @ ys = ys" | append_Cons: "(x#xs) @ ys = x # xs @ ys" abbreviation irrefl :: "'a rel \<Rightarrow> bool" where "irrefl \<equiv> irrefl_on UNIV"
###output ?H1 x_1 \<Longrightarrow> ((?H2 x_2 x_3, ?H2 x_2 x_4) \<in> ?H3 x_1) = ((x_3, x_4) \<in> ?H3 x_1)###end
Predicate_Compile_Examples/Predicate_Compile_Tests
Predicate_Compile_Tests.map_prods_hoaux_PPiii_PiiiI
null
map_prods_hoaux ?x ?xa \<Longrightarrow> pred.eval (map_prods_hoaux_PPiii_Piii ?x ?xa) ()
?H1 x_1 x_2 \<Longrightarrow> ?H2 (?H3 x_1 x_2) ?H4
[ "Product_Type.Unity", "Predicate_Compile_Tests.map_prods_hoaux_PPiii_Piii", "Predicate.pred.eval", "Predicate_Compile_Tests.map_prods_hoaux" ]
[ "unit", "('a \\<times> 'b) \\<times> 'c \\<Rightarrow> 'a \\<times> 'b \\<times> 'c \\<Rightarrow> unit Predicate.pred", "'a Predicate.pred \\<Rightarrow> 'a \\<Rightarrow> bool", "('a \\<times> 'b) \\<times> 'c \\<Rightarrow> 'a \\<times> 'b \\<times> 'c \\<Rightarrow> bool" ]
[ "definition Unity :: unit (\"'(')\")\n where \"() = Abs_unit True\"", "datatype (plugins only: extraction) (dead 'a) pred = Pred (eval: \"'a \\<Rightarrow> bool\")" ]
template
###lemma map_prods_hoaux ?x ?xa \<Longrightarrow> pred.eval (map_prods_hoaux_PPiii_Piii ?x ?xa) () ###symbols Product_Type.Unity :::: unit Predicate_Compile_Tests.map_prods_hoaux_PPiii_Piii :::: ('a \<times> 'b) \<times> 'c \<Rightarrow> 'a \<times> 'b \<times> 'c \<Rightarrow> unit Predicate.pred Predicate.pred.eval :::: 'a Predicate.pred \<Rightarrow> 'a \<Rightarrow> bool Predicate_Compile_Tests.map_prods_hoaux :::: ('a \<times> 'b) \<times> 'c \<Rightarrow> 'a \<times> 'b \<times> 'c \<Rightarrow> bool ###defs definition Unity :: unit ("'(')") where "() = Abs_unit True" datatype (plugins only: extraction) (dead 'a) pred = Pred (eval: "'a \<Rightarrow> bool")
###output ?H1 x_1 x_2 \<Longrightarrow> ?H2 (?H3 x_1 x_2) ?H4###end
Deriv
Deriv.has_derivative_compose
lemma has_derivative_compose: "(f has_derivative f') (at x within s) \<Longrightarrow> (g has_derivative g') (at (f x)) \<Longrightarrow> ((\<lambda>x. g (f x)) has_derivative (\<lambda>x. g' (f' x))) (at x within s)"
(?f has_derivative ?f') (at ?x within ?s) \<Longrightarrow> (?g has_derivative ?g') (at (?f ?x)) \<Longrightarrow> ((\<lambda>x. ?g (?f x)) has_derivative (\<lambda>x. ?g' (?f' x))) (at ?x within ?s)
\<lbrakk> ?H1 x_1 x_2 (?H2 x_3 x_4); ?H1 x_5 x_6 (?H3 (x_1 x_3))\<rbrakk> \<Longrightarrow> ?H1 (\<lambda>y_0. x_5 (x_1 y_0)) (\<lambda>y_1. x_6 (x_2 y_1)) (?H2 x_3 x_4)
[ "Topological_Spaces.topological_space_class.at", "Topological_Spaces.topological_space_class.at_within", "Deriv.has_derivative" ]
[ "'a \\<Rightarrow> 'a filter", "'a \\<Rightarrow> 'a set \\<Rightarrow> 'a filter", "('a \\<Rightarrow> 'b) \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> 'a filter \\<Rightarrow> bool" ]
[ "class topological_space = \"open\" +\n assumes open_UNIV [simp, intro]: \"open UNIV\"\n assumes open_Int [intro]: \"open S \\<Longrightarrow> open T \\<Longrightarrow> open (S \\<inter> T)\"\n assumes open_Union [intro]: \"\\<forall>S\\<in>K. open S \\<Longrightarrow> open (\\<Union>K)\"\nbegin", "class topological_space = \"open\" +\n assumes open_UNIV [simp, intro]: \"open UNIV\"\n assumes open_Int [intro]: \"open S \\<Longrightarrow> open T \\<Longrightarrow> open (S \\<inter> T)\"\n assumes open_Union [intro]: \"\\<forall>S\\<in>K. open S \\<Longrightarrow> open (\\<Union>K)\"\nbegin", "definition has_derivative :: \"('a::real_normed_vector \\<Rightarrow> 'b::real_normed_vector) \\<Rightarrow>\n ('a \\<Rightarrow> 'b) \\<Rightarrow> 'a filter \\<Rightarrow> bool\" (infix \"(has'_derivative)\" 50)\n where \"(f has_derivative f') F \\<longleftrightarrow>\n bounded_linear f' \\<and>\n ((\\<lambda>y. ((f y - f (Lim F (\\<lambda>x. x))) - f' (y - Lim F (\\<lambda>x. x))) /\\<^sub>R norm (y - Lim F (\\<lambda>x. x))) \\<longlongrightarrow> 0) F\"" ]
template
###lemma (?f has_derivative ?f') (at ?x within ?s) \<Longrightarrow> (?g has_derivative ?g') (at (?f ?x)) \<Longrightarrow> ((\<lambda>x. ?g (?f x)) has_derivative (\<lambda>x. ?g' (?f' x))) (at ?x within ?s) ###symbols Topological_Spaces.topological_space_class.at :::: 'a \<Rightarrow> 'a filter Topological_Spaces.topological_space_class.at_within :::: 'a \<Rightarrow> 'a set \<Rightarrow> 'a filter Deriv.has_derivative :::: ('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a filter \<Rightarrow> bool ###defs class topological_space = "open" + assumes open_UNIV [simp, intro]: "open UNIV" assumes open_Int [intro]: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<inter> T)" assumes open_Union [intro]: "\<forall>S\<in>K. open S \<Longrightarrow> open (\<Union>K)" begin class topological_space = "open" + assumes open_UNIV [simp, intro]: "open UNIV" assumes open_Int [intro]: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<inter> T)" assumes open_Union [intro]: "\<forall>S\<in>K. open S \<Longrightarrow> open (\<Union>K)" begin definition has_derivative :: "('a::real_normed_vector \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a filter \<Rightarrow> bool" (infix "(has'_derivative)" 50) where "(f has_derivative f') F \<longleftrightarrow> bounded_linear f' \<and> ((\<lambda>y. ((f y - f (Lim F (\<lambda>x. x))) - f' (y - Lim F (\<lambda>x. x))) /\<^sub>R norm (y - Lim F (\<lambda>x. x))) \<longlongrightarrow> 0) F"
###output \<lbrakk> ?H1 x_1 x_2 (?H2 x_3 x_4); ?H1 x_5 x_6 (?H3 (x_1 x_3))\<rbrakk> \<Longrightarrow> ?H1 (\<lambda>y_0. x_5 (x_1 y_0)) (\<lambda>y_1. x_6 (x_2 y_1)) (?H2 x_3 x_4)###end
HOLCF/Tr
Transitive_Closure.irrefl_tranclI
null
?r\<inverse> \<inter> ?r\<^sup>* = {} \<Longrightarrow> (?x, ?x) \<notin> ?r\<^sup>+
?H1 (?H2 x_1) (?H3 x_1) = ?H4 \<Longrightarrow> ?H5 (x_2, x_2) (?H6 x_1)
[ "Transitive_Closure.trancl", "Set.not_member", "Set.empty", "Transitive_Closure.rtrancl", "Relation.converse", "Set.inter" ]
[ "('a \\<times> 'a) set \\<Rightarrow> ('a \\<times> 'a) set", "'a \\<Rightarrow> 'a set \\<Rightarrow> bool", "'a set", "('a \\<times> 'a) set \\<Rightarrow> ('a \\<times> 'a) set", "('a \\<times> 'b) set \\<Rightarrow> ('b \\<times> 'a) set", "'a set \\<Rightarrow> 'a set \\<Rightarrow> 'a set" ]
[ "inductive_set trancl :: \"('a \\<times> 'a) set \\<Rightarrow> ('a \\<times> 'a) set\" (\"(_\\<^sup>+)\" [1000] 999)\n for r :: \"('a \\<times> 'a) set\"\n where\n r_into_trancl [intro, Pure.intro]: \"(a, b) \\<in> r \\<Longrightarrow> (a, b) \\<in> r\\<^sup>+\"\n | trancl_into_trancl [Pure.intro]: \"(a, b) \\<in> r\\<^sup>+ \\<Longrightarrow> (b, c) \\<in> r \\<Longrightarrow> (a, c) \\<in> r\\<^sup>+\"", "abbreviation not_member\n where \"not_member x A \\<equiv> \\<not> (x \\<in> A)\" \\<comment> \\<open>non-membership\\<close>", "abbreviation empty :: \"'a set\" (\"{}\")\n where \"{} \\<equiv> bot\"", "inductive_set rtrancl :: \"('a \\<times> 'a) set \\<Rightarrow> ('a \\<times> 'a) set\" (\"(_\\<^sup>*)\" [1000] 999)\n for r :: \"('a \\<times> 'a) set\"\n where\n rtrancl_refl [intro!, Pure.intro!, simp]: \"(a, a) \\<in> r\\<^sup>*\"\n | rtrancl_into_rtrancl [Pure.intro]: \"(a, b) \\<in> r\\<^sup>* \\<Longrightarrow> (b, c) \\<in> r \\<Longrightarrow> (a, c) \\<in> r\\<^sup>*\"", "inductive_set converse :: \"('a \\<times> 'b) set \\<Rightarrow> ('b \\<times> 'a) set\" (\"(_\\<inverse>)\" [1000] 999)\n for r :: \"('a \\<times> 'b) set\"\n where \"(a, b) \\<in> r \\<Longrightarrow> (b, a) \\<in> r\\<inverse>\"", "abbreviation inter :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> 'a set\" (infixl \"\\<inter>\" 70)\n where \"(\\<inter>) \\<equiv> inf\"" ]
template
###lemma ?r\<inverse> \<inter> ?r\<^sup>* = {} \<Longrightarrow> (?x, ?x) \<notin> ?r\<^sup>+ ###symbols Transitive_Closure.trancl :::: ('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set Set.not_member :::: 'a \<Rightarrow> 'a set \<Rightarrow> bool Set.empty :::: 'a set Transitive_Closure.rtrancl :::: ('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set Relation.converse :::: ('a \<times> 'b) set \<Rightarrow> ('b \<times> 'a) set Set.inter :::: 'a set \<Rightarrow> 'a set \<Rightarrow> 'a set ###defs inductive_set trancl :: "('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set" ("(_\<^sup>+)" [1000] 999) for r :: "('a \<times> 'a) set" where r_into_trancl [intro, Pure.intro]: "(a, b) \<in> r \<Longrightarrow> (a, b) \<in> r\<^sup>+" | trancl_into_trancl [Pure.intro]: "(a, b) \<in> r\<^sup>+ \<Longrightarrow> (b, c) \<in> r \<Longrightarrow> (a, c) \<in> r\<^sup>+" abbreviation not_member where "not_member x A \<equiv> \<not> (x \<in> A)" \<comment> \<open>non-membership\<close> abbreviation empty :: "'a set" ("{}") where "{} \<equiv> bot" inductive_set rtrancl :: "('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set" ("(_\<^sup>*)" [1000] 999) for r :: "('a \<times> 'a) set" where rtrancl_refl [intro!, Pure.intro!, simp]: "(a, a) \<in> r\<^sup>*" | rtrancl_into_rtrancl [Pure.intro]: "(a, b) \<in> r\<^sup>* \<Longrightarrow> (b, c) \<in> r \<Longrightarrow> (a, c) \<in> r\<^sup>*" inductive_set converse :: "('a \<times> 'b) set \<Rightarrow> ('b \<times> 'a) set" ("(_\<inverse>)" [1000] 999) for r :: "('a \<times> 'b) set" where "(a, b) \<in> r \<Longrightarrow> (b, a) \<in> r\<inverse>" abbreviation inter :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "\<inter>" 70) where "(\<inter>) \<equiv> inf"
###output ?H1 (?H2 x_1) (?H3 x_1) = ?H4 \<Longrightarrow> ?H5 (x_2, x_2) (?H6 x_1)###end
SPARK/Examples/RIPEMD-160/F
Factorial.dvd_fact
null
1 \<le> ?m \<Longrightarrow> ?m \<le> ?n \<Longrightarrow> ?m dvd fact ?n
\<lbrakk> ?H1 \<le> x_1; x_1 \<le> x_2\<rbrakk> \<Longrightarrow> ?H2 x_1 (?H3 x_2)
[ "Factorial.semiring_char_0_class.fact", "Rings.dvd_class.dvd", "Groups.one_class.one" ]
[ "nat \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a \\<Rightarrow> bool", "'a" ]
[ "definition dvd :: \"'a \\<Rightarrow> 'a \\<Rightarrow> bool\" (infix \"dvd\" 50)\n where \"b dvd a \\<longleftrightarrow> (\\<exists>k. a = b * k)\"", "class one =\n fixes one :: 'a (\"1\")" ]
template
###lemma 1 \<le> ?m \<Longrightarrow> ?m \<le> ?n \<Longrightarrow> ?m dvd fact ?n ###symbols Factorial.semiring_char_0_class.fact :::: nat \<Rightarrow> 'a Rings.dvd_class.dvd :::: 'a \<Rightarrow> 'a \<Rightarrow> bool Groups.one_class.one :::: 'a ###defs definition dvd :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "dvd" 50) where "b dvd a \<longleftrightarrow> (\<exists>k. a = b * k)" class one = fixes one :: 'a ("1")
###output \<lbrakk> ?H1 \<le> x_1; x_1 \<le> x_2\<rbrakk> \<Longrightarrow> ?H2 x_1 (?H3 x_2)###end
Conditionally_Complete_Lattices
Conditionally_Complete_Lattices.cSup_greaterThanLessThan
lemma cSup_greaterThanLessThan[simp]: "y < x \<Longrightarrow> Sup {y<..<x::'a::{conditionally_complete_linorder, dense_linorder}} = x"
?y < ?x \<Longrightarrow> Sup { ?y<..< ?x} = ?x
x_1 < x_2 \<Longrightarrow> ?H1 (?H2 x_1 x_2) = x_2
[ "Set_Interval.ord_class.greaterThanLessThan", "Complete_Lattices.Sup_class.Sup" ]
[ "'a \\<Rightarrow> 'a \\<Rightarrow> 'a set", "'a set \\<Rightarrow> 'a" ]
[ "class Sup =\n fixes Sup :: \"'a set \\<Rightarrow> 'a\" (\"\\<Squnion> _\" [900] 900)" ]
template
###lemma ?y < ?x \<Longrightarrow> Sup { ?y<..< ?x} = ?x ###symbols Set_Interval.ord_class.greaterThanLessThan :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a set Complete_Lattices.Sup_class.Sup :::: 'a set \<Rightarrow> 'a ###defs class Sup = fixes Sup :: "'a set \<Rightarrow> 'a" ("\<Squnion> _" [900] 900)
###output x_1 < x_2 \<Longrightarrow> ?H1 (?H2 x_1 x_2) = x_2###end
Analysis/Henstock_Kurzweil_Integration
Henstock_Kurzweil_Integration.integral_reflect_real
lemma integral_reflect_real[simp]: "integral {-b .. -a} (\<lambda>x. f (-x)) = integral {a..b::real} f"
integral {- ?b..- ?a} (\<lambda>x. ?f (- x)) = integral { ?a.. ?b} ?f
?H1 (?H2 (?H3 x_1) (?H3 x_2)) (\<lambda>y_0. x_3 (?H3 y_0)) = ?H1 (?H2 x_2 x_1) x_3
[ "Groups.uminus_class.uminus", "Set_Interval.ord_class.atLeastAtMost", "Henstock_Kurzweil_Integration.integral" ]
[ "'a \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a set", "'a set \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> 'b" ]
[ "class uminus =\n fixes uminus :: \"'a \\<Rightarrow> 'a\" (\"- _\" [81] 80)", "definition \"integral i f = (SOME y. (f has_integral y) i \\<or> \\<not> f integrable_on i \\<and> y=0)\"" ]
template
###lemma integral {- ?b..- ?a} (\<lambda>x. ?f (- x)) = integral { ?a.. ?b} ?f ###symbols Groups.uminus_class.uminus :::: 'a \<Rightarrow> 'a Set_Interval.ord_class.atLeastAtMost :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a set Henstock_Kurzweil_Integration.integral :::: 'a set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'b ###defs class uminus = fixes uminus :: "'a \<Rightarrow> 'a" ("- _" [81] 80) definition "integral i f = (SOME y. (f has_integral y) i \<or> \<not> f integrable_on i \<and> y=0)"
###output ?H1 (?H2 (?H3 x_1) (?H3 x_2)) (\<lambda>y_0. x_3 (?H3 y_0)) = ?H1 (?H2 x_2 x_1) x_3###end
Algebra/Complete_Lattice
Complete_Lattices.SUP2_I
null
?a \<in> ?A \<Longrightarrow> ?B ?a ?b ?c \<Longrightarrow> Sup (?B ` ?A) ?b ?c
\<lbrakk>x_1 \<in> x_2; x_3 x_1 x_4 x_5\<rbrakk> \<Longrightarrow> ?H1 (?H2 x_3 x_2) x_4 x_5
[ "Set.image", "Complete_Lattices.Sup_class.Sup" ]
[ "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set", "'a set \\<Rightarrow> 'a" ]
[ "definition image :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set\" (infixr \"`\" 90)\n where \"f ` A = {y. \\<exists>x\\<in>A. y = f x}\"", "class Sup =\n fixes Sup :: \"'a set \\<Rightarrow> 'a\" (\"\\<Squnion> _\" [900] 900)" ]
template
###lemma ?a \<in> ?A \<Longrightarrow> ?B ?a ?b ?c \<Longrightarrow> Sup (?B ` ?A) ?b ?c ###symbols Set.image :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set Complete_Lattices.Sup_class.Sup :::: 'a set \<Rightarrow> 'a ###defs definition image :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set" (infixr "`" 90) where "f ` A = {y. \<exists>x\<in>A. y = f x}" class Sup = fixes Sup :: "'a set \<Rightarrow> 'a" ("\<Squnion> _" [900] 900)
###output \<lbrakk>x_1 \<in> x_2; x_3 x_1 x_4 x_5\<rbrakk> \<Longrightarrow> ?H1 (?H2 x_3 x_2) x_4 x_5###end
Analysis/Topology_Euclidean_Space
Topology_Euclidean_Space.closed_hyperplane
lemma closed_hyperplane: "closed {x. inner a x = b}"
closed {x. ?a \<bullet> x = ?b}
?H1 (?H2 (\<lambda>y_0. ?H3 x_1 y_0 = x_2))
[ "Inner_Product.real_inner_class.inner", "Set.Collect", "Topological_Spaces.topological_space_class.closed" ]
[ "'a \\<Rightarrow> 'a \\<Rightarrow> real", "('a \\<Rightarrow> bool) \\<Rightarrow> 'a set", "'a set \\<Rightarrow> bool" ]
[ "class real_inner = real_vector + sgn_div_norm + dist_norm + uniformity_dist + open_uniformity +\n fixes inner :: \"'a \\<Rightarrow> 'a \\<Rightarrow> real\"\n assumes inner_commute: \"inner x y = inner y x\"\n and inner_add_left: \"inner (x + y) z = inner x z + inner y z\"\n and inner_scaleR_left [simp]: \"inner (scaleR r x) y = r * (inner x y)\"\n and inner_ge_zero [simp]: \"0 \\<le> inner x x\"\n and inner_eq_zero_iff [simp]: \"inner x x = 0 \\<longleftrightarrow> x = 0\"\n and norm_eq_sqrt_inner: \"norm x = sqrt (inner x x)\"\nbegin", "class topological_space = \"open\" +\n assumes open_UNIV [simp, intro]: \"open UNIV\"\n assumes open_Int [intro]: \"open S \\<Longrightarrow> open T \\<Longrightarrow> open (S \\<inter> T)\"\n assumes open_Union [intro]: \"\\<forall>S\\<in>K. open S \\<Longrightarrow> open (\\<Union>K)\"\nbegin" ]
template
###lemma closed {x. ?a \<bullet> x = ?b} ###symbols Inner_Product.real_inner_class.inner :::: 'a \<Rightarrow> 'a \<Rightarrow> real Set.Collect :::: ('a \<Rightarrow> bool) \<Rightarrow> 'a set Topological_Spaces.topological_space_class.closed :::: 'a set \<Rightarrow> bool ###defs class real_inner = real_vector + sgn_div_norm + dist_norm + uniformity_dist + open_uniformity + fixes inner :: "'a \<Rightarrow> 'a \<Rightarrow> real" assumes inner_commute: "inner x y = inner y x" and inner_add_left: "inner (x + y) z = inner x z + inner y z" and inner_scaleR_left [simp]: "inner (scaleR r x) y = r * (inner x y)" and inner_ge_zero [simp]: "0 \<le> inner x x" and inner_eq_zero_iff [simp]: "inner x x = 0 \<longleftrightarrow> x = 0" and norm_eq_sqrt_inner: "norm x = sqrt (inner x x)" begin class topological_space = "open" + assumes open_UNIV [simp, intro]: "open UNIV" assumes open_Int [intro]: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<inter> T)" assumes open_Union [intro]: "\<forall>S\<in>K. open S \<Longrightarrow> open (\<Union>K)" begin
###output ?H1 (?H2 (\<lambda>y_0. ?H3 x_1 y_0 = x_2))###end
Metis_Examples/Tarski
Tarski.CompleteLatticeI
lemma CompleteLatticeI: "[| po \<in> PartialOrder; (\<forall>S. S \<subseteq> pset po --> (\<exists>L. isLub S po L)); (\<forall>S. S \<subseteq> pset po --> (\<exists>G. isGlb S po G))|] ==> po \<in> CompleteLattice"
?po \<in> PartialOrder \<Longrightarrow> \<forall>S\<subseteq>pset ?po. \<exists>L. isLub S ?po L \<Longrightarrow> \<forall>S\<subseteq>pset ?po. \<exists>G. isGlb S ?po G \<Longrightarrow> ?po \<in> CompleteLattice
\<lbrakk>x_1 \<in> ?H1; \<forall>y_0. ?H2 y_0 (?H3 x_1) \<longrightarrow> (\<exists>y_1. ?H4 y_0 x_1 y_1); \<forall>y_2. ?H2 y_2 (?H3 x_1) \<longrightarrow> (\<exists>y_3. ?H5 y_2 x_1 y_3)\<rbrakk> \<Longrightarrow> x_1 \<in> ?H6
[ "Tarski.CompleteLattice", "Tarski.isGlb", "Tarski.isLub", "Tarski.potype.pset", "Set.subset_eq", "Tarski.PartialOrder" ]
[ "'a potype set", "'a set \\<Rightarrow> 'a potype \\<Rightarrow> 'a \\<Rightarrow> bool", "'a set \\<Rightarrow> 'a potype \\<Rightarrow> 'a \\<Rightarrow> bool", "('a, 'b) potype_scheme \\<Rightarrow> 'a set", "'a set \\<Rightarrow> 'a set \\<Rightarrow> bool", "'a potype set" ]
[ "definition CompleteLattice :: \"('a potype) set\" where\n \"CompleteLattice == {cl. cl \\<in> PartialOrder \\<and>\n (\\<forall>S. S \\<subseteq> pset cl \\<longrightarrow> (\\<exists>L. isLub S cl L)) \\<and>\n (\\<forall>S. S \\<subseteq> pset cl \\<longrightarrow> (\\<exists>G. isGlb S cl G))}\"", "definition isGlb :: \"['a set, 'a potype, 'a] => bool\" where\n \"isGlb S po \\<equiv> \\<lambda>G. (G \\<in> pset po \\<and> (\\<forall>y\\<in>S. (G,y) \\<in> order po) \\<and>\n (\\<forall>z \\<in> pset po. (\\<forall>y\\<in>S. (z,y) \\<in> order po) \\<longrightarrow> (z,G) \\<in> order po))\"", "definition isLub :: \"['a set, 'a potype, 'a] => bool\" where\n \"isLub S po \\<equiv> \\<lambda>L. (L \\<in> pset po \\<and> (\\<forall>y\\<in>S. (y,L) \\<in> order po) \\<and>\n (\\<forall>z\\<in>pset po. (\\<forall>y\\<in>S. (y,z) \\<in> order po) \\<longrightarrow> (L,z) \\<in> order po))\"", "abbreviation subset_eq :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> bool\"\n where \"subset_eq \\<equiv> less_eq\"", "definition PartialOrder :: \"('a potype) set\" where\n \"PartialOrder == {P. refl_on (pset P) (order P) & antisym (order P) &\n trans (order P)}\"" ]
template
###lemma ?po \<in> PartialOrder \<Longrightarrow> \<forall>S\<subseteq>pset ?po. \<exists>L. isLub S ?po L \<Longrightarrow> \<forall>S\<subseteq>pset ?po. \<exists>G. isGlb S ?po G \<Longrightarrow> ?po \<in> CompleteLattice ###symbols Tarski.CompleteLattice :::: 'a potype set Tarski.isGlb :::: 'a set \<Rightarrow> 'a potype \<Rightarrow> 'a \<Rightarrow> bool Tarski.isLub :::: 'a set \<Rightarrow> 'a potype \<Rightarrow> 'a \<Rightarrow> bool Tarski.potype.pset :::: ('a, 'b) potype_scheme \<Rightarrow> 'a set Set.subset_eq :::: 'a set \<Rightarrow> 'a set \<Rightarrow> bool Tarski.PartialOrder :::: 'a potype set ###defs definition CompleteLattice :: "('a potype) set" where "CompleteLattice == {cl. cl \<in> PartialOrder \<and> (\<forall>S. S \<subseteq> pset cl \<longrightarrow> (\<exists>L. isLub S cl L)) \<and> (\<forall>S. S \<subseteq> pset cl \<longrightarrow> (\<exists>G. isGlb S cl G))}" definition isGlb :: "['a set, 'a potype, 'a] => bool" where "isGlb S po \<equiv> \<lambda>G. (G \<in> pset po \<and> (\<forall>y\<in>S. (G,y) \<in> order po) \<and> (\<forall>z \<in> pset po. (\<forall>y\<in>S. (z,y) \<in> order po) \<longrightarrow> (z,G) \<in> order po))" definition isLub :: "['a set, 'a potype, 'a] => bool" where "isLub S po \<equiv> \<lambda>L. (L \<in> pset po \<and> (\<forall>y\<in>S. (y,L) \<in> order po) \<and> (\<forall>z\<in>pset po. (\<forall>y\<in>S. (y,z) \<in> order po) \<longrightarrow> (L,z) \<in> order po))" abbreviation subset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where "subset_eq \<equiv> less_eq" definition PartialOrder :: "('a potype) set" where "PartialOrder == {P. refl_on (pset P) (order P) & antisym (order P) & trans (order P)}"
###output \<lbrakk>x_1 \<in> ?H1; \<forall>y_0. ?H2 y_0 (?H3 x_1) \<longrightarrow> (\<exists>y_1. ?H4 y_0 x_1 y_1); \<forall>y_2. ?H2 y_2 (?H3 x_1) \<longrightarrow> (\<exists>y_3. ?H5 y_2 x_1 y_3)\<rbrakk> \<Longrightarrow> x_1 \<in> ?H6###end
Analysis/Bochner_Integration
Bochner_Integration.integral_distr
lemma integral_distr: fixes f :: "'a \<Rightarrow> 'b::{banach, second_countable_topology}" assumes g[measurable]: "g \<in> measurable M N" and f: "f \<in> borel_measurable N" shows "integral\<^sup>L (distr M N g) f = integral\<^sup>L M (\<lambda>x. f (g x))"
?g \<in> ?M \<rightarrow>\<^sub>M ?N \<Longrightarrow> ?f \<in> borel_measurable ?N \<Longrightarrow> integral\<^sup>L (distr ?M ?N ?g) ?f = LINT x| ?M. ?f (?g x)
\<lbrakk>x_1 \<in> ?H1 x_2 x_3; x_4 \<in> ?H2 x_3\<rbrakk> \<Longrightarrow> ?H3 (?H4 x_2 x_3 x_1) x_4 = ?H3 x_2 (\<lambda>y_0. x_4 (x_1 y_0))
[ "Measure_Space.distr", "Bochner_Integration.lebesgue_integral", "Borel_Space.borel_measurable", "Sigma_Algebra.measurable" ]
[ "'a measure \\<Rightarrow> 'b measure \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> 'b measure", "'a measure \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> 'b", "'a measure \\<Rightarrow> ('a \\<Rightarrow> 'b) set", "'a measure \\<Rightarrow> 'b measure \\<Rightarrow> ('a \\<Rightarrow> 'b) set" ]
[ "abbreviation \"borel_measurable M \\<equiv> measurable M borel\"" ]
template
###lemma ?g \<in> ?M \<rightarrow>\<^sub>M ?N \<Longrightarrow> ?f \<in> borel_measurable ?N \<Longrightarrow> integral\<^sup>L (distr ?M ?N ?g) ?f = LINT x| ?M. ?f (?g x) ###symbols Measure_Space.distr :::: 'a measure \<Rightarrow> 'b measure \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'b measure Bochner_Integration.lebesgue_integral :::: 'a measure \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'b Borel_Space.borel_measurable :::: 'a measure \<Rightarrow> ('a \<Rightarrow> 'b) set Sigma_Algebra.measurable :::: 'a measure \<Rightarrow> 'b measure \<Rightarrow> ('a \<Rightarrow> 'b) set ###defs abbreviation "borel_measurable M \<equiv> measurable M borel"
###output \<lbrakk>x_1 \<in> ?H1 x_2 x_3; x_4 \<in> ?H2 x_3\<rbrakk> \<Longrightarrow> ?H3 (?H4 x_2 x_3 x_1) x_4 = ?H3 x_2 (\<lambda>y_0. x_4 (x_1 y_0))###end
Hilbert_Choice
Hilbert_Choice.choice
lemma choice: "\<forall>x. \<exists>y. Q x y \<Longrightarrow> \<exists>f. \<forall>x. Q x (f x)"
\<forall>x. \<exists>y. ?Q x y \<Longrightarrow> \<exists>f. \<forall>x. ?Q x (f x)
\<forall>y_0. \<exists>y_1. x_1 y_0 y_1 \<Longrightarrow> \<exists>y_2. \<forall>y_3. x_1 y_3 (y_2 y_3)
[]
[]
[]
template
###lemma \<forall>x. \<exists>y. ?Q x y \<Longrightarrow> \<exists>f. \<forall>x. ?Q x (f x) ###symbols ###defs
###output \<forall>y_0. \<exists>y_1. x_1 y_0 y_1 \<Longrightarrow> \<exists>y_2. \<forall>y_3. x_1 y_3 (y_2 y_3)###end
Nat
Nat.comp_funpow
lemma comp_funpow: "comp f ^^ n = comp (f ^^ n)" for f :: "'a \<Rightarrow> 'a"
(\<circ>) ?f ^^ ?n = (\<circ>) (?f ^^ ?n)
?H1 (?H2 x_1) x_2 = ?H2 (?H1 x_1 x_2)
[ "Fun.comp", "Nat.compower" ]
[ "('a \\<Rightarrow> 'b) \\<Rightarrow> ('c \\<Rightarrow> 'a) \\<Rightarrow> 'c \\<Rightarrow> 'b", "'a \\<Rightarrow> nat \\<Rightarrow> 'a" ]
[ "definition comp :: \"('b \\<Rightarrow> 'c) \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> 'a \\<Rightarrow> 'c\" (infixl \"\\<circ>\" 55)\n where \"f \\<circ> g = (\\<lambda>x. f (g x))\"", "abbreviation compower :: \"'a \\<Rightarrow> nat \\<Rightarrow> 'a\" (infixr \"^^\" 80)\n where \"f ^^ n \\<equiv> compow n f\"" ]
template
###lemma (\<circ>) ?f ^^ ?n = (\<circ>) (?f ^^ ?n) ###symbols Fun.comp :::: ('a \<Rightarrow> 'b) \<Rightarrow> ('c \<Rightarrow> 'a) \<Rightarrow> 'c \<Rightarrow> 'b Nat.compower :::: 'a \<Rightarrow> nat \<Rightarrow> 'a ###defs definition comp :: "('b \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'c" (infixl "\<circ>" 55) where "f \<circ> g = (\<lambda>x. f (g x))" abbreviation compower :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infixr "^^" 80) where "f ^^ n \<equiv> compow n f"
###output ?H1 (?H2 x_1) x_2 = ?H2 (?H1 x_1 x_2)###end
Bali/Decl
Decl.class_rec
lemma class_rec: "\<lbrakk>class G C = Some c; ws_prog G\<rbrakk> \<Longrightarrow> class_rec G C t f = f C c (if C = Object then t else class_rec G (super c) t f)"
class ?G ?C = Some ?c \<Longrightarrow> ws_prog ?G \<Longrightarrow> class_rec ?G ?C ?t ?f = ?f ?C ?c (if ?C = Object then ?t else class_rec ?G (super ?c) ?t ?f)
\<lbrakk> ?H1 x_1 x_2 = ?H2 x_3; ?H3 x_1\<rbrakk> \<Longrightarrow> ?H4 x_1 x_2 x_4 x_5 = x_5 x_2 x_3 (if x_2 = ?H5 then x_4 else ?H4 x_1 (?H6 x_3) x_4 x_5)
[ "Decl.class.super", "Name.Object", "Decl.class_rec", "Decl.ws_prog", "Option.option.Some", "Decl.class" ]
[ "'a class_scheme \\<Rightarrow> qtname", "qtname", "prog \\<Rightarrow> qtname \\<Rightarrow> 'a \\<Rightarrow> (qtname \\<Rightarrow> class \\<Rightarrow> 'a \\<Rightarrow> 'a) \\<Rightarrow> 'a", "prog \\<Rightarrow> bool", "'a \\<Rightarrow> 'a option", "prog \\<Rightarrow> qtname \\<Rightarrow> class option" ]
[ "abbreviation\n \"class\" :: \"prog \\<Rightarrow> (qtname, class) table\"\n where \"class G C == table_of (classes G) C\"", "definition\n Object :: qtname\n where \"Object = \\<lparr>pid = java_lang, tid = Object'\\<rparr>\"", "function\n class_rec :: \"prog \\<Rightarrow> qtname \\<Rightarrow> 'a \\<Rightarrow> (qtname \\<Rightarrow> class \\<Rightarrow> 'a \\<Rightarrow> 'a) \\<Rightarrow> 'a\"\nwhere\n[simp del]: \"class_rec G C t f = \n (case class G C of \n None \\<Rightarrow> undefined \n | Some c \\<Rightarrow> if ws_prog G \n then f C c \n (if C = Object then t \n else class_rec G (super c) t f)\n else undefined)\"", "definition\n ws_prog :: \"prog \\<Rightarrow> bool\" where\n \"ws_prog G = ((\\<forall>(I,i)\\<in>set (ifaces G). ws_idecl G I (isuperIfs i)) \\<and> \n (\\<forall>(C,c)\\<in>set (classes G). ws_cdecl G C (super c)))\"", "datatype 'a option =\n None\n | Some (the: 'a)", "abbreviation\n \"class\" :: \"prog \\<Rightarrow> (qtname, class) table\"\n where \"class G C == table_of (classes G) C\"" ]
template
###lemma class ?G ?C = Some ?c \<Longrightarrow> ws_prog ?G \<Longrightarrow> class_rec ?G ?C ?t ?f = ?f ?C ?c (if ?C = Object then ?t else class_rec ?G (super ?c) ?t ?f) ###symbols Decl.class.super :::: 'a class_scheme \<Rightarrow> qtname Name.Object :::: qtname Decl.class_rec :::: prog \<Rightarrow> qtname \<Rightarrow> 'a \<Rightarrow> (qtname \<Rightarrow> class \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> 'a Decl.ws_prog :::: prog \<Rightarrow> bool Option.option.Some :::: 'a \<Rightarrow> 'a option Decl.class :::: prog \<Rightarrow> qtname \<Rightarrow> class option ###defs abbreviation "class" :: "prog \<Rightarrow> (qtname, class) table" where "class G C == table_of (classes G) C" definition Object :: qtname where "Object = \<lparr>pid = java_lang, tid = Object'\<rparr>" function class_rec :: "prog \<Rightarrow> qtname \<Rightarrow> 'a \<Rightarrow> (qtname \<Rightarrow> class \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> 'a" where [simp del]: "class_rec G C t f = (case class G C of None \<Rightarrow> undefined | Some c \<Rightarrow> if ws_prog G then f C c (if C = Object then t else class_rec G (super c) t f) else undefined)" definition ws_prog :: "prog \<Rightarrow> bool" where "ws_prog G = ((\<forall>(I,i)\<in>set (ifaces G). ws_idecl G I (isuperIfs i)) \<and> (\<forall>(C,c)\<in>set (classes G). ws_cdecl G C (super c)))" datatype 'a option = None | Some (the: 'a) abbreviation "class" :: "prog \<Rightarrow> (qtname, class) table" where "class G C == table_of (classes G) C"
###output \<lbrakk> ?H1 x_1 x_2 = ?H2 x_3; ?H3 x_1\<rbrakk> \<Longrightarrow> ?H4 x_1 x_2 x_4 x_5 = x_5 x_2 x_3 (if x_2 = ?H5 then x_4 else ?H4 x_1 (?H6 x_3) x_4 x_5)###end
Library/Infinite_Set
Infinite_Set.finite_int_iff_bounded_le
null
finite ?S = (\<exists>k. abs ` ?S \<subseteq> {..k})
?H1 x_1 = (\<exists>y_0. ?H2 (?H3 ?H4 x_1) (?H5 y_0))
[ "Set_Interval.ord_class.atMost", "Groups.abs_class.abs", "Set.image", "Set.subset_eq", "Finite_Set.finite" ]
[ "'a \\<Rightarrow> 'a set", "'a \\<Rightarrow> 'a", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set", "'a set \\<Rightarrow> 'a set \\<Rightarrow> bool", "'a set \\<Rightarrow> bool" ]
[ "class abs =\n fixes abs :: \"'a \\<Rightarrow> 'a\" (\"\\<bar>_\\<bar>\")", "definition image :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set\" (infixr \"`\" 90)\n where \"f ` A = {y. \\<exists>x\\<in>A. y = f x}\"", "abbreviation subset_eq :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> bool\"\n where \"subset_eq \\<equiv> less_eq\"", "class finite =\n assumes finite_UNIV: \"finite (UNIV :: 'a set)\"\nbegin" ]
template
###lemma finite ?S = (\<exists>k. abs ` ?S \<subseteq> {..k}) ###symbols Set_Interval.ord_class.atMost :::: 'a \<Rightarrow> 'a set Groups.abs_class.abs :::: 'a \<Rightarrow> 'a Set.image :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set Set.subset_eq :::: 'a set \<Rightarrow> 'a set \<Rightarrow> bool Finite_Set.finite :::: 'a set \<Rightarrow> bool ###defs class abs = fixes abs :: "'a \<Rightarrow> 'a" ("\<bar>_\<bar>") definition image :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set" (infixr "`" 90) where "f ` A = {y. \<exists>x\<in>A. y = f x}" abbreviation subset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where "subset_eq \<equiv> less_eq" class finite = assumes finite_UNIV: "finite (UNIV :: 'a set)" begin
###output ?H1 x_1 = (\<exists>y_0. ?H2 (?H3 ?H4 x_1) (?H5 y_0))###end
Library/Disjoint_Sets
Disjoint_Sets.disjoint_family_on_bisimulation
lemma disjoint_family_on_bisimulation: assumes "disjoint_family_on f S" and "\<And>n m. n \<in> S \<Longrightarrow> m \<in> S \<Longrightarrow> n \<noteq> m \<Longrightarrow> f n \<inter> f m = {} \<Longrightarrow> g n \<inter> g m = {}" shows "disjoint_family_on g S"
disjoint_family_on ?f ?S \<Longrightarrow> (\<And>n m. n \<in> ?S \<Longrightarrow> m \<in> ?S \<Longrightarrow> n \<noteq> m \<Longrightarrow> ?f n \<inter> ?f m = {} \<Longrightarrow> ?g n \<inter> ?g m = {}) \<Longrightarrow> disjoint_family_on ?g ?S
\<lbrakk> ?H1 x_1 x_2; \<And>y_0 y_1. \<lbrakk>y_0 \<in> x_2; y_1 \<in> x_2; y_0 \<noteq> y_1; ?H2 (x_1 y_0) (x_1 y_1) = ?H3\<rbrakk> \<Longrightarrow> ?H2 (x_3 y_0) (x_3 y_1) = ?H3\<rbrakk> \<Longrightarrow> ?H1 x_3 x_2
[ "Set.empty", "Set.inter", "Disjoint_Sets.disjoint_family_on" ]
[ "'a set", "'a set \\<Rightarrow> 'a set \\<Rightarrow> 'a set", "('a \\<Rightarrow> 'b set) \\<Rightarrow> 'a set \\<Rightarrow> bool" ]
[ "abbreviation empty :: \"'a set\" (\"{}\")\n where \"{} \\<equiv> bot\"", "abbreviation inter :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> 'a set\" (infixl \"\\<inter>\" 70)\n where \"(\\<inter>) \\<equiv> inf\"", "definition disjoint_family_on :: \"('i \\<Rightarrow> 'a set) \\<Rightarrow> 'i set \\<Rightarrow> bool\" where\n \"disjoint_family_on A S \\<longleftrightarrow> (\\<forall>m\\<in>S. \\<forall>n\\<in>S. m \\<noteq> n \\<longrightarrow> A m \\<inter> A n = {})\"" ]
template
###lemma disjoint_family_on ?f ?S \<Longrightarrow> (\<And>n m. n \<in> ?S \<Longrightarrow> m \<in> ?S \<Longrightarrow> n \<noteq> m \<Longrightarrow> ?f n \<inter> ?f m = {} \<Longrightarrow> ?g n \<inter> ?g m = {}) \<Longrightarrow> disjoint_family_on ?g ?S ###symbols Set.empty :::: 'a set Set.inter :::: 'a set \<Rightarrow> 'a set \<Rightarrow> 'a set Disjoint_Sets.disjoint_family_on :::: ('a \<Rightarrow> 'b set) \<Rightarrow> 'a set \<Rightarrow> bool ###defs abbreviation empty :: "'a set" ("{}") where "{} \<equiv> bot" abbreviation inter :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "\<inter>" 70) where "(\<inter>) \<equiv> inf" definition disjoint_family_on :: "('i \<Rightarrow> 'a set) \<Rightarrow> 'i set \<Rightarrow> bool" where "disjoint_family_on A S \<longleftrightarrow> (\<forall>m\<in>S. \<forall>n\<in>S. m \<noteq> n \<longrightarrow> A m \<inter> A n = {})"
###output \<lbrakk> ?H1 x_1 x_2; \<And>y_0 y_1. \<lbrakk>y_0 \<in> x_2; y_1 \<in> x_2; y_0 \<noteq> y_1; ?H2 (x_1 y_0) (x_1 y_1) = ?H3\<rbrakk> \<Longrightarrow> ?H2 (x_3 y_0) (x_3 y_1) = ?H3\<rbrakk> \<Longrightarrow> ?H1 x_3 x_2###end
Analysis/Homotopy
Homotopy.homotopy_eqv_homotopic_triviality_null_imp
lemma homotopy_eqv_homotopic_triviality_null_imp: fixes S :: "'a::real_normed_vector set" and T :: "'b::real_normed_vector set" and U :: "'c::real_normed_vector set" assumes "S homotopy_eqv T" and f: "continuous_on U f" "f \<in> U \<rightarrow> T" and homSU: "\<And>f. \<lbrakk>continuous_on U f; f \<in> U \<rightarrow> S\<rbrakk> \<Longrightarrow> \<exists>c. homotopic_with_canon (\<lambda>x. True) U S f (\<lambda>x. c)" shows "\<exists>c. homotopic_with_canon (\<lambda>x. True) U T f (\<lambda>x. c)"
?S homotopy_eqv ?T \<Longrightarrow> continuous_on ?U ?f \<Longrightarrow> ?f \<in> ?U \<rightarrow> ?T \<Longrightarrow> (\<And>f. continuous_on ?U f \<Longrightarrow> f \<in> ?U \<rightarrow> ?S \<Longrightarrow> \<exists>c. homotopic_with_canon (\<lambda>x. True) ?U ?S f (\<lambda>x. c)) \<Longrightarrow> \<exists>c. homotopic_with_canon (\<lambda>x. True) ?U ?T ?f (\<lambda>x. c)
\<lbrakk> ?H1 x_1 x_2; ?H2 x_3 x_4; x_4 \<in> ?H3 x_3 x_2; \<And>y_0. \<lbrakk> ?H2 x_3 y_0; y_0 \<in> ?H3 x_3 x_1\<rbrakk> \<Longrightarrow> \<exists>y_1. ?H4 (\<lambda>y_2. True) x_3 x_1 y_0 (\<lambda>y_3. y_1)\<rbrakk> \<Longrightarrow> \<exists>y_4. ?H4 (\<lambda>y_5. True) x_3 x_2 x_4 (\<lambda>y_6. y_4)
[ "Homotopy.homotopic_with_canon", "FuncSet.funcset", "Topological_Spaces.continuous_on", "Homotopy.homotopy_eqv" ]
[ "(('a \\<Rightarrow> 'b) \\<Rightarrow> bool) \\<Rightarrow> 'a set \\<Rightarrow> 'b set \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> bool", "'a set \\<Rightarrow> 'b set \\<Rightarrow> ('a \\<Rightarrow> 'b) set", "'a set \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> bool", "'a set \\<Rightarrow> 'b set \\<Rightarrow> bool" ]
[ "abbreviation homotopic_with_canon ::\n \"[('a::topological_space \\<Rightarrow> 'b::topological_space) \\<Rightarrow> bool, 'a set, 'b set, 'a \\<Rightarrow> 'b, 'a \\<Rightarrow> 'b] \\<Rightarrow> bool\"\nwhere\n \"homotopic_with_canon P S T p q \\<equiv> homotopic_with P (top_of_set S) (top_of_set T) p q\"", "abbreviation funcset :: \"'a set \\<Rightarrow> 'b set \\<Rightarrow> ('a \\<Rightarrow> 'b) set\" (infixr \"\\<rightarrow>\" 60)\n where \"A \\<rightarrow> B \\<equiv> Pi A (\\<lambda>_. B)\"", "definition continuous_on :: \"'a set \\<Rightarrow> ('a::topological_space \\<Rightarrow> 'b::topological_space) \\<Rightarrow> bool\"\n where \"continuous_on s f \\<longleftrightarrow> (\\<forall>x\\<in>s. (f \\<longlongrightarrow> f x) (at x within s))\"" ]
template
###lemma ?S homotopy_eqv ?T \<Longrightarrow> continuous_on ?U ?f \<Longrightarrow> ?f \<in> ?U \<rightarrow> ?T \<Longrightarrow> (\<And>f. continuous_on ?U f \<Longrightarrow> f \<in> ?U \<rightarrow> ?S \<Longrightarrow> \<exists>c. homotopic_with_canon (\<lambda>x. True) ?U ?S f (\<lambda>x. c)) \<Longrightarrow> \<exists>c. homotopic_with_canon (\<lambda>x. True) ?U ?T ?f (\<lambda>x. c) ###symbols Homotopy.homotopic_with_canon :::: (('a \<Rightarrow> 'b) \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool FuncSet.funcset :::: 'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> 'b) set Topological_Spaces.continuous_on :::: 'a set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool Homotopy.homotopy_eqv :::: 'a set \<Rightarrow> 'b set \<Rightarrow> bool ###defs abbreviation homotopic_with_canon :: "[('a::topological_space \<Rightarrow> 'b::topological_space) \<Rightarrow> bool, 'a set, 'b set, 'a \<Rightarrow> 'b, 'a \<Rightarrow> 'b] \<Rightarrow> bool" where "homotopic_with_canon P S T p q \<equiv> homotopic_with P (top_of_set S) (top_of_set T) p q" abbreviation funcset :: "'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> 'b) set" (infixr "\<rightarrow>" 60) where "A \<rightarrow> B \<equiv> Pi A (\<lambda>_. B)" definition continuous_on :: "'a set \<Rightarrow> ('a::topological_space \<Rightarrow> 'b::topological_space) \<Rightarrow> bool" where "continuous_on s f \<longleftrightarrow> (\<forall>x\<in>s. (f \<longlongrightarrow> f x) (at x within s))"
###output \<lbrakk> ?H1 x_1 x_2; ?H2 x_3 x_4; x_4 \<in> ?H3 x_3 x_2; \<And>y_0. \<lbrakk> ?H2 x_3 y_0; y_0 \<in> ?H3 x_3 x_1\<rbrakk> \<Longrightarrow> \<exists>y_1. ?H4 (\<lambda>y_2. True) x_3 x_1 y_0 (\<lambda>y_3. y_1)\<rbrakk> \<Longrightarrow> \<exists>y_4. ?H4 (\<lambda>y_5. True) x_3 x_2 x_4 (\<lambda>y_6. y_4)###end
Nominal/Examples/Class1
Class1.subst_fresh(8)
lemma subst_fresh: fixes x::"name" and c::"coname" shows "x\<sharp>P \<Longrightarrow> x\<sharp>M{x:=<c>.P}" and "b\<sharp>P \<Longrightarrow> b\<sharp>M{b:=(y).P}" and "x\<sharp>(M,P) \<Longrightarrow> x\<sharp>M{y:=<c>.P}" and "x\<sharp>M \<Longrightarrow> x\<sharp>M{c:=(x).P}" and "x\<sharp>(M,P) \<Longrightarrow> x\<sharp>M{c:=(y).P}" and "b\<sharp>(M,P) \<Longrightarrow> b\<sharp>M{c:=(y).P}" and "b\<sharp>M \<Longrightarrow> b\<sharp>M{y:=<b>.P}" and "b\<sharp>(M,P) \<Longrightarrow> b\<sharp>M{y:=<c>.P}"
?b \<sharp> (?M, ?P) \<Longrightarrow> ?b \<sharp> ?M{ ?y:=< ?c>. ?P}
?H1 x_1 (x_2, x_3) \<Longrightarrow> ?H1 x_1 (?H2 x_2 x_4 x_5 x_3)
[ "Class1.substn", "Nominal.fresh" ]
[ "trm \\<Rightarrow> name \\<Rightarrow> coname \\<Rightarrow> trm \\<Rightarrow> trm", "'a \\<Rightarrow> 'b \\<Rightarrow> bool" ]
[ "definition fresh :: \"'x \\<Rightarrow> 'a \\<Rightarrow> bool\" (\\<open>_ \\<sharp> _\\<close> [80,80] 80) where\n \"a \\<sharp> x \\<longleftrightarrow> a \\<notin> supp x\"" ]
template
###lemma ?b \<sharp> (?M, ?P) \<Longrightarrow> ?b \<sharp> ?M{ ?y:=< ?c>. ?P} ###symbols Class1.substn :::: trm \<Rightarrow> name \<Rightarrow> coname \<Rightarrow> trm \<Rightarrow> trm Nominal.fresh :::: 'a \<Rightarrow> 'b \<Rightarrow> bool ###defs definition fresh :: "'x \<Rightarrow> 'a \<Rightarrow> bool" (\<open>_ \<sharp> _\<close> [80,80] 80) where "a \<sharp> x \<longleftrightarrow> a \<notin> supp x"
###output ?H1 x_1 (x_2, x_3) \<Longrightarrow> ?H1 x_1 (?H2 x_2 x_4 x_5 x_3)###end
Decision_Procs/Approximation
Approximation.approximation_preproc_nat(6)
lemma approximation_preproc_nat[approximation_preproc]: "real 0 = real_of_float 0" "real 1 = real_of_float 1" "real (i + j) = real i + real j" "real (i - j) = max (real i - real j) 0" "real (i * j) = real i * real j" "real (i div j) = real_of_int (floor (real i / real j))" "real (min i j) = min (real i) (real j)" "real (max i j) = max (real i) (real j)" "real (i ^ n) = (real i) ^ n" "real (numeral a) = real_of_float (numeral a)" "i mod j = i - i div j * j" "n = m \<longleftrightarrow> real n = real m" "n \<le> m \<longleftrightarrow> real n \<le> real m" "n < m \<longleftrightarrow> real n < real m" "n \<in> {m .. l} \<longleftrightarrow> real n \<in> {real m .. real l}"
real (?i div ?j) = real_of_int \<lfloor>real ?i / real ?j\<rfloor>
?H1 (?H2 x_1 x_2) = ?H3 (?H4 (?H5 (?H1 x_1) (?H1 x_2)))
[ "Fields.inverse_class.inverse_divide", "Archimedean_Field.floor_ceiling_class.floor", "Real.real_of_int", "Rings.divide_class.divide", "Real.real" ]
[ "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a \\<Rightarrow> int", "int \\<Rightarrow> real", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "nat \\<Rightarrow> real" ]
[ "class inverse = divide +\n fixes inverse :: \"'a \\<Rightarrow> 'a\"\nbegin", "class floor_ceiling = archimedean_field +\n fixes floor :: \"'a \\<Rightarrow> int\" (\"\\<lfloor>_\\<rfloor>\")\n assumes floor_correct: \"of_int \\<lfloor>x\\<rfloor> \\<le> x \\<and> x < of_int (\\<lfloor>x\\<rfloor> + 1)\"", "abbreviation real_of_int :: \"int \\<Rightarrow> real\"\n where \"real_of_int \\<equiv> of_int\"", "class divide =\n fixes divide :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"div\" 70)", "abbreviation real :: \"nat \\<Rightarrow> real\"\n where \"real \\<equiv> of_nat\"" ]
template
###lemma real (?i div ?j) = real_of_int \<lfloor>real ?i / real ?j\<rfloor> ###symbols Fields.inverse_class.inverse_divide :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Archimedean_Field.floor_ceiling_class.floor :::: 'a \<Rightarrow> int Real.real_of_int :::: int \<Rightarrow> real Rings.divide_class.divide :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Real.real :::: nat \<Rightarrow> real ###defs class inverse = divide + fixes inverse :: "'a \<Rightarrow> 'a" begin class floor_ceiling = archimedean_field + fixes floor :: "'a \<Rightarrow> int" ("\<lfloor>_\<rfloor>") assumes floor_correct: "of_int \<lfloor>x\<rfloor> \<le> x \<and> x < of_int (\<lfloor>x\<rfloor> + 1)" abbreviation real_of_int :: "int \<Rightarrow> real" where "real_of_int \<equiv> of_int" class divide = fixes divide :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "div" 70) abbreviation real :: "nat \<Rightarrow> real" where "real \<equiv> of_nat"
###output ?H1 (?H2 x_1 x_2) = ?H3 (?H4 (?H5 (?H1 x_1) (?H1 x_2)))###end
SET_Protocol/Public_SET
Public_SET.analz_image_keys_simps(21)
null
(?P \<and> True) = ?P
(x_1 \<and> True) = x_1
[]
[]
[]
template
###lemma (?P \<and> True) = ?P ###symbols ###defs
###output (x_1 \<and> True) = x_1###end
Computational_Algebra/Polynomial
Polynomial.degree_linear_power
lemma degree_linear_power: "degree ([:a, 1:] ^ n) = n" for a :: "'a::comm_semiring_1"
degree ([: ?a, 1:: ?'a:] ^ ?n) = ?n
?H1 (?H2 (?H3 x_1 (?H3 ?H4 ?H5)) x_2) = x_2
[ "Groups.zero_class.zero", "Groups.one_class.one", "Polynomial.pCons", "Power.power_class.power", "Polynomial.degree" ]
[ "'a", "'a", "'a \\<Rightarrow> 'a poly \\<Rightarrow> 'a poly", "'a \\<Rightarrow> nat \\<Rightarrow> 'a", "'a poly \\<Rightarrow> nat" ]
[ "class zero =\n fixes zero :: 'a (\"0\")", "class one =\n fixes one :: 'a (\"1\")", "primrec power :: \"'a \\<Rightarrow> nat \\<Rightarrow> 'a\" (infixr \"^\" 80)\n where\n power_0: \"a ^ 0 = 1\"\n | power_Suc: \"a ^ Suc n = a * a ^ n\"", "definition degree :: \"'a::zero poly \\<Rightarrow> nat\"\n where \"degree p = (LEAST n. \\<forall>i>n. coeff p i = 0)\"" ]
template
###lemma degree ([: ?a, 1:: ?'a:] ^ ?n) = ?n ###symbols Groups.zero_class.zero :::: 'a Groups.one_class.one :::: 'a Polynomial.pCons :::: 'a \<Rightarrow> 'a poly \<Rightarrow> 'a poly Power.power_class.power :::: 'a \<Rightarrow> nat \<Rightarrow> 'a Polynomial.degree :::: 'a poly \<Rightarrow> nat ###defs class zero = fixes zero :: 'a ("0") class one = fixes one :: 'a ("1") primrec power :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infixr "^" 80) where power_0: "a ^ 0 = 1" | power_Suc: "a ^ Suc n = a * a ^ n" definition degree :: "'a::zero poly \<Rightarrow> nat" where "degree p = (LEAST n. \<forall>i>n. coeff p i = 0)"
###output ?H1 (?H2 (?H3 x_1 (?H3 ?H4 ?H5)) x_2) = x_2###end
Computational_Algebra/Formal_Power_Series
Formal_Power_Series.fps_X_power_iff
lemma fps_X_power_iff: "fps_X ^ n = Abs_fps (\<lambda>m. if m = n then 1 else 0)"
fps_X ^ ?n = Abs_fps (\<lambda>m. if m = ?n then 1:: ?'a else (0:: ?'a))
?H1 ?H2 x_1 = ?H3 (\<lambda>y_0. if y_0 = x_1 then ?H4 else ?H5)
[ "Groups.zero_class.zero", "Groups.one_class.one", "Formal_Power_Series.fps.Abs_fps", "Formal_Power_Series.fps_X", "Power.power_class.power" ]
[ "'a", "'a", "(nat \\<Rightarrow> 'a) \\<Rightarrow> 'a fps", "'a fps", "'a \\<Rightarrow> nat \\<Rightarrow> 'a" ]
[ "class zero =\n fixes zero :: 'a (\"0\")", "class one =\n fixes one :: 'a (\"1\")", "definition \"fps_X = Abs_fps (\\<lambda>n. if n = 1 then 1 else 0)\"", "primrec power :: \"'a \\<Rightarrow> nat \\<Rightarrow> 'a\" (infixr \"^\" 80)\n where\n power_0: \"a ^ 0 = 1\"\n | power_Suc: \"a ^ Suc n = a * a ^ n\"" ]
template
###lemma fps_X ^ ?n = Abs_fps (\<lambda>m. if m = ?n then 1:: ?'a else (0:: ?'a)) ###symbols Groups.zero_class.zero :::: 'a Groups.one_class.one :::: 'a Formal_Power_Series.fps.Abs_fps :::: (nat \<Rightarrow> 'a) \<Rightarrow> 'a fps Formal_Power_Series.fps_X :::: 'a fps Power.power_class.power :::: 'a \<Rightarrow> nat \<Rightarrow> 'a ###defs class zero = fixes zero :: 'a ("0") class one = fixes one :: 'a ("1") definition "fps_X = Abs_fps (\<lambda>n. if n = 1 then 1 else 0)" primrec power :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infixr "^" 80) where power_0: "a ^ 0 = 1" | power_Suc: "a ^ Suc n = a * a ^ n"
###output ?H1 ?H2 x_1 = ?H3 (\<lambda>y_0. if y_0 = x_1 then ?H4 else ?H5)###end
Hilbert_Choice
Hilbert_Choice.infinite_imp_bij_betw2
lemma infinite_imp_bij_betw2: assumes "\<not> finite A" shows "\<exists>h. bij_betw h A (A \<union> {a})"
infinite ?A \<Longrightarrow> \<exists>h. bij_betw h ?A (?A \<union> { ?a})
?H1 x_1 \<Longrightarrow> \<exists>y_0. ?H2 y_0 x_1 (?H3 x_1 (?H4 x_2 ?H5))
[ "Set.empty", "Set.insert", "Set.union", "Fun.bij_betw", "Finite_Set.infinite" ]
[ "'a set", "'a \\<Rightarrow> 'a set \\<Rightarrow> 'a set", "'a set \\<Rightarrow> 'a set \\<Rightarrow> 'a set", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set \\<Rightarrow> bool", "'a set \\<Rightarrow> bool" ]
[ "abbreviation empty :: \"'a set\" (\"{}\")\n where \"{} \\<equiv> bot\"", "definition insert :: \"'a \\<Rightarrow> 'a set \\<Rightarrow> 'a set\"\n where insert_compr: \"insert a B = {x. x = a \\<or> x \\<in> B}\"", "abbreviation union :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> 'a set\" (infixl \"\\<union>\" 65)\n where \"union \\<equiv> sup\"", "definition bij_betw :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set \\<Rightarrow> bool\" \\<comment> \\<open>bijective\\<close>\n where \"bij_betw f A B \\<longleftrightarrow> inj_on f A \\<and> f ` A = B\"", "abbreviation infinite :: \"'a set \\<Rightarrow> bool\"\n where \"infinite S \\<equiv> \\<not> finite S\"" ]
template
###lemma infinite ?A \<Longrightarrow> \<exists>h. bij_betw h ?A (?A \<union> { ?a}) ###symbols Set.empty :::: 'a set Set.insert :::: 'a \<Rightarrow> 'a set \<Rightarrow> 'a set Set.union :::: 'a set \<Rightarrow> 'a set \<Rightarrow> 'a set Fun.bij_betw :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> bool Finite_Set.infinite :::: 'a set \<Rightarrow> bool ###defs abbreviation empty :: "'a set" ("{}") where "{} \<equiv> bot" definition insert :: "'a \<Rightarrow> 'a set \<Rightarrow> 'a set" where insert_compr: "insert a B = {x. x = a \<or> x \<in> B}" abbreviation union :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "\<union>" 65) where "union \<equiv> sup" definition bij_betw :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> bool" \<comment> \<open>bijective\<close> where "bij_betw f A B \<longleftrightarrow> inj_on f A \<and> f ` A = B" abbreviation infinite :: "'a set \<Rightarrow> bool" where "infinite S \<equiv> \<not> finite S"
###output ?H1 x_1 \<Longrightarrow> \<exists>y_0. ?H2 y_0 x_1 (?H3 x_1 (?H4 x_2 ?H5))###end
Hoare_Parallel/OG_Tran
OG_Tran.L3_5v_lemma1
lemma L3_5v_lemma1[rule_format]: "(S,s) -Pn\<rightarrow> (T,t) \<longrightarrow> S=\<Omega> \<longrightarrow> (\<not>(\<exists>Rs. T=(Parallel Rs) \<and> All_None Rs))"
(?S, ?s) -P ?n\<rightarrow> (?T, ?t) \<Longrightarrow> ?S = \<Omega> \<Longrightarrow> \<nexists>Rs. ?T = Parallel Rs \<and> All_None Rs
\<lbrakk> ?H1 (x_1, x_2) x_3 (x_4, x_5); x_1 = ?H2\<rbrakk> \<Longrightarrow> \<nexists>y_0. x_4 = ?H3 y_0 \<and> ?H4 y_0
[ "OG_Tran.All_None", "OG_Com.com.Parallel", "OG_Tran.Omega", "OG_Tran.transition_n" ]
[ "('a ann_com option \\<times> 'a set) list \\<Rightarrow> bool", "('a ann_com option \\<times> 'a set) list \\<Rightarrow> 'a com", "'a com", "'a com \\<times> 'a \\<Rightarrow> nat \\<Rightarrow> 'a com \\<times> 'a \\<Rightarrow> bool" ]
[ "definition All_None :: \"'a ann_triple_op list \\<Rightarrow> bool\" where\n \"All_None Ts \\<equiv> \\<forall>(c, q) \\<in> set Ts. c = None\"", "abbreviation Omega :: \"'a com\" (\"\\<Omega>\" 63)\n where \"\\<Omega> \\<equiv> While UNIV UNIV (Basic id)\"", "abbreviation\n transition_n :: \"('a com \\<times> 'a) \\<Rightarrow> nat \\<Rightarrow> ('a com \\<times> 'a) \\<Rightarrow> bool\"\n (\"_ -P_\\<rightarrow> _\"[81,81,81] 100) where\n \"con_0 -Pn\\<rightarrow> con_1 \\<equiv> (con_0, con_1) \\<in> transition ^^ n\"" ]
template
###lemma (?S, ?s) -P ?n\<rightarrow> (?T, ?t) \<Longrightarrow> ?S = \<Omega> \<Longrightarrow> \<nexists>Rs. ?T = Parallel Rs \<and> All_None Rs ###symbols OG_Tran.All_None :::: ('a ann_com option \<times> 'a set) list \<Rightarrow> bool OG_Com.com.Parallel :::: ('a ann_com option \<times> 'a set) list \<Rightarrow> 'a com OG_Tran.Omega :::: 'a com OG_Tran.transition_n :::: 'a com \<times> 'a \<Rightarrow> nat \<Rightarrow> 'a com \<times> 'a \<Rightarrow> bool ###defs definition All_None :: "'a ann_triple_op list \<Rightarrow> bool" where "All_None Ts \<equiv> \<forall>(c, q) \<in> set Ts. c = None" abbreviation Omega :: "'a com" ("\<Omega>" 63) where "\<Omega> \<equiv> While UNIV UNIV (Basic id)" abbreviation transition_n :: "('a com \<times> 'a) \<Rightarrow> nat \<Rightarrow> ('a com \<times> 'a) \<Rightarrow> bool" ("_ -P_\<rightarrow> _"[81,81,81] 100) where "con_0 -Pn\<rightarrow> con_1 \<equiv> (con_0, con_1) \<in> transition ^^ n"
###output \<lbrakk> ?H1 (x_1, x_2) x_3 (x_4, x_5); x_1 = ?H2\<rbrakk> \<Longrightarrow> \<nexists>y_0. x_4 = ?H3 y_0 \<and> ?H4 y_0###end
Library/Multiset_Order
Multiset_Order.le_multiset_empty_right
lemma le_multiset_empty_right[simp]: "\<not> M < {#}"
\<not> ?M < {#}
\<not> x_1 < ?H1
[ "Multiset.empty_mset" ]
[ "'a multiset" ]
[ "abbreviation empty_mset :: \\<open>'a multiset\\<close> (\\<open>{#}\\<close>)\n where \\<open>empty_mset \\<equiv> 0\\<close>" ]
template
###lemma \<not> ?M < {#} ###symbols Multiset.empty_mset :::: 'a multiset ###defs abbreviation empty_mset :: \<open>'a multiset\<close> (\<open>{#}\<close>) where \<open>empty_mset \<equiv> 0\<close>
###output \<not> x_1 < ?H1###end
Matrix_LP/Matrix
Matrix.max1
lemma max1: "!! a x y. (a::nat) <= x \<Longrightarrow> a <= max x y"
?a \<le> ?x \<Longrightarrow> ?a \<le> max ?x ?y
x_1 \<le> x_2 \<Longrightarrow> x_1 \<le> ?H1 x_2 x_3
[ "Orderings.ord_class.max" ]
[ "'a \\<Rightarrow> 'a \\<Rightarrow> 'a" ]
[ "class ord =\n fixes less_eq :: \"'a \\<Rightarrow> 'a \\<Rightarrow> bool\"\n and less :: \"'a \\<Rightarrow> 'a \\<Rightarrow> bool\"\nbegin" ]
template
###lemma ?a \<le> ?x \<Longrightarrow> ?a \<le> max ?x ?y ###symbols Orderings.ord_class.max :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a ###defs class ord = fixes less_eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool" and less :: "'a \<Rightarrow> 'a \<Rightarrow> bool" begin
###output x_1 \<le> x_2 \<Longrightarrow> x_1 \<le> ?H1 x_2 x_3###end
MicroJava/BV/Effect
Effect.appLoad
lemma appLoad[simp]: "(app (Load idx) G maxs rT pc et (Some s)) = (\<exists>ST LT. s = (ST,LT) \<and> idx < length LT \<and> LT!idx \<noteq> Err \<and> length ST < maxs)"
app (Load ?idx) ?G ?maxs ?rT ?pc ?et (Some ?s) = (\<exists>ST LT. ?s = (ST, LT) \<and> ?idx < length LT \<and> LT ! ?idx \<noteq> Err \<and> length ST < ?maxs)
?H1 (?H2 x_1) x_2 x_3 x_4 x_5 x_6 (?H3 x_7) = (\<exists>y_0 y_1. x_7 = (y_0, y_1) \<and> x_1 < ?H4 y_1 \<and> ?H5 y_1 x_1 \<noteq> ?H6 \<and> ?H4 y_0 < x_3)
[ "Err.err.Err", "List.nth", "List.length", "Option.option.Some", "JVMInstructions.instr.Load", "Effect.app" ]
[ "'a err", "'a list \\<Rightarrow> nat \\<Rightarrow> 'a", "'a list \\<Rightarrow> nat", "'a \\<Rightarrow> 'a option", "nat \\<Rightarrow> instr", "instr \\<Rightarrow> (nat \\<times> nat \\<times> instr list \\<times> (nat \\<times> nat \\<times> nat \\<times> cname) list) prog \\<Rightarrow> nat \\<Rightarrow> ty \\<Rightarrow> nat \\<Rightarrow> (nat \\<times> nat \\<times> nat \\<times> cname) list \\<Rightarrow> (ty list \\<times> ty err list) option \\<Rightarrow> bool" ]
[ "primrec (nonexhaustive) nth :: \"'a list => nat => 'a\" (infixl \"!\" 100) where\nnth_Cons: \"(x # xs) ! n = (case n of 0 \\<Rightarrow> x | Suc k \\<Rightarrow> xs ! k)\"\n \\<comment> \\<open>Warning: simpset does not contain this definition, but separate\n theorems for \\<open>n = 0\\<close> and \\<open>n = Suc k\\<close>\\<close>", "abbreviation length :: \"'a list \\<Rightarrow> nat\" where\n\"length \\<equiv> size\"", "datatype 'a option =\n None\n | Some (the: 'a)" ]
template
###lemma app (Load ?idx) ?G ?maxs ?rT ?pc ?et (Some ?s) = (\<exists>ST LT. ?s = (ST, LT) \<and> ?idx < length LT \<and> LT ! ?idx \<noteq> Err \<and> length ST < ?maxs) ###symbols Err.err.Err :::: 'a err List.nth :::: 'a list \<Rightarrow> nat \<Rightarrow> 'a List.length :::: 'a list \<Rightarrow> nat Option.option.Some :::: 'a \<Rightarrow> 'a option JVMInstructions.instr.Load :::: nat \<Rightarrow> instr Effect.app :::: instr \<Rightarrow> (nat \<times> nat \<times> instr list \<times> (nat \<times> nat \<times> nat \<times> cname) list) prog \<Rightarrow> nat \<Rightarrow> ty \<Rightarrow> nat \<Rightarrow> (nat \<times> nat \<times> nat \<times> cname) list \<Rightarrow> (ty list \<times> ty err list) option \<Rightarrow> bool ###defs primrec (nonexhaustive) nth :: "'a list => nat => 'a" (infixl "!" 100) where nth_Cons: "(x # xs) ! n = (case n of 0 \<Rightarrow> x | Suc k \<Rightarrow> xs ! k)" \<comment> \<open>Warning: simpset does not contain this definition, but separate theorems for \<open>n = 0\<close> and \<open>n = Suc k\<close>\<close> abbreviation length :: "'a list \<Rightarrow> nat" where "length \<equiv> size" datatype 'a option = None | Some (the: 'a)
###output ?H1 (?H2 x_1) x_2 x_3 x_4 x_5 x_6 (?H3 x_7) = (\<exists>y_0 y_1. x_7 = (y_0, y_1) \<and> x_1 < ?H4 y_1 \<and> ?H5 y_1 x_1 \<noteq> ?H6 \<and> ?H4 y_0 < x_3)###end
Nominal/Examples/CK_Machine
CK_Machine.perm_swap(2)
null
[(?a, ?b)] \<bullet> [(?b, ?a)] \<bullet> ?x = ?x
?H1 (?H2 (x_1, x_2) ?H3) (?H1 (?H2 (x_2, x_1) ?H3) x_3) = x_3
[ "List.list.Nil", "List.list.Cons", "Nominal.perm" ]
[ "'a list", "'a \\<Rightarrow> 'a list \\<Rightarrow> 'a list", "('a \\<times> 'a) list \\<Rightarrow> 'b \\<Rightarrow> 'b" ]
[ "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "consts \n perm :: \"'x prm \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixr \\<open>\\<bullet>\\<close> 80)\n swap :: \"('x \\<times> 'x) \\<Rightarrow> 'x \\<Rightarrow> 'x\"" ]
template
###lemma [(?a, ?b)] \<bullet> [(?b, ?a)] \<bullet> ?x = ?x ###symbols List.list.Nil :::: 'a list List.list.Cons :::: 'a \<Rightarrow> 'a list \<Rightarrow> 'a list Nominal.perm :::: ('a \<times> 'a) list \<Rightarrow> 'b \<Rightarrow> 'b ###defs datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" consts perm :: "'x prm \<Rightarrow> 'a \<Rightarrow> 'a" (infixr \<open>\<bullet>\<close> 80) swap :: "('x \<times> 'x) \<Rightarrow> 'x \<Rightarrow> 'x"
###output ?H1 (?H2 (x_1, x_2) ?H3) (?H1 (?H2 (x_2, x_1) ?H3) x_3) = x_3###end
Analysis/Elementary_Topology
Elementary_Topology.real_affinity_lt
lemma real_affinity_lt: "0 < m \<Longrightarrow> m * x + c < y \<longleftrightarrow> x < inverse m * y + - (c / m)" for m :: "'a::linordered_field"
(0:: ?'a) < ?m \<Longrightarrow> (?m * ?x + ?c < ?y) = (?x < inverse ?m * ?y + - (?c / ?m))
?H1 < x_1 \<Longrightarrow> (?H2 (?H3 x_1 x_2) x_3 < x_4) = (x_2 < ?H2 (?H3 (?H4 x_1) x_4) (?H5 (?H6 x_3 x_1)))
[ "Fields.inverse_class.inverse_divide", "Groups.uminus_class.uminus", "Fields.inverse_class.inverse", "Groups.times_class.times", "Groups.plus_class.plus", "Groups.zero_class.zero" ]
[ "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a" ]
[ "class inverse = divide +\n fixes inverse :: \"'a \\<Rightarrow> 'a\"\nbegin", "class uminus =\n fixes uminus :: \"'a \\<Rightarrow> 'a\" (\"- _\" [81] 80)", "class inverse = divide +\n fixes inverse :: \"'a \\<Rightarrow> 'a\"\nbegin", "class times =\n fixes times :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"*\" 70)", "class plus =\n fixes plus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"+\" 65)", "class zero =\n fixes zero :: 'a (\"0\")" ]
template
###lemma (0:: ?'a) < ?m \<Longrightarrow> (?m * ?x + ?c < ?y) = (?x < inverse ?m * ?y + - (?c / ?m)) ###symbols Fields.inverse_class.inverse_divide :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Groups.uminus_class.uminus :::: 'a \<Rightarrow> 'a Fields.inverse_class.inverse :::: 'a \<Rightarrow> 'a Groups.times_class.times :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Groups.plus_class.plus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Groups.zero_class.zero :::: 'a ###defs class inverse = divide + fixes inverse :: "'a \<Rightarrow> 'a" begin class uminus = fixes uminus :: "'a \<Rightarrow> 'a" ("- _" [81] 80) class inverse = divide + fixes inverse :: "'a \<Rightarrow> 'a" begin class times = fixes times :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "*" 70) class plus = fixes plus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "+" 65) class zero = fixes zero :: 'a ("0")
###output ?H1 < x_1 \<Longrightarrow> (?H2 (?H3 x_1 x_2) x_3 < x_4) = (x_2 < ?H2 (?H3 (?H4 x_1) x_4) (?H5 (?H6 x_3 x_1)))###end
IMP/Complete_Lattice
Complete_Lattices.INTER_UNIV_conv(2)
null
(\<Inter> (?B ` ?A) = UNIV) = (\<forall>x\<in> ?A. ?B x = UNIV)
(?H1 (?H2 x_1 x_2) = ?H3) = (\<forall>y_1\<in>x_2. x_1 y_1 = ?H3)
[ "Set.UNIV", "Set.image", "Complete_Lattices.Inter" ]
[ "'a set", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set", "'a set set \\<Rightarrow> 'a set" ]
[ "abbreviation UNIV :: \"'a set\"\n where \"UNIV \\<equiv> top\"", "definition image :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set\" (infixr \"`\" 90)\n where \"f ` A = {y. \\<exists>x\\<in>A. y = f x}\"", "abbreviation Inter :: \"'a set set \\<Rightarrow> 'a set\" (\"\\<Inter>\")\n where \"\\<Inter>S \\<equiv> \\<Sqinter>S\"" ]
template
###lemma (\<Inter> (?B ` ?A) = UNIV) = (\<forall>x\<in> ?A. ?B x = UNIV) ###symbols Set.UNIV :::: 'a set Set.image :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set Complete_Lattices.Inter :::: 'a set set \<Rightarrow> 'a set ###defs abbreviation UNIV :: "'a set" where "UNIV \<equiv> top" definition image :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set" (infixr "`" 90) where "f ` A = {y. \<exists>x\<in>A. y = f x}" abbreviation Inter :: "'a set set \<Rightarrow> 'a set" ("\<Inter>") where "\<Inter>S \<equiv> \<Sqinter>S"
###output (?H1 (?H2 x_1 x_2) = ?H3) = (\<forall>y_1\<in>x_2. x_1 y_1 = ?H3)###end
Transcendental
Transcendental.arctan_eq_iff
lemma arctan_eq_iff: "arctan x = arctan y \<longleftrightarrow> x = y"
(arctan ?x = arctan ?y) = (?x = ?y)
(?H1 x_1 = ?H1 x_2) = (x_1 = x_2)
[ "Transcendental.arctan" ]
[ "real \\<Rightarrow> real" ]
[ "definition arctan :: \"real \\<Rightarrow> real\"\n where \"arctan y = (THE x. -(pi/2) < x \\<and> x < pi/2 \\<and> tan x = y)\"" ]
template
###lemma (arctan ?x = arctan ?y) = (?x = ?y) ###symbols Transcendental.arctan :::: real \<Rightarrow> real ###defs definition arctan :: "real \<Rightarrow> real" where "arctan y = (THE x. -(pi/2) < x \<and> x < pi/2 \<and> tan x = y)"
###output (?H1 x_1 = ?H1 x_2) = (x_1 = x_2)###end
Filter
Filter.filtermap_SUP
lemma filtermap_SUP: "filtermap f (\<Squnion>b\<in>B. F b) = (\<Squnion>b\<in>B. filtermap f (F b))"
filtermap ?f (Sup (?F ` ?B)) = (SUP b\<in> ?B. filtermap ?f (?F b))
?H1 x_1 (?H2 (?H3 x_2 x_3)) = ?H2 (?H3 (\<lambda>y_1. ?H1 x_1 (x_2 y_1)) x_3)
[ "Set.image", "Complete_Lattices.Sup_class.Sup", "Filter.filtermap" ]
[ "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set", "'a set \\<Rightarrow> 'a", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a filter \\<Rightarrow> 'b filter" ]
[ "definition image :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set\" (infixr \"`\" 90)\n where \"f ` A = {y. \\<exists>x\\<in>A. y = f x}\"", "class Sup =\n fixes Sup :: \"'a set \\<Rightarrow> 'a\" (\"\\<Squnion> _\" [900] 900)", "definition filtermap :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'a filter \\<Rightarrow> 'b filter\"\n where \"filtermap f F = Abs_filter (\\<lambda>P. eventually (\\<lambda>x. P (f x)) F)\"" ]
template
###lemma filtermap ?f (Sup (?F ` ?B)) = (SUP b\<in> ?B. filtermap ?f (?F b)) ###symbols Set.image :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set Complete_Lattices.Sup_class.Sup :::: 'a set \<Rightarrow> 'a Filter.filtermap :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a filter \<Rightarrow> 'b filter ###defs definition image :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set" (infixr "`" 90) where "f ` A = {y. \<exists>x\<in>A. y = f x}" class Sup = fixes Sup :: "'a set \<Rightarrow> 'a" ("\<Squnion> _" [900] 900) definition filtermap :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a filter \<Rightarrow> 'b filter" where "filtermap f F = Abs_filter (\<lambda>P. eventually (\<lambda>x. P (f x)) F)"
###output ?H1 x_1 (?H2 (?H3 x_2 x_3)) = ?H2 (?H3 (\<lambda>y_1. ?H1 x_1 (x_2 y_1)) x_3)###end
Auth/Guard/GuardK
GuardK.mem_cnb_minus
lemma mem_cnb_minus: "x \<in> set l \<Longrightarrow> cnb l = crypt_nb x + (cnb l - crypt_nb x)"
?x \<in> set ?l \<Longrightarrow> cnb ?l = crypt_nb ?x + (cnb ?l - crypt_nb ?x)
x_1 \<in> ?H1 x_2 \<Longrightarrow> ?H2 x_2 = ?H3 (?H4 x_1) (?H5 (?H2 x_2) (?H4 x_1))
[ "Groups.minus_class.minus", "GuardK.crypt_nb", "Groups.plus_class.plus", "GuardK.cnb", "List.list.set" ]
[ "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "msg \\<Rightarrow> nat", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "msg list \\<Rightarrow> nat", "'a list \\<Rightarrow> 'a set" ]
[ "class minus =\n fixes minus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"-\" 65)", "class plus =\n fixes plus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"+\" 65)", "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"" ]
template
###lemma ?x \<in> set ?l \<Longrightarrow> cnb ?l = crypt_nb ?x + (cnb ?l - crypt_nb ?x) ###symbols Groups.minus_class.minus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a GuardK.crypt_nb :::: msg \<Rightarrow> nat Groups.plus_class.plus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a GuardK.cnb :::: msg list \<Rightarrow> nat List.list.set :::: 'a list \<Rightarrow> 'a set ###defs class minus = fixes minus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "-" 65) class plus = fixes plus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "+" 65) datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []"
###output x_1 \<in> ?H1 x_2 \<Longrightarrow> ?H2 x_2 = ?H3 (?H4 x_1) (?H5 (?H2 x_2) (?H4 x_1))###end
HOLCF/Cfun
Cfun.Rep_cfun_strict1
lemma Rep_cfun_strict1 [simp]: "\<bottom>\<cdot>x = \<bottom>"
\<bottom>\<cdot> ?x = \<bottom>
?H1 ?H2 x_1 = ?H2
[ "Pcpo.pcpo_class.bottom", "Cfun.cfun.Rep_cfun" ]
[ "'a", "('a \\<rightarrow> 'b) \\<Rightarrow> 'a \\<Rightarrow> 'b" ]
[ "class pcpo = cpo +\n assumes least: \"\\<exists>x. \\<forall>y. x \\<sqsubseteq> y\"\nbegin" ]
template
###lemma \<bottom>\<cdot> ?x = \<bottom> ###symbols Pcpo.pcpo_class.bottom :::: 'a Cfun.cfun.Rep_cfun :::: ('a \<rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b ###defs class pcpo = cpo + assumes least: "\<exists>x. \<forall>y. x \<sqsubseteq> y" begin
###output ?H1 ?H2 x_1 = ?H2###end
Library/Infinite_Set
Infinite_Set.ALL_MOST
lemma ALL_MOST: "\<forall>x. P x \<Longrightarrow> \<forall>\<^sub>\<infinity>x. P x"
\<forall>x. ?P x \<Longrightarrow> \<forall>\<^sub>\<infinity>x. ?P x
\<forall>y_0. x_1 y_0 \<Longrightarrow> ?H1 x_1
[ "Filter.Alm_all" ]
[ "('a \\<Rightarrow> bool) \\<Rightarrow> bool" ]
[ "abbreviation Alm_all :: \"('a \\<Rightarrow> bool) \\<Rightarrow> bool\" (binder \"\\<forall>\\<^sub>\\<infinity>\" 10)\n where \"Alm_all P \\<equiv> eventually P cofinite\"" ]
template
###lemma \<forall>x. ?P x \<Longrightarrow> \<forall>\<^sub>\<infinity>x. ?P x ###symbols Filter.Alm_all :::: ('a \<Rightarrow> bool) \<Rightarrow> bool ###defs abbreviation Alm_all :: "('a \<Rightarrow> bool) \<Rightarrow> bool" (binder "\<forall>\<^sub>\<infinity>" 10) where "Alm_all P \<equiv> eventually P cofinite"
###output \<forall>y_0. x_1 y_0 \<Longrightarrow> ?H1 x_1###end
Library/Word
Word.not_bit_length
lemma not_bit_length [simp]: \<open>\<not> bit w LENGTH('a)\<close> for w :: \<open>'a::len word\<close>
\<not> bit ?w LENGTH(?'a)
\<not> ?H1 x_1 (?H2 TYPE(?'a))
[ "Type_Length.len0_class.len_of", "Bit_Operations.semiring_bits_class.bit" ]
[ "'a itself \\<Rightarrow> nat", "'a \\<Rightarrow> nat \\<Rightarrow> bool" ]
[ "class len0 =\n fixes len_of :: \"'a itself \\<Rightarrow> nat\"", "class semiring_bits = semiring_parity + semiring_modulo_trivial +\n assumes bit_induct [case_names stable rec]:\n \\<open>(\\<And>a. a div 2 = a \\<Longrightarrow> P a)\n \\<Longrightarrow> (\\<And>a b. P a \\<Longrightarrow> (of_bool b + 2 * a) div 2 = a \\<Longrightarrow> P (of_bool b + 2 * a))\n \\<Longrightarrow> P a\\<close>\n assumes bits_mod_div_trivial [simp]: \\<open>a mod b div b = 0\\<close>\n and half_div_exp_eq: \\<open>a div 2 div 2 ^ n = a div 2 ^ Suc n\\<close>\n and even_double_div_exp_iff: \\<open>2 ^ Suc n \\<noteq> 0 \\<Longrightarrow> even (2 * a div 2 ^ Suc n) \\<longleftrightarrow> even (a div 2 ^ n)\\<close>\n fixes bit :: \\<open>'a \\<Rightarrow> nat \\<Rightarrow> bool\\<close>\n assumes bit_iff_odd: \\<open>bit a n \\<longleftrightarrow> odd (a div 2 ^ n)\\<close>\nbegin" ]
template
###lemma \<not> bit ?w LENGTH(?'a) ###symbols Type_Length.len0_class.len_of :::: 'a itself \<Rightarrow> nat Bit_Operations.semiring_bits_class.bit :::: 'a \<Rightarrow> nat \<Rightarrow> bool ###defs class len0 = fixes len_of :: "'a itself \<Rightarrow> nat" class semiring_bits = semiring_parity + semiring_modulo_trivial + assumes bit_induct [case_names stable rec]: \<open>(\<And>a. a div 2 = a \<Longrightarrow> P a) \<Longrightarrow> (\<And>a b. P a \<Longrightarrow> (of_bool b + 2 * a) div 2 = a \<Longrightarrow> P (of_bool b + 2 * a)) \<Longrightarrow> P a\<close> assumes bits_mod_div_trivial [simp]: \<open>a mod b div b = 0\<close> and half_div_exp_eq: \<open>a div 2 div 2 ^ n = a div 2 ^ Suc n\<close> and even_double_div_exp_iff: \<open>2 ^ Suc n \<noteq> 0 \<Longrightarrow> even (2 * a div 2 ^ Suc n) \<longleftrightarrow> even (a div 2 ^ n)\<close> fixes bit :: \<open>'a \<Rightarrow> nat \<Rightarrow> bool\<close> assumes bit_iff_odd: \<open>bit a n \<longleftrightarrow> odd (a div 2 ^ n)\<close> begin
###output \<not> ?H1 x_1 (?H2 TYPE(?'a))###end
Library/RBT
RBT_Impl.map_inv2(2)
null
bheight (RBT_Impl.map ?f ?t) = bheight ?t
?H1 (?H2 x_1 x_2) = ?H1 x_2
[ "RBT_Impl.map", "RBT_Impl.bheight" ]
[ "('a \\<Rightarrow> 'b \\<Rightarrow> 'c) \\<Rightarrow> ('a, 'b) RBT_Impl.rbt \\<Rightarrow> ('a, 'c) RBT_Impl.rbt", "('a, 'b) RBT_Impl.rbt \\<Rightarrow> nat" ]
[ "primrec\n map :: \"('a \\<Rightarrow> 'b \\<Rightarrow> 'c) \\<Rightarrow> ('a, 'b) rbt \\<Rightarrow> ('a, 'c) rbt\"\nwhere\n \"map f Empty = Empty\"\n| \"map f (Branch c lt k v rt) = Branch c (map f lt) k (f k v) (map f rt)\"", "primrec bheight :: \"('a,'b) rbt \\<Rightarrow> nat\"\nwhere\n \"bheight Empty = 0\"\n| \"bheight (Branch c lt k v rt) = (if c = B then Suc (bheight lt) else bheight lt)\"" ]
template
###lemma bheight (RBT_Impl.map ?f ?t) = bheight ?t ###symbols RBT_Impl.map :::: ('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> ('a, 'b) RBT_Impl.rbt \<Rightarrow> ('a, 'c) RBT_Impl.rbt RBT_Impl.bheight :::: ('a, 'b) RBT_Impl.rbt \<Rightarrow> nat ###defs primrec map :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'c) rbt" where "map f Empty = Empty" | "map f (Branch c lt k v rt) = Branch c (map f lt) k (f k v) (map f rt)" primrec bheight :: "('a,'b) rbt \<Rightarrow> nat" where "bheight Empty = 0" | "bheight (Branch c lt k v rt) = (if c = B then Suc (bheight lt) else bheight lt)"
###output ?H1 (?H2 x_1 x_2) = ?H1 x_2###end
HOLCF/IOA/Automata
Automata.inpAAactB_is_inpBoroutB
lemma inpAAactB_is_inpBoroutB: "compatible A B \<Longrightarrow> a \<in> inp A \<Longrightarrow> a \<in> act B \<Longrightarrow> a \<in> inp B \<or> a \<in> out B"
compatible ?A ?B \<Longrightarrow> ?a \<in> inp ?A \<Longrightarrow> ?a \<in> act ?B \<Longrightarrow> ?a \<in> inp ?B \<or> ?a \<in> out ?B
\<lbrakk> ?H1 x_1 x_2; x_3 \<in> ?H2 x_1; x_3 \<in> ?H3 x_2\<rbrakk> \<Longrightarrow> x_3 \<in> ?H2 x_2 \<or> x_3 \<in> ?H4 x_2
[ "Automata.out", "Automata.act", "Automata.inp", "Automata.compatible" ]
[ "('a set \\<times> 'a set \\<times> 'a set) \\<times> 'b set \\<times> ('b \\<times> 'a \\<times> 'b) set \\<times> 'a set set \\<times> 'a set set \\<Rightarrow> 'a set", "('a set \\<times> 'a set \\<times> 'a set) \\<times> 'b set \\<times> ('b \\<times> 'a \\<times> 'b) set \\<times> 'a set set \\<times> 'a set set \\<Rightarrow> 'a set", "('a set \\<times> 'a set \\<times> 'a set) \\<times> 'b set \\<times> ('b \\<times> 'a \\<times> 'b) set \\<times> 'a set set \\<times> 'a set set \\<Rightarrow> 'a set", "('a set \\<times> 'a set \\<times> 'a set) \\<times> 'b set \\<times> ('b \\<times> 'a \\<times> 'b) set \\<times> 'a set set \\<times> 'a set set \\<Rightarrow> ('a set \\<times> 'a set \\<times> 'a set) \\<times> 'c set \\<times> ('c \\<times> 'a \\<times> 'c) set \\<times> 'a set set \\<times> 'a set set \\<Rightarrow> bool" ]
[]
template
###lemma compatible ?A ?B \<Longrightarrow> ?a \<in> inp ?A \<Longrightarrow> ?a \<in> act ?B \<Longrightarrow> ?a \<in> inp ?B \<or> ?a \<in> out ?B ###symbols Automata.out :::: ('a set \<times> 'a set \<times> 'a set) \<times> 'b set \<times> ('b \<times> 'a \<times> 'b) set \<times> 'a set set \<times> 'a set set \<Rightarrow> 'a set Automata.act :::: ('a set \<times> 'a set \<times> 'a set) \<times> 'b set \<times> ('b \<times> 'a \<times> 'b) set \<times> 'a set set \<times> 'a set set \<Rightarrow> 'a set Automata.inp :::: ('a set \<times> 'a set \<times> 'a set) \<times> 'b set \<times> ('b \<times> 'a \<times> 'b) set \<times> 'a set set \<times> 'a set set \<Rightarrow> 'a set Automata.compatible :::: ('a set \<times> 'a set \<times> 'a set) \<times> 'b set \<times> ('b \<times> 'a \<times> 'b) set \<times> 'a set set \<times> 'a set set \<Rightarrow> ('a set \<times> 'a set \<times> 'a set) \<times> 'c set \<times> ('c \<times> 'a \<times> 'c) set \<times> 'a set set \<times> 'a set set \<Rightarrow> bool ###defs
###output \<lbrakk> ?H1 x_1 x_2; x_3 \<in> ?H2 x_1; x_3 \<in> ?H3 x_2\<rbrakk> \<Longrightarrow> x_3 \<in> ?H2 x_2 \<or> x_3 \<in> ?H4 x_2###end
Complete_Lattices
Complete_Lattices.UNION_empty_conv(2)
lemma UNION_empty_conv: "{} = (\<Union>x\<in>A. B x) \<longleftrightarrow> (\<forall>x\<in>A. B x = {})" "(\<Union>x\<in>A. B x) = {} \<longleftrightarrow> (\<forall>x\<in>A. B x = {})"
(\<Union> (?B ` ?A) = {}) = (\<forall>x\<in> ?A. ?B x = {})
(?H1 (?H2 x_1 x_2) = ?H3) = (\<forall>y_1\<in>x_2. x_1 y_1 = ?H3)
[ "Set.empty", "Set.image", "Complete_Lattices.Union" ]
[ "'a set", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set", "'a set set \\<Rightarrow> 'a set" ]
[ "abbreviation empty :: \"'a set\" (\"{}\")\n where \"{} \\<equiv> bot\"", "definition image :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set\" (infixr \"`\" 90)\n where \"f ` A = {y. \\<exists>x\\<in>A. y = f x}\"", "abbreviation Union :: \"'a set set \\<Rightarrow> 'a set\" (\"\\<Union>\")\n where \"\\<Union>S \\<equiv> \\<Squnion>S\"" ]
template
###lemma (\<Union> (?B ` ?A) = {}) = (\<forall>x\<in> ?A. ?B x = {}) ###symbols Set.empty :::: 'a set Set.image :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set Complete_Lattices.Union :::: 'a set set \<Rightarrow> 'a set ###defs abbreviation empty :: "'a set" ("{}") where "{} \<equiv> bot" definition image :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set" (infixr "`" 90) where "f ` A = {y. \<exists>x\<in>A. y = f x}" abbreviation Union :: "'a set set \<Rightarrow> 'a set" ("\<Union>") where "\<Union>S \<equiv> \<Squnion>S"
###output (?H1 (?H2 x_1 x_2) = ?H3) = (\<forall>y_1\<in>x_2. x_1 y_1 = ?H3)###end
Inductive
Inductive.basic_monos(1)
null
?A \<subseteq> ?A
?H1 x_1 x_1
[ "Set.subset_eq" ]
[ "'a set \\<Rightarrow> 'a set \\<Rightarrow> bool" ]
[ "abbreviation subset_eq :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> bool\"\n where \"subset_eq \\<equiv> less_eq\"" ]
template
###lemma ?A \<subseteq> ?A ###symbols Set.subset_eq :::: 'a set \<Rightarrow> 'a set \<Rightarrow> bool ###defs abbreviation subset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where "subset_eq \<equiv> less_eq"
###output ?H1 x_1 x_1###end
Nominal/Examples/Compile
Compile.fresh_left
null
?a \<sharp> ?pi \<bullet> ?x = rev ?pi \<bullet> ?a \<sharp> ?x
?H1 x_1 (?H2 x_2 x_3) = ?H1 (?H2 (?H3 x_2) x_1) x_3
[ "List.rev", "Nominal.perm", "Nominal.fresh" ]
[ "'a list \\<Rightarrow> 'a list", "('a \\<times> 'a) list \\<Rightarrow> 'b \\<Rightarrow> 'b", "'a \\<Rightarrow> 'b \\<Rightarrow> bool" ]
[ "primrec rev :: \"'a list \\<Rightarrow> 'a list\" where\n\"rev [] = []\" |\n\"rev (x # xs) = rev xs @ [x]\"", "consts \n perm :: \"'x prm \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixr \\<open>\\<bullet>\\<close> 80)\n swap :: \"('x \\<times> 'x) \\<Rightarrow> 'x \\<Rightarrow> 'x\"", "definition fresh :: \"'x \\<Rightarrow> 'a \\<Rightarrow> bool\" (\\<open>_ \\<sharp> _\\<close> [80,80] 80) where\n \"a \\<sharp> x \\<longleftrightarrow> a \\<notin> supp x\"" ]
template
###lemma ?a \<sharp> ?pi \<bullet> ?x = rev ?pi \<bullet> ?a \<sharp> ?x ###symbols List.rev :::: 'a list \<Rightarrow> 'a list Nominal.perm :::: ('a \<times> 'a) list \<Rightarrow> 'b \<Rightarrow> 'b Nominal.fresh :::: 'a \<Rightarrow> 'b \<Rightarrow> bool ###defs primrec rev :: "'a list \<Rightarrow> 'a list" where "rev [] = []" | "rev (x # xs) = rev xs @ [x]" consts perm :: "'x prm \<Rightarrow> 'a \<Rightarrow> 'a" (infixr \<open>\<bullet>\<close> 80) swap :: "('x \<times> 'x) \<Rightarrow> 'x \<Rightarrow> 'x" definition fresh :: "'x \<Rightarrow> 'a \<Rightarrow> bool" (\<open>_ \<sharp> _\<close> [80,80] 80) where "a \<sharp> x \<longleftrightarrow> a \<notin> supp x"
###output ?H1 x_1 (?H2 x_2 x_3) = ?H1 (?H2 (?H3 x_2) x_1) x_3###end
Relation
Relation.Image_subset_eq
lemma Image_subset_eq: "r``A \<subseteq> B \<longleftrightarrow> A \<subseteq> - ((r\<inverse>) `` (- B))"
(?r `` ?A \<subseteq> ?B) = (?A \<subseteq> - ?r\<inverse> `` (- ?B))
?H1 (?H2 x_1 x_2) x_3 = ?H1 x_2 (?H3 (?H2 (?H4 x_1) (?H3 x_3)))
[ "Relation.converse", "Groups.uminus_class.uminus", "Relation.Image", "Set.subset_eq" ]
[ "('a \\<times> 'b) set \\<Rightarrow> ('b \\<times> 'a) set", "'a \\<Rightarrow> 'a", "('a \\<times> 'b) set \\<Rightarrow> 'a set \\<Rightarrow> 'b set", "'a set \\<Rightarrow> 'a set \\<Rightarrow> bool" ]
[ "inductive_set converse :: \"('a \\<times> 'b) set \\<Rightarrow> ('b \\<times> 'a) set\" (\"(_\\<inverse>)\" [1000] 999)\n for r :: \"('a \\<times> 'b) set\"\n where \"(a, b) \\<in> r \\<Longrightarrow> (b, a) \\<in> r\\<inverse>\"", "class uminus =\n fixes uminus :: \"'a \\<Rightarrow> 'a\" (\"- _\" [81] 80)", "definition Image :: \"('a \\<times> 'b) set \\<Rightarrow> 'a set \\<Rightarrow> 'b set\" (infixr \"``\" 90)\n where \"r `` s = {y. \\<exists>x\\<in>s. (x, y) \\<in> r}\"", "abbreviation subset_eq :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> bool\"\n where \"subset_eq \\<equiv> less_eq\"" ]
template
###lemma (?r `` ?A \<subseteq> ?B) = (?A \<subseteq> - ?r\<inverse> `` (- ?B)) ###symbols Relation.converse :::: ('a \<times> 'b) set \<Rightarrow> ('b \<times> 'a) set Groups.uminus_class.uminus :::: 'a \<Rightarrow> 'a Relation.Image :::: ('a \<times> 'b) set \<Rightarrow> 'a set \<Rightarrow> 'b set Set.subset_eq :::: 'a set \<Rightarrow> 'a set \<Rightarrow> bool ###defs inductive_set converse :: "('a \<times> 'b) set \<Rightarrow> ('b \<times> 'a) set" ("(_\<inverse>)" [1000] 999) for r :: "('a \<times> 'b) set" where "(a, b) \<in> r \<Longrightarrow> (b, a) \<in> r\<inverse>" class uminus = fixes uminus :: "'a \<Rightarrow> 'a" ("- _" [81] 80) definition Image :: "('a \<times> 'b) set \<Rightarrow> 'a set \<Rightarrow> 'b set" (infixr "``" 90) where "r `` s = {y. \<exists>x\<in>s. (x, y) \<in> r}" abbreviation subset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where "subset_eq \<equiv> less_eq"
###output ?H1 (?H2 x_1 x_2) x_3 = ?H1 x_2 (?H3 (?H2 (?H4 x_1) (?H3 x_3)))###end
Nominal/Examples/Pattern
Pattern.alpha'
null
([ ?a]. ?x = [ ?b]. ?y) = (?a = ?b \<and> ?x = ?y \<or> ?a \<noteq> ?b \<and> [(?b, ?a)] \<bullet> ?x = ?y \<and> ?b \<sharp> ?x)
(?H1 x_1 x_2 = ?H1 x_3 x_4) = (x_1 = x_3 \<and> x_2 = x_4 \<or> x_1 \<noteq> x_3 \<and> ?H2 (?H3 (x_3, x_1) ?H4) x_2 = x_4 \<and> ?H5 x_3 x_2)
[ "Nominal.fresh", "List.list.Nil", "List.list.Cons", "Nominal.perm", "Nominal.abs_fun" ]
[ "'a \\<Rightarrow> 'b \\<Rightarrow> bool", "'a list", "'a \\<Rightarrow> 'a list \\<Rightarrow> 'a list", "('a \\<times> 'a) list \\<Rightarrow> 'b \\<Rightarrow> 'b", "'a \\<Rightarrow> 'b \\<Rightarrow> 'a \\<Rightarrow> 'b noption" ]
[ "definition fresh :: \"'x \\<Rightarrow> 'a \\<Rightarrow> bool\" (\\<open>_ \\<sharp> _\\<close> [80,80] 80) where\n \"a \\<sharp> x \\<longleftrightarrow> a \\<notin> supp x\"", "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "consts \n perm :: \"'x prm \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixr \\<open>\\<bullet>\\<close> 80)\n swap :: \"('x \\<times> 'x) \\<Rightarrow> 'x \\<Rightarrow> 'x\"", "definition abs_fun :: \"'x\\<Rightarrow>'a\\<Rightarrow>('x\\<Rightarrow>('a noption))\" (\\<open>[_]._\\<close> [100,100] 100) where \n \"[a].x \\<equiv> (\\<lambda>b. (if b=a then nSome(x) else (if b\\<sharp>x then nSome([(a,b)]\\<bullet>x) else nNone)))\"" ]
template
###lemma ([ ?a]. ?x = [ ?b]. ?y) = (?a = ?b \<and> ?x = ?y \<or> ?a \<noteq> ?b \<and> [(?b, ?a)] \<bullet> ?x = ?y \<and> ?b \<sharp> ?x) ###symbols Nominal.fresh :::: 'a \<Rightarrow> 'b \<Rightarrow> bool List.list.Nil :::: 'a list List.list.Cons :::: 'a \<Rightarrow> 'a list \<Rightarrow> 'a list Nominal.perm :::: ('a \<times> 'a) list \<Rightarrow> 'b \<Rightarrow> 'b Nominal.abs_fun :::: 'a \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> 'b noption ###defs definition fresh :: "'x \<Rightarrow> 'a \<Rightarrow> bool" (\<open>_ \<sharp> _\<close> [80,80] 80) where "a \<sharp> x \<longleftrightarrow> a \<notin> supp x" datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" consts perm :: "'x prm \<Rightarrow> 'a \<Rightarrow> 'a" (infixr \<open>\<bullet>\<close> 80) swap :: "('x \<times> 'x) \<Rightarrow> 'x \<Rightarrow> 'x" definition abs_fun :: "'x\<Rightarrow>'a\<Rightarrow>('x\<Rightarrow>('a noption))" (\<open>[_]._\<close> [100,100] 100) where "[a].x \<equiv> (\<lambda>b. (if b=a then nSome(x) else (if b\<sharp>x then nSome([(a,b)]\<bullet>x) else nNone)))"
###output (?H1 x_1 x_2 = ?H1 x_3 x_4) = (x_1 = x_3 \<and> x_2 = x_4 \<or> x_1 \<noteq> x_3 \<and> ?H2 (?H3 (x_3, x_1) ?H4) x_2 = x_4 \<and> ?H5 x_3 x_2)###end
Euclidean_Rings
Euclidean_Rings.mod_Suc_eq_mod_add3
lemma mod_Suc_eq_mod_add3 [simp]: "m mod Suc (Suc (Suc n)) = m mod (3 + n)"
?m mod Suc (Suc (Suc ?n)) = ?m mod (3 + ?n)
?H1 x_1 (?H2 (?H2 (?H2 x_2))) = ?H1 x_1 (?H3 (?H4 (?H5 ?H6)) x_2)
[ "Num.num.One", "Num.num.Bit1", "Num.numeral_class.numeral", "Groups.plus_class.plus", "Nat.Suc", "Rings.modulo_class.modulo" ]
[ "num", "num \\<Rightarrow> num", "num \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "nat \\<Rightarrow> nat", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a" ]
[ "datatype num = One | Bit0 num | Bit1 num", "datatype num = One | Bit0 num | Bit1 num", "primrec numeral :: \"num \\<Rightarrow> 'a\"\n where\n numeral_One: \"numeral One = 1\"\n | numeral_Bit0: \"numeral (Bit0 n) = numeral n + numeral n\"\n | numeral_Bit1: \"numeral (Bit1 n) = numeral n + numeral n + 1\"", "class plus =\n fixes plus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"+\" 65)", "definition Suc :: \"nat \\<Rightarrow> nat\"\n where \"Suc n = Abs_Nat (Suc_Rep (Rep_Nat n))\"", "class modulo = dvd + divide +\n fixes modulo :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"mod\" 70)" ]
template
###lemma ?m mod Suc (Suc (Suc ?n)) = ?m mod (3 + ?n) ###symbols Num.num.One :::: num Num.num.Bit1 :::: num \<Rightarrow> num Num.numeral_class.numeral :::: num \<Rightarrow> 'a Groups.plus_class.plus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Nat.Suc :::: nat \<Rightarrow> nat Rings.modulo_class.modulo :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a ###defs datatype num = One | Bit0 num | Bit1 num datatype num = One | Bit0 num | Bit1 num primrec numeral :: "num \<Rightarrow> 'a" where numeral_One: "numeral One = 1" | numeral_Bit0: "numeral (Bit0 n) = numeral n + numeral n" | numeral_Bit1: "numeral (Bit1 n) = numeral n + numeral n + 1" class plus = fixes plus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "+" 65) definition Suc :: "nat \<Rightarrow> nat" where "Suc n = Abs_Nat (Suc_Rep (Rep_Nat n))" class modulo = dvd + divide + fixes modulo :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "mod" 70)
###output ?H1 x_1 (?H2 (?H2 (?H2 x_2))) = ?H1 x_1 (?H3 (?H4 (?H5 ?H6)) x_2)###end
Nominal/Examples/Crary
Crary.alg_equiv_inv_auto(6)
null
?\<Gamma> \<turnstile> Var ?x \<leftrightarrow> ?t : ?T \<Longrightarrow> (?t = Var ?x \<Longrightarrow> valid ?\<Gamma> \<Longrightarrow> (?x, ?T) \<in> set ?\<Gamma> \<Longrightarrow> ?P) \<Longrightarrow> ?P
\<lbrakk> ?H1 x_1 (?H2 x_2) x_3 x_4; \<lbrakk>x_3 = ?H2 x_2; ?H3 x_1; (x_2, x_4) \<in> ?H4 x_1\<rbrakk> \<Longrightarrow> x_5\<rbrakk> \<Longrightarrow> x_5
[ "List.list.set", "Crary.valid", "Crary.trm.Var", "Crary.alg_path_equiv" ]
[ "'a list \\<Rightarrow> 'a set", "(name \\<times> ty) list \\<Rightarrow> bool", "name \\<Rightarrow> trm", "(name \\<times> ty) list \\<Rightarrow> trm \\<Rightarrow> trm \\<Rightarrow> ty \\<Rightarrow> bool" ]
[ "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"" ]
template
###lemma ?\<Gamma> \<turnstile> Var ?x \<leftrightarrow> ?t : ?T \<Longrightarrow> (?t = Var ?x \<Longrightarrow> valid ?\<Gamma> \<Longrightarrow> (?x, ?T) \<in> set ?\<Gamma> \<Longrightarrow> ?P) \<Longrightarrow> ?P ###symbols List.list.set :::: 'a list \<Rightarrow> 'a set Crary.valid :::: (name \<times> ty) list \<Rightarrow> bool Crary.trm.Var :::: name \<Rightarrow> trm Crary.alg_path_equiv :::: (name \<times> ty) list \<Rightarrow> trm \<Rightarrow> trm \<Rightarrow> ty \<Rightarrow> bool ###defs datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []"
###output \<lbrakk> ?H1 x_1 (?H2 x_2) x_3 x_4; \<lbrakk>x_3 = ?H2 x_2; ?H3 x_1; (x_2, x_4) \<in> ?H4 x_1\<rbrakk> \<Longrightarrow> x_5\<rbrakk> \<Longrightarrow> x_5###end
Analysis/Topology_Euclidean_Space
Topology_Euclidean_Space.interior_halfspace_ge
lemma interior_halfspace_ge [simp]: "a \<noteq> 0 \<Longrightarrow> interior {x. a \<bullet> x \<ge> b} = {x. a \<bullet> x > b}"
?a \<noteq> (0:: ?'a) \<Longrightarrow> interior {x. ?b \<le> ?a \<bullet> x} = {x. ?b < ?a \<bullet> x}
x_1 \<noteq> ?H1 \<Longrightarrow> ?H2 (?H3 (\<lambda>y_0. x_2 \<le> ?H4 x_1 y_0)) = ?H3 (\<lambda>y_1. x_2 < ?H4 x_1 y_1)
[ "Inner_Product.real_inner_class.inner", "Set.Collect", "Elementary_Topology.interior", "Groups.zero_class.zero" ]
[ "'a \\<Rightarrow> 'a \\<Rightarrow> real", "('a \\<Rightarrow> bool) \\<Rightarrow> 'a set", "'a set \\<Rightarrow> 'a set", "'a" ]
[ "class real_inner = real_vector + sgn_div_norm + dist_norm + uniformity_dist + open_uniformity +\n fixes inner :: \"'a \\<Rightarrow> 'a \\<Rightarrow> real\"\n assumes inner_commute: \"inner x y = inner y x\"\n and inner_add_left: \"inner (x + y) z = inner x z + inner y z\"\n and inner_scaleR_left [simp]: \"inner (scaleR r x) y = r * (inner x y)\"\n and inner_ge_zero [simp]: \"0 \\<le> inner x x\"\n and inner_eq_zero_iff [simp]: \"inner x x = 0 \\<longleftrightarrow> x = 0\"\n and norm_eq_sqrt_inner: \"norm x = sqrt (inner x x)\"\nbegin", "class zero =\n fixes zero :: 'a (\"0\")" ]
template
###lemma ?a \<noteq> (0:: ?'a) \<Longrightarrow> interior {x. ?b \<le> ?a \<bullet> x} = {x. ?b < ?a \<bullet> x} ###symbols Inner_Product.real_inner_class.inner :::: 'a \<Rightarrow> 'a \<Rightarrow> real Set.Collect :::: ('a \<Rightarrow> bool) \<Rightarrow> 'a set Elementary_Topology.interior :::: 'a set \<Rightarrow> 'a set Groups.zero_class.zero :::: 'a ###defs class real_inner = real_vector + sgn_div_norm + dist_norm + uniformity_dist + open_uniformity + fixes inner :: "'a \<Rightarrow> 'a \<Rightarrow> real" assumes inner_commute: "inner x y = inner y x" and inner_add_left: "inner (x + y) z = inner x z + inner y z" and inner_scaleR_left [simp]: "inner (scaleR r x) y = r * (inner x y)" and inner_ge_zero [simp]: "0 \<le> inner x x" and inner_eq_zero_iff [simp]: "inner x x = 0 \<longleftrightarrow> x = 0" and norm_eq_sqrt_inner: "norm x = sqrt (inner x x)" begin class zero = fixes zero :: 'a ("0")
###output x_1 \<noteq> ?H1 \<Longrightarrow> ?H2 (?H3 (\<lambda>y_0. x_2 \<le> ?H4 x_1 y_0)) = ?H3 (\<lambda>y_1. x_2 < ?H4 x_1 y_1)###end
Homology/Brouwer_Degree
Brouwer_Degree.reduced_homology_group_nsphere_aux
lemma reduced_homology_group_nsphere_aux: "if p = int n then reduced_homology_group n (nsphere n) \<cong> integer_group else trivial_group(reduced_homology_group p (nsphere n))"
if ?p = int ?n then reduced_homology_group (int ?n) (nsphere ?n) \<cong> integer_group else trivial_group (reduced_homology_group ?p (nsphere ?n))
if x_1 = ?H1 x_2 then ?H2 (?H3 (?H1 x_2) (?H4 x_2)) ?H5 else ?H6 (?H3 x_1 (?H4 x_2))
[ "Elementary_Groups.trivial_group", "Elementary_Groups.integer_group", "Abstract_Euclidean_Space.nsphere", "Brouwer_Degree.reduced_homology_group", "Group.is_iso", "Int.int" ]
[ "('a, 'b) monoid_scheme \\<Rightarrow> bool", "\\<lparr>carrier :: 'a set, mult :: int \\<Rightarrow> int \\<Rightarrow> int, one :: int\\<rparr>", "nat \\<Rightarrow> (nat \\<Rightarrow> real) topology", "int \\<Rightarrow> 'a topology \\<Rightarrow> (((nat \\<Rightarrow> real) \\<Rightarrow> 'a) \\<Rightarrow>\\<^sub>0 int) set monoid", "('a, 'b) monoid_scheme \\<Rightarrow> ('c, 'd) monoid_scheme \\<Rightarrow> bool", "nat \\<Rightarrow> int" ]
[ "definition trivial_group :: \"('a, 'b) monoid_scheme \\<Rightarrow> bool\"\n where \"trivial_group G \\<equiv> group G \\<and> carrier G = {one G}\"", "definition integer_group\n where \"integer_group = \\<lparr>carrier = UNIV, monoid.mult = (+), one = (0::int)\\<rparr>\"", "definition nsphere where\n \"nsphere n \\<equiv> subtopology (Euclidean_space (Suc n)) { x. (\\<Sum>i\\<le>n. x i ^ 2) = 1 }\"", "definition reduced_homology_group :: \"int \\<Rightarrow> 'a topology \\<Rightarrow> 'a chain set monoid\"\n where \"reduced_homology_group p X \\<equiv>\n subgroup_generated (homology_group p X)\n (kernel (homology_group p X) (homology_group p (discrete_topology {()}))\n (hom_induced p X {} (discrete_topology {()}) {} (\\<lambda>x. ())))\"", "definition is_iso :: \"_ \\<Rightarrow> _ \\<Rightarrow> bool\" (infixr \"\\<cong>\" 60)\n where \"G \\<cong> H = (iso G H \\<noteq> {})\"", "abbreviation int :: \"nat \\<Rightarrow> int\"\n where \"int \\<equiv> of_nat\"" ]
template
###lemma if ?p = int ?n then reduced_homology_group (int ?n) (nsphere ?n) \<cong> integer_group else trivial_group (reduced_homology_group ?p (nsphere ?n)) ###symbols Elementary_Groups.trivial_group :::: ('a, 'b) monoid_scheme \<Rightarrow> bool Elementary_Groups.integer_group :::: \<lparr>carrier :: 'a set, mult :: int \<Rightarrow> int \<Rightarrow> int, one :: int\<rparr> Abstract_Euclidean_Space.nsphere :::: nat \<Rightarrow> (nat \<Rightarrow> real) topology Brouwer_Degree.reduced_homology_group :::: int \<Rightarrow> 'a topology \<Rightarrow> (((nat \<Rightarrow> real) \<Rightarrow> 'a) \<Rightarrow>\<^sub>0 int) set monoid Group.is_iso :::: ('a, 'b) monoid_scheme \<Rightarrow> ('c, 'd) monoid_scheme \<Rightarrow> bool Int.int :::: nat \<Rightarrow> int ###defs definition trivial_group :: "('a, 'b) monoid_scheme \<Rightarrow> bool" where "trivial_group G \<equiv> group G \<and> carrier G = {one G}" definition integer_group where "integer_group = \<lparr>carrier = UNIV, monoid.mult = (+), one = (0::int)\<rparr>" definition nsphere where "nsphere n \<equiv> subtopology (Euclidean_space (Suc n)) { x. (\<Sum>i\<le>n. x i ^ 2) = 1 }" definition reduced_homology_group :: "int \<Rightarrow> 'a topology \<Rightarrow> 'a chain set monoid" where "reduced_homology_group p X \<equiv> subgroup_generated (homology_group p X) (kernel (homology_group p X) (homology_group p (discrete_topology {()})) (hom_induced p X {} (discrete_topology {()}) {} (\<lambda>x. ())))" definition is_iso :: "_ \<Rightarrow> _ \<Rightarrow> bool" (infixr "\<cong>" 60) where "G \<cong> H = (iso G H \<noteq> {})" abbreviation int :: "nat \<Rightarrow> int" where "int \<equiv> of_nat"
###output if x_1 = ?H1 x_2 then ?H2 (?H3 (?H1 x_2) (?H4 x_2)) ?H5 else ?H6 (?H3 x_1 (?H4 x_2))###end
Library/Quotient_Set
Quotient_Set.mem_prs
lemma mem_prs[quot_preserve]: assumes "Quotient3 R Abs Rep" shows "(Rep ---> (-`) Abs ---> id) (\<in>) = (\<in>)"
Quotient3 ?R ?Abs ?Rep \<Longrightarrow> (?Rep ---> (-`) ?Abs ---> id) (\<in>) = (\<in>)
?H1 x_1 x_2 x_3 \<Longrightarrow> ?H2 x_3 (?H2 (?H3 x_2) ?H4) (\<in>) = (\<in>)
[ "Fun.id", "Set.vimage", "Fun.map_fun", "Quotient.Quotient3" ]
[ "'a \\<Rightarrow> 'a", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'b set \\<Rightarrow> 'a set", "('a \\<Rightarrow> 'b) \\<Rightarrow> ('c \\<Rightarrow> 'd) \\<Rightarrow> ('b \\<Rightarrow> 'c) \\<Rightarrow> 'a \\<Rightarrow> 'd", "('a \\<Rightarrow> 'a \\<Rightarrow> bool) \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> ('b \\<Rightarrow> 'a) \\<Rightarrow> bool" ]
[ "definition id :: \"'a \\<Rightarrow> 'a\"\n where \"id = (\\<lambda>x. x)\"", "definition vimage :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'b set \\<Rightarrow> 'a set\" (infixr \"-`\" 90)\n where \"f -` B \\<equiv> {x. f x \\<in> B}\"", "definition map_fun :: \"('c \\<Rightarrow> 'a) \\<Rightarrow> ('b \\<Rightarrow> 'd) \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> 'c \\<Rightarrow> 'd\"\n where \"map_fun f g h = g \\<circ> h \\<circ> f\"", "definition\n \"Quotient3 R Abs Rep \\<longleftrightarrow>\n (\\<forall>a. Abs (Rep a) = a) \\<and> (\\<forall>a. R (Rep a) (Rep a)) \\<and>\n (\\<forall>r s. R r s \\<longleftrightarrow> R r r \\<and> R s s \\<and> Abs r = Abs s)\"" ]
template
###lemma Quotient3 ?R ?Abs ?Rep \<Longrightarrow> (?Rep ---> (-`) ?Abs ---> id) (\<in>) = (\<in>) ###symbols Fun.id :::: 'a \<Rightarrow> 'a Set.vimage :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'b set \<Rightarrow> 'a set Fun.map_fun :::: ('a \<Rightarrow> 'b) \<Rightarrow> ('c \<Rightarrow> 'd) \<Rightarrow> ('b \<Rightarrow> 'c) \<Rightarrow> 'a \<Rightarrow> 'd Quotient.Quotient3 :::: ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> bool ###defs definition id :: "'a \<Rightarrow> 'a" where "id = (\<lambda>x. x)" definition vimage :: "('a \<Rightarrow> 'b) \<Rightarrow> 'b set \<Rightarrow> 'a set" (infixr "-`" 90) where "f -` B \<equiv> {x. f x \<in> B}" definition map_fun :: "('c \<Rightarrow> 'a) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'c \<Rightarrow> 'd" where "map_fun f g h = g \<circ> h \<circ> f" definition "Quotient3 R Abs Rep \<longleftrightarrow> (\<forall>a. Abs (Rep a) = a) \<and> (\<forall>a. R (Rep a) (Rep a)) \<and> (\<forall>r s. R r s \<longleftrightarrow> R r r \<and> R s s \<and> Abs r = Abs s)"
###output ?H1 x_1 x_2 x_3 \<Longrightarrow> ?H2 x_3 (?H2 (?H3 x_2) ?H4) (\<in>) = (\<in>)###end
Cardinals/Wellorder_Constructions
Wellorder_Constructions.oproj_embed
theorem oproj_embed: assumes r: "Well_order r" and s: "Well_order s" and f: "oproj r s f" shows "\<exists> g. embed s r g"
Well_order ?r \<Longrightarrow> Well_order ?s \<Longrightarrow> oproj ?r ?s ?f \<Longrightarrow> \<exists>g. embed ?s ?r g
\<lbrakk> ?H1 x_1; ?H1 x_2; ?H2 x_1 x_2 x_3\<rbrakk> \<Longrightarrow> \<exists>y_0. ?H3 x_2 x_1 y_0
[ "BNF_Wellorder_Embedding.embed", "Wellorder_Constructions.oproj", "Order_Relation.Well_order" ]
[ "('a \\<times> 'a) set \\<Rightarrow> ('b \\<times> 'b) set \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> bool", "('a \\<times> 'a) set \\<Rightarrow> ('b \\<times> 'b) set \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> bool", "('a \\<times> 'a) set \\<Rightarrow> bool" ]
[ "definition embed :: \"'a rel \\<Rightarrow> 'a' rel \\<Rightarrow> ('a \\<Rightarrow> 'a') \\<Rightarrow> bool\"\n where\n \"embed r r' f \\<equiv> \\<forall>a \\<in> Field r. bij_betw f (under r a) (under r' (f a))\"", "definition \"oproj r s f \\<equiv> Field s \\<subseteq> f ` (Field r) \\<and> compat r s f\"", "abbreviation \"Well_order r \\<equiv> well_order_on (Field r) r\"" ]
template
###lemma Well_order ?r \<Longrightarrow> Well_order ?s \<Longrightarrow> oproj ?r ?s ?f \<Longrightarrow> \<exists>g. embed ?s ?r g ###symbols BNF_Wellorder_Embedding.embed :::: ('a \<times> 'a) set \<Rightarrow> ('b \<times> 'b) set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool Wellorder_Constructions.oproj :::: ('a \<times> 'a) set \<Rightarrow> ('b \<times> 'b) set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool Order_Relation.Well_order :::: ('a \<times> 'a) set \<Rightarrow> bool ###defs definition embed :: "'a rel \<Rightarrow> 'a' rel \<Rightarrow> ('a \<Rightarrow> 'a') \<Rightarrow> bool" where "embed r r' f \<equiv> \<forall>a \<in> Field r. bij_betw f (under r a) (under r' (f a))" definition "oproj r s f \<equiv> Field s \<subseteq> f ` (Field r) \<and> compat r s f" abbreviation "Well_order r \<equiv> well_order_on (Field r) r"
###output \<lbrakk> ?H1 x_1; ?H1 x_2; ?H2 x_1 x_2 x_3\<rbrakk> \<Longrightarrow> \<exists>y_0. ?H3 x_2 x_1 y_0###end
HOLCF/Tr
Transfer.transfer_raw(210)
null
bi_total ?A \<Longrightarrow> Transfer.Rel (rel_fun (rel_fun ?A (=)) (=)) All All
?H1 x_1 \<Longrightarrow> ?H2 (?H3 (?H3 x_1 (=)) (=)) All All
[ "BNF_Def.rel_fun", "Transfer.Rel", "Transfer.bi_total" ]
[ "('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> ('c \\<Rightarrow> 'd \\<Rightarrow> bool) \\<Rightarrow> ('a \\<Rightarrow> 'c) \\<Rightarrow> ('b \\<Rightarrow> 'd) \\<Rightarrow> bool", "('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> 'a \\<Rightarrow> 'b \\<Rightarrow> bool", "('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> bool" ]
[ "definition\n rel_fun :: \"('a \\<Rightarrow> 'c \\<Rightarrow> bool) \\<Rightarrow> ('b \\<Rightarrow> 'd \\<Rightarrow> bool) \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> ('c \\<Rightarrow> 'd) \\<Rightarrow> bool\"\nwhere\n \"rel_fun A B = (\\<lambda>f g. \\<forall>x y. A x y \\<longrightarrow> B (f x) (g y))\"", "definition Rel :: \"('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> 'a \\<Rightarrow> 'b \\<Rightarrow> bool\"\n where \"Rel r \\<equiv> r\"", "definition bi_total :: \"('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> bool\"\n where \"bi_total R \\<longleftrightarrow> (\\<forall>x. \\<exists>y. R x y) \\<and> (\\<forall>y. \\<exists>x. R x y)\"" ]
template
###lemma bi_total ?A \<Longrightarrow> Transfer.Rel (rel_fun (rel_fun ?A (=)) (=)) All All ###symbols BNF_Def.rel_fun :::: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('c \<Rightarrow> 'd \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'c) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> bool Transfer.Rel :::: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool Transfer.bi_total :::: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool ###defs definition rel_fun :: "('a \<Rightarrow> 'c \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'd \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('c \<Rightarrow> 'd) \<Rightarrow> bool" where "rel_fun A B = (\<lambda>f g. \<forall>x y. A x y \<longrightarrow> B (f x) (g y))" definition Rel :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool" where "Rel r \<equiv> r" definition bi_total :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool" where "bi_total R \<longleftrightarrow> (\<forall>x. \<exists>y. R x y) \<and> (\<forall>y. \<exists>x. R x y)"
###output ?H1 x_1 \<Longrightarrow> ?H2 (?H3 (?H3 x_1 (=)) (=)) All All###end
Numeral_Simprocs
Numeral_Simprocs.nat_less_add_iff2
lemma nat_less_add_iff2: "i <= (j::nat) ==> (i*u + m < j*u + n) = (m < (j-i)*u + n)"
?i \<le> ?j \<Longrightarrow> (?i * ?u + ?m < ?j * ?u + ?n) = (?m < (?j - ?i) * ?u + ?n)
x_1 \<le> x_2 \<Longrightarrow> (?H1 (?H2 x_1 x_3) x_4 < ?H1 (?H2 x_2 x_3) x_5) = (x_4 < ?H1 (?H2 (?H3 x_2 x_1) x_3) x_5)
[ "Groups.minus_class.minus", "Groups.times_class.times", "Groups.plus_class.plus" ]
[ "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a" ]
[ "class minus =\n fixes minus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"-\" 65)", "class times =\n fixes times :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"*\" 70)", "class plus =\n fixes plus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"+\" 65)" ]
template
###lemma ?i \<le> ?j \<Longrightarrow> (?i * ?u + ?m < ?j * ?u + ?n) = (?m < (?j - ?i) * ?u + ?n) ###symbols Groups.minus_class.minus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Groups.times_class.times :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Groups.plus_class.plus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a ###defs class minus = fixes minus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "-" 65) class times = fixes times :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "*" 70) class plus = fixes plus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "+" 65)
###output x_1 \<le> x_2 \<Longrightarrow> (?H1 (?H2 x_1 x_3) x_4 < ?H1 (?H2 x_2 x_3) x_5) = (x_4 < ?H1 (?H2 (?H3 x_2 x_1) x_3) x_5)###end
Hoare_Parallel/RG_Examples
RG_Examples.Example2_lemma2_aux2
lemma Example2_lemma2_aux2: "j\<le> s \<Longrightarrow> (\<Sum>i::nat=0..<j. (b (s:=t)) i) = (\<Sum>i=0..<j. b i)"
?j \<le> ?s \<Longrightarrow> sum (?b(?s := ?t)) {0..< ?j} = sum ?b {0..< ?j}
x_1 \<le> x_2 \<Longrightarrow> ?H1 (?H2 x_3 x_2 x_4) (?H3 ?H4 x_1) = ?H1 x_3 (?H3 ?H4 x_1)
[ "Groups.zero_class.zero", "Set_Interval.ord_class.atLeastLessThan", "Fun.fun_upd", "Groups_Big.comm_monoid_add_class.sum" ]
[ "'a", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a set", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a \\<Rightarrow> 'b \\<Rightarrow> 'a \\<Rightarrow> 'b", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b" ]
[ "class zero =\n fixes zero :: 'a (\"0\")", "definition fun_upd :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'a \\<Rightarrow> 'b \\<Rightarrow> ('a \\<Rightarrow> 'b)\"\n where \"fun_upd f a b = (\\<lambda>x. if x = a then b else f x)\"" ]
template
###lemma ?j \<le> ?s \<Longrightarrow> sum (?b(?s := ?t)) {0..< ?j} = sum ?b {0..< ?j} ###symbols Groups.zero_class.zero :::: 'a Set_Interval.ord_class.atLeastLessThan :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a set Fun.fun_upd :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> 'b Groups_Big.comm_monoid_add_class.sum :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b ###defs class zero = fixes zero :: 'a ("0") definition fun_upd :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a \<Rightarrow> 'b)" where "fun_upd f a b = (\<lambda>x. if x = a then b else f x)"
###output x_1 \<le> x_2 \<Longrightarrow> ?H1 (?H2 x_3 x_2 x_4) (?H3 ?H4 x_1) = ?H1 x_3 (?H3 ?H4 x_1)###end
Computational_Algebra/Formal_Laurent_Series
Formal_Laurent_Series.fls_right_inverse_delta
lemma fls_right_inverse_delta: fixes b :: "'a::{comm_monoid_add,mult_zero,uminus}" assumes "b \<noteq> 0" shows "fls_right_inverse (Abs_fls (\<lambda>n. if n=a then b else 0)) x = Abs_fls (\<lambda>n. if n=-a then x else 0)"
?b \<noteq> (0:: ?'a) \<Longrightarrow> fls_right_inverse (Abs_fls (\<lambda>n. if n = ?a then ?b else (0:: ?'a))) ?x = Abs_fls (\<lambda>n. if n = - ?a then ?x else (0:: ?'a))
x_1 \<noteq> ?H1 \<Longrightarrow> ?H2 (?H3 (\<lambda>y_0. if y_0 = x_2 then x_1 else ?H1)) x_3 = ?H3 (\<lambda>y_1. if y_1 = ?H4 x_2 then x_3 else ?H1)
[ "Groups.uminus_class.uminus", "Formal_Laurent_Series.fls.Abs_fls", "Formal_Laurent_Series.fls_right_inverse", "Groups.zero_class.zero" ]
[ "'a \\<Rightarrow> 'a", "(int \\<Rightarrow> 'a) \\<Rightarrow> 'a fls", "'a fls \\<Rightarrow> 'a \\<Rightarrow> 'a fls", "'a" ]
[ "class uminus =\n fixes uminus :: \"'a \\<Rightarrow> 'a\" (\"- _\" [81] 80)", "abbreviation fls_right_inverse ::\n \"'a::{comm_monoid_add,uminus,times} fls \\<Rightarrow> 'a \\<Rightarrow> 'a fls\"\n where\n \"fls_right_inverse f y \\<equiv>\n fls_shift (fls_subdegree f) (fps_to_fls (fps_right_inverse (fls_base_factor_to_fps f) y))\"", "class zero =\n fixes zero :: 'a (\"0\")" ]
template
###lemma ?b \<noteq> (0:: ?'a) \<Longrightarrow> fls_right_inverse (Abs_fls (\<lambda>n. if n = ?a then ?b else (0:: ?'a))) ?x = Abs_fls (\<lambda>n. if n = - ?a then ?x else (0:: ?'a)) ###symbols Groups.uminus_class.uminus :::: 'a \<Rightarrow> 'a Formal_Laurent_Series.fls.Abs_fls :::: (int \<Rightarrow> 'a) \<Rightarrow> 'a fls Formal_Laurent_Series.fls_right_inverse :::: 'a fls \<Rightarrow> 'a \<Rightarrow> 'a fls Groups.zero_class.zero :::: 'a ###defs class uminus = fixes uminus :: "'a \<Rightarrow> 'a" ("- _" [81] 80) abbreviation fls_right_inverse :: "'a::{comm_monoid_add,uminus,times} fls \<Rightarrow> 'a \<Rightarrow> 'a fls" where "fls_right_inverse f y \<equiv> fls_shift (fls_subdegree f) (fps_to_fls (fps_right_inverse (fls_base_factor_to_fps f) y))" class zero = fixes zero :: 'a ("0")
###output x_1 \<noteq> ?H1 \<Longrightarrow> ?H2 (?H3 (\<lambda>y_0. if y_0 = x_2 then x_1 else ?H1)) x_3 = ?H3 (\<lambda>y_1. if y_1 = ?H4 x_2 then x_3 else ?H1)###end
Predicate_Compile_Examples/Predicate_Compile_Tests
Predicate_Compile_Tests.tupled_append''_PiioI
null
tupled_append'' (?x, ?xa, ?xb) \<Longrightarrow> pred.eval (tupled_append''_Piio (?x, ?xa)) ?xb
?H1 (x_1, x_2, x_3) \<Longrightarrow> ?H2 (?H3 (x_1, x_2)) x_3
[ "Predicate_Compile_Tests.tupled_append''_Piio", "Predicate.pred.eval", "Predicate_Compile_Tests.tupled_append''" ]
[ "'a list \\<times> 'a list \\<Rightarrow> 'a list Predicate.pred", "'a Predicate.pred \\<Rightarrow> 'a \\<Rightarrow> bool", "'a list \\<times> 'a list \\<times> 'a list \\<Rightarrow> bool" ]
[ "datatype (plugins only: extraction) (dead 'a) pred = Pred (eval: \"'a \\<Rightarrow> bool\")", "inductive tupled_append'' :: \"'a list \\<times> 'a list \\<times> 'a list \\<Rightarrow> bool\"\nwhere\n \"tupled_append'' ([], xs, xs)\"\n| \"ys = fst yszs ==> x # zs = snd yszs ==> tupled_append'' (xs, ys, zs) \\<Longrightarrow> tupled_append'' (x # xs, yszs)\"" ]
template
###lemma tupled_append'' (?x, ?xa, ?xb) \<Longrightarrow> pred.eval (tupled_append''_Piio (?x, ?xa)) ?xb ###symbols Predicate_Compile_Tests.tupled_append''_Piio :::: 'a list \<times> 'a list \<Rightarrow> 'a list Predicate.pred Predicate.pred.eval :::: 'a Predicate.pred \<Rightarrow> 'a \<Rightarrow> bool Predicate_Compile_Tests.tupled_append'' :::: 'a list \<times> 'a list \<times> 'a list \<Rightarrow> bool ###defs datatype (plugins only: extraction) (dead 'a) pred = Pred (eval: "'a \<Rightarrow> bool") inductive tupled_append'' :: "'a list \<times> 'a list \<times> 'a list \<Rightarrow> bool" where "tupled_append'' ([], xs, xs)" | "ys = fst yszs ==> x # zs = snd yszs ==> tupled_append'' (xs, ys, zs) \<Longrightarrow> tupled_append'' (x # xs, yszs)"
###output ?H1 (x_1, x_2, x_3) \<Longrightarrow> ?H2 (?H3 (x_1, x_2)) x_3###end
Auth/Guard/Extensions
Extensions.keyset_keysfor
lemma keyset_keysfor [iff]: "keyset (keysfor G)"
keyset (keysfor ?G)
?H1 (?H2 x_1)
[ "Extensions.keysfor", "Extensions.keyset" ]
[ "msg set \\<Rightarrow> msg set", "msg set \\<Rightarrow> bool" ]
[]
template
###lemma keyset (keysfor ?G) ###symbols Extensions.keysfor :::: msg set \<Rightarrow> msg set Extensions.keyset :::: msg set \<Rightarrow> bool ###defs
###output ?H1 (?H2 x_1)###end
Probability/SPMF
SPMF.set_pair_spmf
lemma set_pair_spmf [simp]: "set_spmf (pair_spmf p q) = set_spmf p \<times> set_spmf q"
set_spmf (pair_spmf ?p ?q) = set_spmf ?p \<times> set_spmf ?q
?H1 (?H2 x_1 x_2) = ?H3 (?H1 x_1) (?H1 x_2)
[ "Product_Type.Times", "SPMF.pair_spmf", "SPMF.set_spmf" ]
[ "'a set \\<Rightarrow> 'b set \\<Rightarrow> ('a \\<times> 'b) set", "'a spmf \\<Rightarrow> 'b spmf \\<Rightarrow> ('a \\<times> 'b) spmf", "'a spmf \\<Rightarrow> 'a set" ]
[ "abbreviation Times :: \"'a set \\<Rightarrow> 'b set \\<Rightarrow> ('a \\<times> 'b) set\" (infixr \"\\<times>\" 80)\n where \"A \\<times> B \\<equiv> Sigma A (\\<lambda>_. B)\"", "definition pair_spmf :: \"'a spmf \\<Rightarrow> 'b spmf \\<Rightarrow> ('a \\<times> 'b) spmf\"\nwhere \"pair_spmf p q = bind_pmf (pair_pmf p q) (\\<lambda>xy. case xy of (Some x, Some y) \\<Rightarrow> return_spmf (x, y) | _ \\<Rightarrow> return_pmf None)\"", "definition set_spmf :: \"'a spmf \\<Rightarrow> 'a set\"\n where \"set_spmf p = set_pmf p \\<bind> set_option\"" ]
template
###lemma set_spmf (pair_spmf ?p ?q) = set_spmf ?p \<times> set_spmf ?q ###symbols Product_Type.Times :::: 'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<times> 'b) set SPMF.pair_spmf :::: 'a spmf \<Rightarrow> 'b spmf \<Rightarrow> ('a \<times> 'b) spmf SPMF.set_spmf :::: 'a spmf \<Rightarrow> 'a set ###defs abbreviation Times :: "'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<times> 'b) set" (infixr "\<times>" 80) where "A \<times> B \<equiv> Sigma A (\<lambda>_. B)" definition pair_spmf :: "'a spmf \<Rightarrow> 'b spmf \<Rightarrow> ('a \<times> 'b) spmf" where "pair_spmf p q = bind_pmf (pair_pmf p q) (\<lambda>xy. case xy of (Some x, Some y) \<Rightarrow> return_spmf (x, y) | _ \<Rightarrow> return_pmf None)" definition set_spmf :: "'a spmf \<Rightarrow> 'a set" where "set_spmf p = set_pmf p \<bind> set_option"
###output ?H1 (?H2 x_1 x_2) = ?H3 (?H1 x_1) (?H1 x_2)###end
Transitive_Closure
Transitive_Closure.rtrancl_trancl_reflcl
lemma rtrancl_trancl_reflcl [code]: "r\<^sup>* = (r\<^sup>+)\<^sup>="
?r\<^sup>* = (?r\<^sup>+)\<^sup>=
?H1 x_1 = ?H2 (?H3 x_1)
[ "Transitive_Closure.trancl", "Transitive_Closure.reflcl", "Transitive_Closure.rtrancl" ]
[ "('a \\<times> 'a) set \\<Rightarrow> ('a \\<times> 'a) set", "('a \\<times> 'a) set \\<Rightarrow> ('a \\<times> 'a) set", "('a \\<times> 'a) set \\<Rightarrow> ('a \\<times> 'a) set" ]
[ "inductive_set trancl :: \"('a \\<times> 'a) set \\<Rightarrow> ('a \\<times> 'a) set\" (\"(_\\<^sup>+)\" [1000] 999)\n for r :: \"('a \\<times> 'a) set\"\n where\n r_into_trancl [intro, Pure.intro]: \"(a, b) \\<in> r \\<Longrightarrow> (a, b) \\<in> r\\<^sup>+\"\n | trancl_into_trancl [Pure.intro]: \"(a, b) \\<in> r\\<^sup>+ \\<Longrightarrow> (b, c) \\<in> r \\<Longrightarrow> (a, c) \\<in> r\\<^sup>+\"", "abbreviation reflcl :: \"('a \\<times> 'a) set \\<Rightarrow> ('a \\<times> 'a) set\" (\"(_\\<^sup>=)\" [1000] 999)\n where \"r\\<^sup>= \\<equiv> r \\<union> Id\"", "inductive_set rtrancl :: \"('a \\<times> 'a) set \\<Rightarrow> ('a \\<times> 'a) set\" (\"(_\\<^sup>*)\" [1000] 999)\n for r :: \"('a \\<times> 'a) set\"\n where\n rtrancl_refl [intro!, Pure.intro!, simp]: \"(a, a) \\<in> r\\<^sup>*\"\n | rtrancl_into_rtrancl [Pure.intro]: \"(a, b) \\<in> r\\<^sup>* \\<Longrightarrow> (b, c) \\<in> r \\<Longrightarrow> (a, c) \\<in> r\\<^sup>*\"" ]
template
###lemma ?r\<^sup>* = (?r\<^sup>+)\<^sup>= ###symbols Transitive_Closure.trancl :::: ('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set Transitive_Closure.reflcl :::: ('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set Transitive_Closure.rtrancl :::: ('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set ###defs inductive_set trancl :: "('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set" ("(_\<^sup>+)" [1000] 999) for r :: "('a \<times> 'a) set" where r_into_trancl [intro, Pure.intro]: "(a, b) \<in> r \<Longrightarrow> (a, b) \<in> r\<^sup>+" | trancl_into_trancl [Pure.intro]: "(a, b) \<in> r\<^sup>+ \<Longrightarrow> (b, c) \<in> r \<Longrightarrow> (a, c) \<in> r\<^sup>+" abbreviation reflcl :: "('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set" ("(_\<^sup>=)" [1000] 999) where "r\<^sup>= \<equiv> r \<union> Id" inductive_set rtrancl :: "('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set" ("(_\<^sup>*)" [1000] 999) for r :: "('a \<times> 'a) set" where rtrancl_refl [intro!, Pure.intro!, simp]: "(a, a) \<in> r\<^sup>*" | rtrancl_into_rtrancl [Pure.intro]: "(a, b) \<in> r\<^sup>* \<Longrightarrow> (b, c) \<in> r \<Longrightarrow> (a, c) \<in> r\<^sup>*"
###output ?H1 x_1 = ?H2 (?H3 x_1)###end
Computational_Algebra/Formal_Power_Series
Formal_Power_Series.fps_cutoff_numeral
lemma fps_cutoff_numeral: "fps_cutoff n (numeral c) = (if n = 0 then 0 else numeral c)"
fps_cutoff ?n (numeral ?c) = (if ?n = 0 then 0 else numeral ?c)
?H1 x_1 (?H2 x_2) = (if x_1 = ?H3 then ?H3 else ?H2 x_2)
[ "Groups.zero_class.zero", "Num.numeral_class.numeral", "Formal_Power_Series.fps_cutoff" ]
[ "'a", "num \\<Rightarrow> 'a", "nat \\<Rightarrow> 'a fps \\<Rightarrow> 'a fps" ]
[ "class zero =\n fixes zero :: 'a (\"0\")", "primrec numeral :: \"num \\<Rightarrow> 'a\"\n where\n numeral_One: \"numeral One = 1\"\n | numeral_Bit0: \"numeral (Bit0 n) = numeral n + numeral n\"\n | numeral_Bit1: \"numeral (Bit1 n) = numeral n + numeral n + 1\"", "definition \"fps_cutoff n f = Abs_fps (\\<lambda>i. if i < n then f$i else 0)\"" ]
template
###lemma fps_cutoff ?n (numeral ?c) = (if ?n = 0 then 0 else numeral ?c) ###symbols Groups.zero_class.zero :::: 'a Num.numeral_class.numeral :::: num \<Rightarrow> 'a Formal_Power_Series.fps_cutoff :::: nat \<Rightarrow> 'a fps \<Rightarrow> 'a fps ###defs class zero = fixes zero :: 'a ("0") primrec numeral :: "num \<Rightarrow> 'a" where numeral_One: "numeral One = 1" | numeral_Bit0: "numeral (Bit0 n) = numeral n + numeral n" | numeral_Bit1: "numeral (Bit1 n) = numeral n + numeral n + 1" definition "fps_cutoff n f = Abs_fps (\<lambda>i. if i < n then f$i else 0)"
###output ?H1 x_1 (?H2 x_2) = (if x_1 = ?H3 then ?H3 else ?H2 x_2)###end
Matrix_LP/ComputeNumeral
ComputeNumeral.compute_numeral(19)
null
(?P \<longrightarrow> True) = True
(x_1 \<longrightarrow> True) = True
[]
[]
[]
template
###lemma (?P \<longrightarrow> True) = True ###symbols ###defs
###output (x_1 \<longrightarrow> True) = True###end
Nominal/Examples/SOS
SOS.values_reduce_to_themselves
lemma values_reduce_to_themselves: assumes a: "val v" shows "v \<Down> v"
val ?v \<Longrightarrow> ?v \<Down> ?v
?H1 x_1 \<Longrightarrow> ?H2 x_1 x_1
[ "SOS.big", "SOS.val" ]
[ "trm \\<Rightarrow> trm \\<Rightarrow> bool", "trm \\<Rightarrow> bool" ]
[]
template
###lemma val ?v \<Longrightarrow> ?v \<Down> ?v ###symbols SOS.big :::: trm \<Rightarrow> trm \<Rightarrow> bool SOS.val :::: trm \<Rightarrow> bool ###defs
###output ?H1 x_1 \<Longrightarrow> ?H2 x_1 x_1###end
Real_Asymp/Multiseries_Expansion
Multiseries_Expansion.expands_to_basic
lemma expands_to_basic: assumes "basis_wf (b # basis)" "length basis = expansion_level TYPE('a::multiseries)" shows "(b expands_to MS (MSLCons (const_expansion 1 :: 'a, 1) MSLNil) b) (b # basis)"
basis_wf (?b # ?basis) \<Longrightarrow> length ?basis = expansion_level TYPE(?'a) \<Longrightarrow> (?b expands_to MS (MSLCons (const_expansion 1, 1) MSLNil) ?b) (?b # ?basis)
\<lbrakk> ?H1 (?H2 x_1 x_2); ?H3 x_2 = ?H4 TYPE(?'a)\<rbrakk> \<Longrightarrow> ?H5 x_1 (?H6 (?H7 (?H8 ?H9, ?H9) ?H10) x_1) (?H2 x_1 x_2)
[ "Multiseries_Expansion.msllist.MSLNil", "Groups.one_class.one", "Multiseries_Expansion.multiseries_class.const_expansion", "Multiseries_Expansion.msllist.MSLCons", "Multiseries_Expansion.ms.MS", "Multiseries_Expansion.expands_to", "Multiseries_Expansion.multiseries_class.expansion_level", "List.length", "List.list.Cons", "Multiseries_Expansion.basis_wf" ]
[ "'a msllist", "'a", "real \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a msllist \\<Rightarrow> 'a msllist", "('a \\<times> real) msllist \\<Rightarrow> (real \\<Rightarrow> real) \\<Rightarrow> 'a ms", "(real \\<Rightarrow> real) \\<Rightarrow> 'a \\<Rightarrow> (real \\<Rightarrow> real) list \\<Rightarrow> bool", "'a itself \\<Rightarrow> nat", "'a list \\<Rightarrow> nat", "'a \\<Rightarrow> 'a list \\<Rightarrow> 'a list", "(real \\<Rightarrow> real) list \\<Rightarrow> bool" ]
[ "codatatype 'a msllist = MSLNil | MSLCons 'a \"'a msllist\"\n for map: mslmap", "class one =\n fixes one :: 'a (\"1\")", "class multiseries = plus + minus + times + uminus + inverse + \n fixes is_expansion :: \"'a \\<Rightarrow> basis \\<Rightarrow> bool\"\n and expansion_level :: \"'a itself \\<Rightarrow> nat\"\n and eval :: \"'a \\<Rightarrow> real \\<Rightarrow> real\"\n and zero_expansion :: 'a\n and const_expansion :: \"real \\<Rightarrow> 'a\"\n and powr_expansion :: \"bool \\<Rightarrow> 'a \\<Rightarrow> real \\<Rightarrow> 'a\"\n and power_expansion :: \"bool \\<Rightarrow> 'a \\<Rightarrow> nat \\<Rightarrow> 'a\"\n and trimmed :: \"'a \\<Rightarrow> bool\"\n and dominant_term :: \"'a \\<Rightarrow> monom\"\n\n assumes is_expansion_length:\n \"is_expansion F basis \\<Longrightarrow> length basis = expansion_level (TYPE('a))\"\n assumes is_expansion_zero:\n \"basis_wf basis \\<Longrightarrow> length basis = expansion_level (TYPE('a)) \\<Longrightarrow> \n is_expansion zero_expansion basis\"\n assumes is_expansion_const:\n \"basis_wf basis \\<Longrightarrow> length basis = expansion_level (TYPE('a)) \\<Longrightarrow> \n is_expansion (const_expansion c) basis\"\n assumes is_expansion_uminus:\n \"basis_wf basis \\<Longrightarrow> is_expansion F basis \\<Longrightarrow> is_expansion (-F) basis\"\n assumes is_expansion_add: \n \"basis_wf basis \\<Longrightarrow> is_expansion F basis \\<Longrightarrow> is_expansion G basis \\<Longrightarrow> \n is_expansion (F + G) basis\"\n assumes is_expansion_minus: \n \"basis_wf basis \\<Longrightarrow> is_expansion F basis \\<Longrightarrow> is_expansion G basis \\<Longrightarrow> \n is_expansion (F - G) basis\"\n assumes is_expansion_mult: \n \"basis_wf basis \\<Longrightarrow> is_expansion F basis \\<Longrightarrow> is_expansion G basis \\<Longrightarrow> \n is_expansion (F * G) basis\"\n assumes is_expansion_inverse:\n \"basis_wf basis \\<Longrightarrow> trimmed F \\<Longrightarrow> is_expansion F basis \\<Longrightarrow> \n is_expansion (inverse F) basis\"\n assumes is_expansion_divide:\n \"basis_wf basis \\<Longrightarrow> trimmed G \\<Longrightarrow> is_expansion F basis \\<Longrightarrow> is_expansion G basis \\<Longrightarrow> \n is_expansion (F / G) basis\"\n assumes is_expansion_powr:\n \"basis_wf basis \\<Longrightarrow> trimmed F \\<Longrightarrow> fst (dominant_term F) > 0 \\<Longrightarrow> is_expansion F basis \\<Longrightarrow>\n is_expansion (powr_expansion abort F p) basis\"\n assumes is_expansion_power:\n \"basis_wf basis \\<Longrightarrow> trimmed F \\<Longrightarrow> is_expansion F basis \\<Longrightarrow>\n is_expansion (power_expansion abort F n) basis\"\n \n assumes is_expansion_imp_smallo:\n \"basis_wf basis \\<Longrightarrow> is_expansion F basis \\<Longrightarrow> filterlim b at_top at_top \\<Longrightarrow>\n (\\<forall>g\\<in>set basis. (\\<lambda>x. ln (g x)) \\<in> o(\\<lambda>x. ln (b x))) \\<Longrightarrow> e > 0 \\<Longrightarrow> eval F \\<in> o(\\<lambda>x. b x powr e)\"\n assumes is_expansion_imp_smallomega:\n \"basis_wf basis \\<Longrightarrow> is_expansion F basis \\<Longrightarrow> filterlim b at_top at_top \\<Longrightarrow> trimmed F \\<Longrightarrow> \n (\\<forall>g\\<in>set basis. (\\<lambda>x. ln (g x)) \\<in> o(\\<lambda>x. ln (b x))) \\<Longrightarrow> e < 0 \\<Longrightarrow> eval F \\<in> \\<omega>(\\<lambda>x. b x powr e)\"\n assumes trimmed_imp_eventually_sgn:\n \"basis_wf basis \\<Longrightarrow> is_expansion F basis \\<Longrightarrow> trimmed F \\<Longrightarrow>\n eventually (\\<lambda>x. sgn (eval F x) = sgn (fst (dominant_term F))) at_top\"\n assumes trimmed_imp_eventually_nz: \n \"basis_wf basis \\<Longrightarrow> is_expansion F basis \\<Longrightarrow> trimmed F \\<Longrightarrow> \n eventually (\\<lambda>x. eval F x \\<noteq> 0) at_top\"\n assumes trimmed_imp_dominant_term_nz: \"trimmed F \\<Longrightarrow> fst (dominant_term F) \\<noteq> 0\"\n \n assumes dominant_term: \n \"basis_wf basis \\<Longrightarrow> is_expansion F basis \\<Longrightarrow> trimmed F \\<Longrightarrow>\n eval F \\<sim>[at_top] eval_monom (dominant_term F) basis\"\n assumes dominant_term_bigo:\n \"basis_wf basis \\<Longrightarrow> is_expansion F basis \\<Longrightarrow>\n eval F \\<in> O(eval_monom (1, snd (dominant_term F)) basis)\"\n assumes length_dominant_term:\n \"length (snd (dominant_term F)) = expansion_level TYPE('a)\"\n assumes fst_dominant_term_uminus [simp]: \"fst (dominant_term (- F)) = -fst (dominant_term F)\"\n assumes trimmed_uminus_iff [simp]: \"trimmed (-F) \\<longleftrightarrow> trimmed F\"\n \n assumes add_zero_expansion_left [simp]: \"zero_expansion + F = F\"\n assumes add_zero_expansion_right [simp]: \"F + zero_expansion = F\"\n \n assumes eval_zero [simp]: \"eval zero_expansion x = 0\"\n assumes eval_const [simp]: \"eval (const_expansion c) x = c\"\n assumes eval_uminus [simp]: \"eval (-F) = (\\<lambda>x. -eval F x)\"\n assumes eval_plus [simp]: \"eval (F + G) = (\\<lambda>x. eval F x + eval G x)\"\n assumes eval_minus [simp]: \"eval (F - G) = (\\<lambda>x. eval F x - eval G x)\"\n assumes eval_times [simp]: \"eval (F * G) = (\\<lambda>x. eval F x * eval G x)\"\n assumes eval_inverse [simp]: \"eval (inverse F) = (\\<lambda>x. inverse (eval F x))\"\n assumes eval_divide [simp]: \"eval (F / G) = (\\<lambda>x. eval F x / eval G x)\"\n assumes eval_powr [simp]: \"eval (powr_expansion abort F p) = (\\<lambda>x. eval F x powr p)\"\n assumes eval_power [simp]: \"eval (power_expansion abort F n) = (\\<lambda>x. eval F x ^ n)\"\n assumes minus_eq_plus_uminus: \"F - G = F + (-G)\"\n assumes times_const_expansion_1: \"const_expansion 1 * F = F\"\n assumes trimmed_const_expansion: \"trimmed (const_expansion c) \\<longleftrightarrow> c \\<noteq> 0\"\nbegin", "codatatype 'a msllist = MSLNil | MSLCons 'a \"'a msllist\"\n for map: mslmap", "datatype 'a ms = MS \"('a \\<times> real) msllist\" \"real \\<Rightarrow> real\"", "inductive expands_to :: \"(real \\<Rightarrow> real) \\<Rightarrow> 'a :: multiseries \\<Rightarrow> basis \\<Rightarrow> bool\" \n (infix \"(expands'_to)\" 50) where\n \"is_expansion F basis \\<Longrightarrow> eventually (\\<lambda>x. eval F x = f x) at_top \\<Longrightarrow> (f expands_to F) basis\"", "class multiseries = plus + minus + times + uminus + inverse + \n fixes is_expansion :: \"'a \\<Rightarrow> basis \\<Rightarrow> bool\"\n and expansion_level :: \"'a itself \\<Rightarrow> nat\"\n and eval :: \"'a \\<Rightarrow> real \\<Rightarrow> real\"\n and zero_expansion :: 'a\n and const_expansion :: \"real \\<Rightarrow> 'a\"\n and powr_expansion :: \"bool \\<Rightarrow> 'a \\<Rightarrow> real \\<Rightarrow> 'a\"\n and power_expansion :: \"bool \\<Rightarrow> 'a \\<Rightarrow> nat \\<Rightarrow> 'a\"\n and trimmed :: \"'a \\<Rightarrow> bool\"\n and dominant_term :: \"'a \\<Rightarrow> monom\"\n\n assumes is_expansion_length:\n \"is_expansion F basis \\<Longrightarrow> length basis = expansion_level (TYPE('a))\"\n assumes is_expansion_zero:\n \"basis_wf basis \\<Longrightarrow> length basis = expansion_level (TYPE('a)) \\<Longrightarrow> \n is_expansion zero_expansion basis\"\n assumes is_expansion_const:\n \"basis_wf basis \\<Longrightarrow> length basis = expansion_level (TYPE('a)) \\<Longrightarrow> \n is_expansion (const_expansion c) basis\"\n assumes is_expansion_uminus:\n \"basis_wf basis \\<Longrightarrow> is_expansion F basis \\<Longrightarrow> is_expansion (-F) basis\"\n assumes is_expansion_add: \n \"basis_wf basis \\<Longrightarrow> is_expansion F basis \\<Longrightarrow> is_expansion G basis \\<Longrightarrow> \n is_expansion (F + G) basis\"\n assumes is_expansion_minus: \n \"basis_wf basis \\<Longrightarrow> is_expansion F basis \\<Longrightarrow> is_expansion G basis \\<Longrightarrow> \n is_expansion (F - G) basis\"\n assumes is_expansion_mult: \n \"basis_wf basis \\<Longrightarrow> is_expansion F basis \\<Longrightarrow> is_expansion G basis \\<Longrightarrow> \n is_expansion (F * G) basis\"\n assumes is_expansion_inverse:\n \"basis_wf basis \\<Longrightarrow> trimmed F \\<Longrightarrow> is_expansion F basis \\<Longrightarrow> \n is_expansion (inverse F) basis\"\n assumes is_expansion_divide:\n \"basis_wf basis \\<Longrightarrow> trimmed G \\<Longrightarrow> is_expansion F basis \\<Longrightarrow> is_expansion G basis \\<Longrightarrow> \n is_expansion (F / G) basis\"\n assumes is_expansion_powr:\n \"basis_wf basis \\<Longrightarrow> trimmed F \\<Longrightarrow> fst (dominant_term F) > 0 \\<Longrightarrow> is_expansion F basis \\<Longrightarrow>\n is_expansion (powr_expansion abort F p) basis\"\n assumes is_expansion_power:\n \"basis_wf basis \\<Longrightarrow> trimmed F \\<Longrightarrow> is_expansion F basis \\<Longrightarrow>\n is_expansion (power_expansion abort F n) basis\"\n \n assumes is_expansion_imp_smallo:\n \"basis_wf basis \\<Longrightarrow> is_expansion F basis \\<Longrightarrow> filterlim b at_top at_top \\<Longrightarrow>\n (\\<forall>g\\<in>set basis. (\\<lambda>x. ln (g x)) \\<in> o(\\<lambda>x. ln (b x))) \\<Longrightarrow> e > 0 \\<Longrightarrow> eval F \\<in> o(\\<lambda>x. b x powr e)\"\n assumes is_expansion_imp_smallomega:\n \"basis_wf basis \\<Longrightarrow> is_expansion F basis \\<Longrightarrow> filterlim b at_top at_top \\<Longrightarrow> trimmed F \\<Longrightarrow> \n (\\<forall>g\\<in>set basis. (\\<lambda>x. ln (g x)) \\<in> o(\\<lambda>x. ln (b x))) \\<Longrightarrow> e < 0 \\<Longrightarrow> eval F \\<in> \\<omega>(\\<lambda>x. b x powr e)\"\n assumes trimmed_imp_eventually_sgn:\n \"basis_wf basis \\<Longrightarrow> is_expansion F basis \\<Longrightarrow> trimmed F \\<Longrightarrow>\n eventually (\\<lambda>x. sgn (eval F x) = sgn (fst (dominant_term F))) at_top\"\n assumes trimmed_imp_eventually_nz: \n \"basis_wf basis \\<Longrightarrow> is_expansion F basis \\<Longrightarrow> trimmed F \\<Longrightarrow> \n eventually (\\<lambda>x. eval F x \\<noteq> 0) at_top\"\n assumes trimmed_imp_dominant_term_nz: \"trimmed F \\<Longrightarrow> fst (dominant_term F) \\<noteq> 0\"\n \n assumes dominant_term: \n \"basis_wf basis \\<Longrightarrow> is_expansion F basis \\<Longrightarrow> trimmed F \\<Longrightarrow>\n eval F \\<sim>[at_top] eval_monom (dominant_term F) basis\"\n assumes dominant_term_bigo:\n \"basis_wf basis \\<Longrightarrow> is_expansion F basis \\<Longrightarrow>\n eval F \\<in> O(eval_monom (1, snd (dominant_term F)) basis)\"\n assumes length_dominant_term:\n \"length (snd (dominant_term F)) = expansion_level TYPE('a)\"\n assumes fst_dominant_term_uminus [simp]: \"fst (dominant_term (- F)) = -fst (dominant_term F)\"\n assumes trimmed_uminus_iff [simp]: \"trimmed (-F) \\<longleftrightarrow> trimmed F\"\n \n assumes add_zero_expansion_left [simp]: \"zero_expansion + F = F\"\n assumes add_zero_expansion_right [simp]: \"F + zero_expansion = F\"\n \n assumes eval_zero [simp]: \"eval zero_expansion x = 0\"\n assumes eval_const [simp]: \"eval (const_expansion c) x = c\"\n assumes eval_uminus [simp]: \"eval (-F) = (\\<lambda>x. -eval F x)\"\n assumes eval_plus [simp]: \"eval (F + G) = (\\<lambda>x. eval F x + eval G x)\"\n assumes eval_minus [simp]: \"eval (F - G) = (\\<lambda>x. eval F x - eval G x)\"\n assumes eval_times [simp]: \"eval (F * G) = (\\<lambda>x. eval F x * eval G x)\"\n assumes eval_inverse [simp]: \"eval (inverse F) = (\\<lambda>x. inverse (eval F x))\"\n assumes eval_divide [simp]: \"eval (F / G) = (\\<lambda>x. eval F x / eval G x)\"\n assumes eval_powr [simp]: \"eval (powr_expansion abort F p) = (\\<lambda>x. eval F x powr p)\"\n assumes eval_power [simp]: \"eval (power_expansion abort F n) = (\\<lambda>x. eval F x ^ n)\"\n assumes minus_eq_plus_uminus: \"F - G = F + (-G)\"\n assumes times_const_expansion_1: \"const_expansion 1 * F = F\"\n assumes trimmed_const_expansion: \"trimmed (const_expansion c) \\<longleftrightarrow> c \\<noteq> 0\"\nbegin", "abbreviation length :: \"'a list \\<Rightarrow> nat\" where\n\"length \\<equiv> size\"", "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "definition basis_wf :: \"basis \\<Rightarrow> bool\" where\n \"basis_wf basis \\<longleftrightarrow> (\\<forall>f\\<in>set basis. filterlim f at_top at_top) \\<and> \n sorted_wrt (\\<lambda>f g. (\\<lambda>x. ln (g x)) \\<in> o(\\<lambda>x. ln (f x))) basis\"" ]
template
###lemma basis_wf (?b # ?basis) \<Longrightarrow> length ?basis = expansion_level TYPE(?'a) \<Longrightarrow> (?b expands_to MS (MSLCons (const_expansion 1, 1) MSLNil) ?b) (?b # ?basis) ###symbols Multiseries_Expansion.msllist.MSLNil :::: 'a msllist Groups.one_class.one :::: 'a Multiseries_Expansion.multiseries_class.const_expansion :::: real \<Rightarrow> 'a Multiseries_Expansion.msllist.MSLCons :::: 'a \<Rightarrow> 'a msllist \<Rightarrow> 'a msllist Multiseries_Expansion.ms.MS :::: ('a \<times> real) msllist \<Rightarrow> (real \<Rightarrow> real) \<Rightarrow> 'a ms Multiseries_Expansion.expands_to :::: (real \<Rightarrow> real) \<Rightarrow> 'a \<Rightarrow> (real \<Rightarrow> real) list \<Rightarrow> bool Multiseries_Expansion.multiseries_class.expansion_level :::: 'a itself \<Rightarrow> nat List.length :::: 'a list \<Rightarrow> nat List.list.Cons :::: 'a \<Rightarrow> 'a list \<Rightarrow> 'a list Multiseries_Expansion.basis_wf :::: (real \<Rightarrow> real) list \<Rightarrow> bool ###defs codatatype 'a msllist = MSLNil | MSLCons 'a "'a msllist" for map: mslmap class one = fixes one :: 'a ("1") class multiseries = plus + minus + times + uminus + inverse + fixes is_expansion :: "'a \<Rightarrow> basis \<Rightarrow> bool" and expansion_level :: "'a itself \<Rightarrow> nat" and eval :: "'a \<Rightarrow> real \<Rightarrow> real" and zero_expansion :: 'a and const_expansion :: "real \<Rightarrow> 'a" and powr_expansion :: "bool \<Rightarrow> 'a \<Rightarrow> real \<Rightarrow> 'a" and power_expansion :: "bool \<Rightarrow> 'a \<Rightarrow> nat \<Rightarrow> 'a" and trimmed :: "'a \<Rightarrow> bool" and dominant_term :: "'a \<Rightarrow> monom" assumes is_expansion_length: "is_expansion F basis \<Longrightarrow> length basis = expansion_level (TYPE('a))" assumes is_expansion_zero: "basis_wf basis \<Longrightarrow> length basis = expansion_level (TYPE('a)) \<Longrightarrow> is_expansion zero_expansion basis" assumes is_expansion_const: "basis_wf basis \<Longrightarrow> length basis = expansion_level (TYPE('a)) \<Longrightarrow> is_expansion (const_expansion c) basis" assumes is_expansion_uminus: "basis_wf basis \<Longrightarrow> is_expansion F basis \<Longrightarrow> is_expansion (-F) basis" assumes is_expansion_add: "basis_wf basis \<Longrightarrow> is_expansion F basis \<Longrightarrow> is_expansion G basis \<Longrightarrow> is_expansion (F + G) basis" assumes is_expansion_minus: "basis_wf basis \<Longrightarrow> is_expansion F basis \<Longrightarrow> is_expansion G basis \<Longrightarrow> is_expansion (F - G) basis" assumes is_expansion_mult: "basis_wf basis \<Longrightarrow> is_expansion F basis \<Longrightarrow> is_expansion G basis \<Longrightarrow> is_expansion (F * G) basis" assumes is_expansion_inverse: "basis_wf basis \<Longrightarrow> trimmed F \<Longrightarrow> is_expansion F basis \<Longrightarrow> is_expansion (inverse F) basis" assumes is_expansion_divide: "basis_wf basis \<Longrightarrow> trimmed G \<Longrightarrow> is_expansion F basis \<Longrightarrow> is_expansion G basis \<Longrightarrow> is_expansion (F / G) basis" assumes is_expansion_powr: "basis_wf basis \<Longrightarrow> trimmed F \<Longrightarrow> fst (dominant_term F) > 0 \<Longrightarrow> is_expansion F basis \<Longrightarrow> is_expansion (powr_expansion abort F p) basis" assumes is_expansion_power: "basis_wf basis \<Longrightarrow> trimmed F \<Longrightarrow> is_expansion F basis \<Longrightarrow> is_expansion (power_expansion abort F n) basis" assumes is_expansion_imp_smallo: "basis_wf basis \<Longrightarrow> is_expansion F basis \<Longrightarrow> filterlim b at_top at_top \<Longrightarrow> (\<forall>g\<in>set basis. (\<lambda>x. ln (g x)) \<in> o(\<lambda>x. ln (b x))) \<Longrightarrow> e > 0 \<Longrightarrow> eval F \<in> o(\<lambda>x. b x powr e)" assumes is_expansion_imp_smallomega: "basis_wf basis \<Longrightarrow> is_expansion F basis \<Longrightarrow> filterlim b at_top at_top \<Longrightarrow> trimmed F \<Longrightarrow> (\<forall>g\<in>set basis. (\<lambda>x. ln (g x)) \<in> o(\<lambda>x. ln (b x))) \<Longrightarrow> e < 0 \<Longrightarrow> eval F \<in> \<omega>(\<lambda>x. b x powr e)" assumes trimmed_imp_eventually_sgn: "basis_wf basis \<Longrightarrow> is_expansion F basis \<Longrightarrow> trimmed F \<Longrightarrow> eventually (\<lambda>x. sgn (eval F x) = sgn (fst (dominant_term F))) at_top" assumes trimmed_imp_eventually_nz: "basis_wf basis \<Longrightarrow> is_expansion F basis \<Longrightarrow> trimmed F \<Longrightarrow> eventually (\<lambda>x. eval F x \<noteq> 0) at_top" assumes trimmed_imp_dominant_term_nz: "trimmed F \<Longrightarrow> fst (dominant_term F) \<noteq> 0" assumes dominant_term: "basis_wf basis \<Longrightarrow> is_expansion F basis \<Longrightarrow> trimmed F \<Longrightarrow> eval F \<sim>[at_top] eval_monom (dominant_term F) basis" assumes dominant_term_bigo: "basis_wf basis \<Longrightarrow> is_expansion F basis \<Longrightarrow> eval F \<in> O(eval_monom (1, snd (dominant_term F)) basis)" assumes length_dominant_term: "length (snd (dominant_term F)) = expansion_level TYPE('a)" assumes fst_dominant_term_uminus [simp]: "fst (dominant_term (- F)) = -fst (dominant_term F)" assumes trimmed_uminus_iff [simp]: "trimmed (-F) \<longleftrightarrow> trimmed F" assumes add_zero_expansion_left [simp]: "zero_expansion + F = F" assumes add_zero_expansion_right [simp]: "F + zero_expansion = F" assumes eval_zero [simp]: "eval zero_expansion x = 0" assumes eval_const [simp]: "eval (const_expansion c) x = c" assumes eval_uminus [simp]: "eval (-F) = (\<lambda>x. -eval F x)" assumes eval_plus [simp]: "eval (F + G) = (\<lambda>x. eval F x + eval G x)" assumes eval_minus [simp]: "eval (F - G) = (\<lambda>x. eval F x - eval G x)" assumes eval_times [simp]: "eval (F * G) = (\<lambda>x. eval F x * eval G x)" assumes eval_inverse [simp]: "eval (inverse F) = (\<lambda>x. inverse (eval F x))" assumes eval_divide [simp]: "eval (F / G) = (\<lambda>x. eval F x / eval G x)" assumes eval_powr [simp]: "eval (powr_expansion abort F p) = (\<lambda>x. eval F x powr p)" assumes eval_power [simp]: "eval (power_expansion abort F n) = (\<lambda>x. eval F x ^ n)" assumes minus_eq_plus_uminus: "F - G = F + (-G)" assumes times_const_expansion_1: "const_expansion 1 * F = F" assumes trimmed_const_expansion: "trimmed (const_expansion c) \<longleftrightarrow> c \<noteq> 0" begin codatatype 'a msllist = MSLNil | MSLCons 'a "'a msllist" for map: mslmap datatype 'a ms = MS "('a \<times> real) msllist" "real \<Rightarrow> real" inductive expands_to :: "(real \<Rightarrow> real) \<Rightarrow> 'a :: multiseries \<Rightarrow> basis \<Rightarrow> bool" (infix "(expands'_to)" 50) where "is_expansion F basis \<Longrightarrow> eventually (\<lambda>x. eval F x = f x) at_top \<Longrightarrow> (f expands_to F) basis" class multiseries = plus + minus + times + uminus + inverse + fixes is_expansion :: "'a \<Rightarrow> basis \<Rightarrow> bool" and expansion_level :: "'a itself \<Rightarrow> nat" and eval :: "'a \<Rightarrow> real \<Rightarrow> real" and zero_expansion :: 'a and const_expansion :: "real \<Rightarrow> 'a" and powr_expansion :: "bool \<Rightarrow> 'a \<Rightarrow> real \<Rightarrow> 'a" and power_expansion :: "bool \<Rightarrow> 'a \<Rightarrow> nat \<Rightarrow> 'a" and trimmed :: "'a \<Rightarrow> bool" and dominant_term :: "'a \<Rightarrow> monom" assumes is_expansion_length: "is_expansion F basis \<Longrightarrow> length basis = expansion_level (TYPE('a))" assumes is_expansion_zero: "basis_wf basis \<Longrightarrow> length basis = expansion_level (TYPE('a)) \<Longrightarrow> is_expansion zero_expansion basis" assumes is_expansion_const: "basis_wf basis \<Longrightarrow> length basis = expansion_level (TYPE('a)) \<Longrightarrow> is_expansion (const_expansion c) basis" assumes is_expansion_uminus: "basis_wf basis \<Longrightarrow> is_expansion F basis \<Longrightarrow> is_expansion (-F) basis" assumes is_expansion_add: "basis_wf basis \<Longrightarrow> is_expansion F basis \<Longrightarrow> is_expansion G basis \<Longrightarrow> is_expansion (F + G) basis" assumes is_expansion_minus: "basis_wf basis \<Longrightarrow> is_expansion F basis \<Longrightarrow> is_expansion G basis \<Longrightarrow> is_expansion (F - G) basis" assumes is_expansion_mult: "basis_wf basis \<Longrightarrow> is_expansion F basis \<Longrightarrow> is_expansion G basis \<Longrightarrow> is_expansion (F * G) basis" assumes is_expansion_inverse: "basis_wf basis \<Longrightarrow> trimmed F \<Longrightarrow> is_expansion F basis \<Longrightarrow> is_expansion (inverse F) basis" assumes is_expansion_divide: "basis_wf basis \<Longrightarrow> trimmed G \<Longrightarrow> is_expansion F basis \<Longrightarrow> is_expansion G basis \<Longrightarrow> is_expansion (F / G) basis" assumes is_expansion_powr: "basis_wf basis \<Longrightarrow> trimmed F \<Longrightarrow> fst (dominant_term F) > 0 \<Longrightarrow> is_expansion F basis \<Longrightarrow> is_expansion (powr_expansion abort F p) basis" assumes is_expansion_power: "basis_wf basis \<Longrightarrow> trimmed F \<Longrightarrow> is_expansion F basis \<Longrightarrow> is_expansion (power_expansion abort F n) basis" assumes is_expansion_imp_smallo: "basis_wf basis \<Longrightarrow> is_expansion F basis \<Longrightarrow> filterlim b at_top at_top \<Longrightarrow> (\<forall>g\<in>set basis. (\<lambda>x. ln (g x)) \<in> o(\<lambda>x. ln (b x))) \<Longrightarrow> e > 0 \<Longrightarrow> eval F \<in> o(\<lambda>x. b x powr e)" assumes is_expansion_imp_smallomega: "basis_wf basis \<Longrightarrow> is_expansion F basis \<Longrightarrow> filterlim b at_top at_top \<Longrightarrow> trimmed F \<Longrightarrow> (\<forall>g\<in>set basis. (\<lambda>x. ln (g x)) \<in> o(\<lambda>x. ln (b x))) \<Longrightarrow> e < 0 \<Longrightarrow> eval F \<in> \<omega>(\<lambda>x. b x powr e)" assumes trimmed_imp_eventually_sgn: "basis_wf basis \<Longrightarrow> is_expansion F basis \<Longrightarrow> trimmed F \<Longrightarrow> eventually (\<lambda>x. sgn (eval F x) = sgn (fst (dominant_term F))) at_top" assumes trimmed_imp_eventually_nz: "basis_wf basis \<Longrightarrow> is_expansion F basis \<Longrightarrow> trimmed F \<Longrightarrow> eventually (\<lambda>x. eval F x \<noteq> 0) at_top" assumes trimmed_imp_dominant_term_nz: "trimmed F \<Longrightarrow> fst (dominant_term F) \<noteq> 0" assumes dominant_term: "basis_wf basis \<Longrightarrow> is_expansion F basis \<Longrightarrow> trimmed F \<Longrightarrow> eval F \<sim>[at_top] eval_monom (dominant_term F) basis" assumes dominant_term_bigo: "basis_wf basis \<Longrightarrow> is_expansion F basis \<Longrightarrow> eval F \<in> O(eval_monom (1, snd (dominant_term F)) basis)" assumes length_dominant_term: "length (snd (dominant_term F)) = expansion_level TYPE('a)" assumes fst_dominant_term_uminus [simp]: "fst (dominant_term (- F)) = -fst (dominant_term F)" assumes trimmed_uminus_iff [simp]: "trimmed (-F) \<longleftrightarrow> trimmed F" assumes add_zero_expansion_left [simp]: "zero_expansion + F = F" assumes add_zero_expansion_right [simp]: "F + zero_expansion = F" assumes eval_zero [simp]: "eval zero_expansion x = 0" assumes eval_const [simp]: "eval (const_expansion c) x = c" assumes eval_uminus [simp]: "eval (-F) = (\<lambda>x. -eval F x)" assumes eval_plus [simp]: "eval (F + G) = (\<lambda>x. eval F x + eval G x)" assumes eval_minus [simp]: "eval (F - G) = (\<lambda>x. eval F x - eval G x)" assumes eval_times [simp]: "eval (F * G) = (\<lambda>x. eval F x * eval G x)" assumes eval_inverse [simp]: "eval (inverse F) = (\<lambda>x. inverse (eval F x))" assumes eval_divide [simp]: "eval (F / G) = (\<lambda>x. eval F x / eval G x)" assumes eval_powr [simp]: "eval (powr_expansion abort F p) = (\<lambda>x. eval F x powr p)" assumes eval_power [simp]: "eval (power_expansion abort F n) = (\<lambda>x. eval F x ^ n)" assumes minus_eq_plus_uminus: "F - G = F + (-G)" assumes times_const_expansion_1: "const_expansion 1 * F = F" assumes trimmed_const_expansion: "trimmed (const_expansion c) \<longleftrightarrow> c \<noteq> 0" begin abbreviation length :: "'a list \<Rightarrow> nat" where "length \<equiv> size" datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" definition basis_wf :: "basis \<Rightarrow> bool" where "basis_wf basis \<longleftrightarrow> (\<forall>f\<in>set basis. filterlim f at_top at_top) \<and> sorted_wrt (\<lambda>f g. (\<lambda>x. ln (g x)) \<in> o(\<lambda>x. ln (f x))) basis"
###output \<lbrakk> ?H1 (?H2 x_1 x_2); ?H3 x_2 = ?H4 TYPE(?'a)\<rbrakk> \<Longrightarrow> ?H5 x_1 (?H6 (?H7 (?H8 ?H9, ?H9) ?H10) x_1) (?H2 x_1 x_2)###end
Analysis/Convex
Convex.atMostAtLeast_subset_convex
lemma atMostAtLeast_subset_convex: fixes C :: "real set" assumes "convex C" and "x \<in> C" "y \<in> C" "x < y" shows "{x .. y} \<subseteq> C"
convex ?C \<Longrightarrow> ?x \<in> ?C \<Longrightarrow> ?y \<in> ?C \<Longrightarrow> ?x < ?y \<Longrightarrow> { ?x.. ?y} \<subseteq> ?C
\<lbrakk> ?H1 x_1; x_2 \<in> x_1; x_3 \<in> x_1; x_2 < x_3\<rbrakk> \<Longrightarrow> ?H2 (?H3 x_2 x_3) x_1
[ "Set_Interval.ord_class.atLeastAtMost", "Set.subset_eq", "Convex.convex" ]
[ "'a \\<Rightarrow> 'a \\<Rightarrow> 'a set", "'a set \\<Rightarrow> 'a set \\<Rightarrow> bool", "'a set \\<Rightarrow> bool" ]
[ "abbreviation subset_eq :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> bool\"\n where \"subset_eq \\<equiv> less_eq\"" ]
template
###lemma convex ?C \<Longrightarrow> ?x \<in> ?C \<Longrightarrow> ?y \<in> ?C \<Longrightarrow> ?x < ?y \<Longrightarrow> { ?x.. ?y} \<subseteq> ?C ###symbols Set_Interval.ord_class.atLeastAtMost :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a set Set.subset_eq :::: 'a set \<Rightarrow> 'a set \<Rightarrow> bool Convex.convex :::: 'a set \<Rightarrow> bool ###defs abbreviation subset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where "subset_eq \<equiv> less_eq"
###output \<lbrakk> ?H1 x_1; x_2 \<in> x_1; x_3 \<in> x_1; x_2 < x_3\<rbrakk> \<Longrightarrow> ?H2 (?H3 x_2 x_3) x_1###end
List
List.remove1_transfer
lemma remove1_transfer [transfer_rule]: assumes [transfer_rule]: "bi_unique A" shows "(A ===> list_all2 A ===> list_all2 A) remove1 remove1"
bi_unique ?A \<Longrightarrow> rel_fun ?A (rel_fun (list_all2 ?A) (list_all2 ?A)) remove1 remove1
?H1 x_1 \<Longrightarrow> ?H2 x_1 (?H2 (?H3 x_1) (?H3 x_1)) ?H4 ?H4
[ "List.remove1", "List.list.list_all2", "BNF_Def.rel_fun", "Transfer.bi_unique" ]
[ "'a \\<Rightarrow> 'a list \\<Rightarrow> 'a list", "('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> 'a list \\<Rightarrow> 'b list \\<Rightarrow> bool", "('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> ('c \\<Rightarrow> 'd \\<Rightarrow> bool) \\<Rightarrow> ('a \\<Rightarrow> 'c) \\<Rightarrow> ('b \\<Rightarrow> 'd) \\<Rightarrow> bool", "('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> bool" ]
[ "primrec remove1 :: \"'a \\<Rightarrow> 'a list \\<Rightarrow> 'a list\" where\n\"remove1 x [] = []\" |\n\"remove1 x (y # xs) = (if x = y then xs else y # remove1 x xs)\"", "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "definition\n rel_fun :: \"('a \\<Rightarrow> 'c \\<Rightarrow> bool) \\<Rightarrow> ('b \\<Rightarrow> 'd \\<Rightarrow> bool) \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> ('c \\<Rightarrow> 'd) \\<Rightarrow> bool\"\nwhere\n \"rel_fun A B = (\\<lambda>f g. \\<forall>x y. A x y \\<longrightarrow> B (f x) (g y))\"", "definition bi_unique :: \"('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> bool\"\n where \"bi_unique R \\<longleftrightarrow>\n (\\<forall>x y z. R x y \\<longrightarrow> R x z \\<longrightarrow> y = z) \\<and>\n (\\<forall>x y z. R x z \\<longrightarrow> R y z \\<longrightarrow> x = y)\"" ]
template
###lemma bi_unique ?A \<Longrightarrow> rel_fun ?A (rel_fun (list_all2 ?A) (list_all2 ?A)) remove1 remove1 ###symbols List.remove1 :::: 'a \<Rightarrow> 'a list \<Rightarrow> 'a list List.list.list_all2 :::: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'b list \<Rightarrow> bool BNF_Def.rel_fun :::: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('c \<Rightarrow> 'd \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'c) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> bool Transfer.bi_unique :::: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool ###defs primrec remove1 :: "'a \<Rightarrow> 'a list \<Rightarrow> 'a list" where "remove1 x [] = []" | "remove1 x (y # xs) = (if x = y then xs else y # remove1 x xs)" datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" definition rel_fun :: "('a \<Rightarrow> 'c \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'd \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('c \<Rightarrow> 'd) \<Rightarrow> bool" where "rel_fun A B = (\<lambda>f g. \<forall>x y. A x y \<longrightarrow> B (f x) (g y))" definition bi_unique :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool" where "bi_unique R \<longleftrightarrow> (\<forall>x y z. R x y \<longrightarrow> R x z \<longrightarrow> y = z) \<and> (\<forall>x y z. R x z \<longrightarrow> R y z \<longrightarrow> x = y)"
###output ?H1 x_1 \<Longrightarrow> ?H2 x_1 (?H2 (?H3 x_1) (?H3 x_1)) ?H4 ?H4###end
Computational_Algebra/Formal_Laurent_Series
Formal_Laurent_Series.fls_lr_inverse_eq0_imp_starting0(2)
lemma fls_lr_inverse_eq0_imp_starting0: "fls_left_inverse f x = 0 \<Longrightarrow> x = 0" "fls_right_inverse f x = 0 \<Longrightarrow> x = 0"
fls_right_inverse ?f ?x = 0 \<Longrightarrow> ?x = (0:: ?'a)
?H1 x_1 x_2 = ?H2 \<Longrightarrow> x_2 = ?H2
[ "Groups.zero_class.zero", "Formal_Laurent_Series.fls_right_inverse" ]
[ "'a", "'a fls \\<Rightarrow> 'a \\<Rightarrow> 'a fls" ]
[ "class zero =\n fixes zero :: 'a (\"0\")", "abbreviation fls_right_inverse ::\n \"'a::{comm_monoid_add,uminus,times} fls \\<Rightarrow> 'a \\<Rightarrow> 'a fls\"\n where\n \"fls_right_inverse f y \\<equiv>\n fls_shift (fls_subdegree f) (fps_to_fls (fps_right_inverse (fls_base_factor_to_fps f) y))\"" ]
template
###lemma fls_right_inverse ?f ?x = 0 \<Longrightarrow> ?x = (0:: ?'a) ###symbols Groups.zero_class.zero :::: 'a Formal_Laurent_Series.fls_right_inverse :::: 'a fls \<Rightarrow> 'a \<Rightarrow> 'a fls ###defs class zero = fixes zero :: 'a ("0") abbreviation fls_right_inverse :: "'a::{comm_monoid_add,uminus,times} fls \<Rightarrow> 'a \<Rightarrow> 'a fls" where "fls_right_inverse f y \<equiv> fls_shift (fls_subdegree f) (fps_to_fls (fps_right_inverse (fls_base_factor_to_fps f) y))"
###output ?H1 x_1 x_2 = ?H2 \<Longrightarrow> x_2 = ?H2###end
Limits
Limits.convergent_Suc_iff
lemma convergent_Suc_iff: "convergent (\<lambda>n. f (Suc n)) \<longleftrightarrow> convergent f"
convergent (\<lambda>n. ?f (Suc n)) = convergent ?f
?H1 (\<lambda>y_0. x_1 (?H2 y_0)) = ?H1 x_1
[ "Nat.Suc", "Topological_Spaces.topological_space_class.convergent" ]
[ "nat \\<Rightarrow> nat", "(nat \\<Rightarrow> 'a) \\<Rightarrow> bool" ]
[ "definition Suc :: \"nat \\<Rightarrow> nat\"\n where \"Suc n = Abs_Nat (Suc_Rep (Rep_Nat n))\"", "class topological_space = \"open\" +\n assumes open_UNIV [simp, intro]: \"open UNIV\"\n assumes open_Int [intro]: \"open S \\<Longrightarrow> open T \\<Longrightarrow> open (S \\<inter> T)\"\n assumes open_Union [intro]: \"\\<forall>S\\<in>K. open S \\<Longrightarrow> open (\\<Union>K)\"\nbegin" ]
template
###lemma convergent (\<lambda>n. ?f (Suc n)) = convergent ?f ###symbols Nat.Suc :::: nat \<Rightarrow> nat Topological_Spaces.topological_space_class.convergent :::: (nat \<Rightarrow> 'a) \<Rightarrow> bool ###defs definition Suc :: "nat \<Rightarrow> nat" where "Suc n = Abs_Nat (Suc_Rep (Rep_Nat n))" class topological_space = "open" + assumes open_UNIV [simp, intro]: "open UNIV" assumes open_Int [intro]: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<inter> T)" assumes open_Union [intro]: "\<forall>S\<in>K. open S \<Longrightarrow> open (\<Union>K)" begin
###output ?H1 (\<lambda>y_0. x_1 (?H2 y_0)) = ?H1 x_1###end
UNITY/Comp
Complete_Lattices.UN_extend_simps(3)
null
?A \<union> \<Union> (?B ` ?C) = (if ?C = {} then ?A else \<Union>x\<in> ?C. ?A \<union> ?B x)
?H1 x_1 (?H2 (?H3 x_2 x_3)) = (if x_3 = ?H4 then x_1 else ?H2 (?H3 (\<lambda>y_1. ?H1 x_1 (x_2 y_1)) x_3))
[ "Set.empty", "Set.image", "Complete_Lattices.Union", "Set.union" ]
[ "'a set", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set", "'a set set \\<Rightarrow> 'a set", "'a set \\<Rightarrow> 'a set \\<Rightarrow> 'a set" ]
[ "abbreviation empty :: \"'a set\" (\"{}\")\n where \"{} \\<equiv> bot\"", "definition image :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set\" (infixr \"`\" 90)\n where \"f ` A = {y. \\<exists>x\\<in>A. y = f x}\"", "abbreviation Union :: \"'a set set \\<Rightarrow> 'a set\" (\"\\<Union>\")\n where \"\\<Union>S \\<equiv> \\<Squnion>S\"", "abbreviation union :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> 'a set\" (infixl \"\\<union>\" 65)\n where \"union \\<equiv> sup\"" ]
template
###lemma ?A \<union> \<Union> (?B ` ?C) = (if ?C = {} then ?A else \<Union>x\<in> ?C. ?A \<union> ?B x) ###symbols Set.empty :::: 'a set Set.image :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set Complete_Lattices.Union :::: 'a set set \<Rightarrow> 'a set Set.union :::: 'a set \<Rightarrow> 'a set \<Rightarrow> 'a set ###defs abbreviation empty :: "'a set" ("{}") where "{} \<equiv> bot" definition image :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set" (infixr "`" 90) where "f ` A = {y. \<exists>x\<in>A. y = f x}" abbreviation Union :: "'a set set \<Rightarrow> 'a set" ("\<Union>") where "\<Union>S \<equiv> \<Squnion>S" abbreviation union :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "\<union>" 65) where "union \<equiv> sup"
###output ?H1 x_1 (?H2 (?H3 x_2 x_3)) = (if x_3 = ?H4 then x_1 else ?H2 (?H3 (\<lambda>y_1. ?H1 x_1 (x_2 y_1)) x_3))###end
Cardinals/Wellorder_Constructions
Wellorder_Constructions.ofilter_ordLeq
lemma ofilter_ordLeq: assumes "Well_order r" and "ofilter r A" shows "Restr r A \<le>o r"
Well_order ?r \<Longrightarrow> ofilter ?r ?A \<Longrightarrow> Restr ?r ?A \<le>o ?r
\<lbrakk> ?H1 x_1; ?H2 x_1 x_2\<rbrakk> \<Longrightarrow> ?H3 (?H4 x_1 x_2) x_1
[ "BNF_Wellorder_Constructions.Restr", "BNF_Wellorder_Constructions.ordLeq3", "Order_Relation.ofilter", "Order_Relation.Well_order" ]
[ "('a \\<times> 'a) set \\<Rightarrow> 'a set \\<Rightarrow> ('a \\<times> 'a) set", "('a \\<times> 'a) set \\<Rightarrow> ('b \\<times> 'b) set \\<Rightarrow> bool", "('a \\<times> 'a) set \\<Rightarrow> 'a set \\<Rightarrow> bool", "('a \\<times> 'a) set \\<Rightarrow> bool" ]
[ "abbreviation Restr :: \"'a rel \\<Rightarrow> 'a set \\<Rightarrow> 'a rel\"\n where \"Restr r A \\<equiv> r Int (A \\<times> A)\"", "abbreviation ordLeq3 :: \"'a rel \\<Rightarrow> 'a' rel \\<Rightarrow> bool\" (infix \"\\<le>o\" 50)\n where \"r \\<le>o r' \\<equiv> r <=o r'\"", "definition ofilter :: \"'a rel \\<Rightarrow> 'a set \\<Rightarrow> bool\"\n where \"ofilter r A \\<equiv> A \\<subseteq> Field r \\<and> (\\<forall>a \\<in> A. under r a \\<subseteq> A)\"", "abbreviation \"Well_order r \\<equiv> well_order_on (Field r) r\"" ]
template
###lemma Well_order ?r \<Longrightarrow> ofilter ?r ?A \<Longrightarrow> Restr ?r ?A \<le>o ?r ###symbols BNF_Wellorder_Constructions.Restr :::: ('a \<times> 'a) set \<Rightarrow> 'a set \<Rightarrow> ('a \<times> 'a) set BNF_Wellorder_Constructions.ordLeq3 :::: ('a \<times> 'a) set \<Rightarrow> ('b \<times> 'b) set \<Rightarrow> bool Order_Relation.ofilter :::: ('a \<times> 'a) set \<Rightarrow> 'a set \<Rightarrow> bool Order_Relation.Well_order :::: ('a \<times> 'a) set \<Rightarrow> bool ###defs abbreviation Restr :: "'a rel \<Rightarrow> 'a set \<Rightarrow> 'a rel" where "Restr r A \<equiv> r Int (A \<times> A)" abbreviation ordLeq3 :: "'a rel \<Rightarrow> 'a' rel \<Rightarrow> bool" (infix "\<le>o" 50) where "r \<le>o r' \<equiv> r <=o r'" definition ofilter :: "'a rel \<Rightarrow> 'a set \<Rightarrow> bool" where "ofilter r A \<equiv> A \<subseteq> Field r \<and> (\<forall>a \<in> A. under r a \<subseteq> A)" abbreviation "Well_order r \<equiv> well_order_on (Field r) r"
###output \<lbrakk> ?H1 x_1; ?H2 x_1 x_2\<rbrakk> \<Longrightarrow> ?H3 (?H4 x_1 x_2) x_1###end
HOLCF/Domain
Domain_Aux.sel_app_rules(6)
null
sscase\<cdot>ID\<cdot>\<bottom>\<cdot>(sinr\<cdot> ?x) = \<bottom>
?H1 (?H1 (?H1 ?H2 ?H3) ?H4) (?H1 ?H5 x_1) = ?H4
[ "Ssum.sinr", "Pcpo.pcpo_class.bottom", "Cfun.ID", "Ssum.sscase", "Cfun.cfun.Rep_cfun" ]
[ "'a \\<rightarrow> 'b \\<oplus> 'a", "'a", "'a \\<rightarrow> 'a", "('a \\<rightarrow> 'b) \\<rightarrow> ('c \\<rightarrow> 'b) \\<rightarrow> 'a \\<oplus> 'c \\<rightarrow> 'b", "('a \\<rightarrow> 'b) \\<Rightarrow> 'a \\<Rightarrow> 'b" ]
[ "definition sinr :: \"'b \\<rightarrow> ('a ++ 'b)\"\n where \"sinr = (\\<Lambda> b. Abs_ssum (seq\\<cdot>b\\<cdot>FF, \\<bottom>, b))\"", "class pcpo = cpo +\n assumes least: \"\\<exists>x. \\<forall>y. x \\<sqsubseteq> y\"\nbegin", "definition ID :: \"'a \\<rightarrow> 'a\"\n where \"ID = (\\<Lambda> x. x)\"", "definition sscase :: \"('a \\<rightarrow> 'c) \\<rightarrow> ('b \\<rightarrow> 'c) \\<rightarrow> ('a ++ 'b) \\<rightarrow> 'c\"\n where \"sscase = (\\<Lambda> f g s. (\\<lambda>(t, x, y). If t then f\\<cdot>x else g\\<cdot>y) (Rep_ssum s))\"" ]
template
###lemma sscase\<cdot>ID\<cdot>\<bottom>\<cdot>(sinr\<cdot> ?x) = \<bottom> ###symbols Ssum.sinr :::: 'a \<rightarrow> 'b \<oplus> 'a Pcpo.pcpo_class.bottom :::: 'a Cfun.ID :::: 'a \<rightarrow> 'a Ssum.sscase :::: ('a \<rightarrow> 'b) \<rightarrow> ('c \<rightarrow> 'b) \<rightarrow> 'a \<oplus> 'c \<rightarrow> 'b Cfun.cfun.Rep_cfun :::: ('a \<rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b ###defs definition sinr :: "'b \<rightarrow> ('a ++ 'b)" where "sinr = (\<Lambda> b. Abs_ssum (seq\<cdot>b\<cdot>FF, \<bottom>, b))" class pcpo = cpo + assumes least: "\<exists>x. \<forall>y. x \<sqsubseteq> y" begin definition ID :: "'a \<rightarrow> 'a" where "ID = (\<Lambda> x. x)" definition sscase :: "('a \<rightarrow> 'c) \<rightarrow> ('b \<rightarrow> 'c) \<rightarrow> ('a ++ 'b) \<rightarrow> 'c" where "sscase = (\<Lambda> f g s. (\<lambda>(t, x, y). If t then f\<cdot>x else g\<cdot>y) (Rep_ssum s))"
###output ?H1 (?H1 (?H1 ?H2 ?H3) ?H4) (?H1 ?H5 x_1) = ?H4###end
Matrix_LP/SparseMatrix
SparseMatrix.sparse_row_matrix_nprt
lemma sparse_row_matrix_nprt: "sorted_spvec (m :: 'a::lattice_ring spmat) \<Longrightarrow> sorted_spmat m \<Longrightarrow> sparse_row_matrix (nprt_spmat m) = nprt (sparse_row_matrix m)"
sorted_spvec ?m \<Longrightarrow> sorted_spmat ?m \<Longrightarrow> sparse_row_matrix (nprt_spmat ?m) = nprt (sparse_row_matrix ?m)
\<lbrakk> ?H1 x_1; ?H2 x_1\<rbrakk> \<Longrightarrow> ?H3 (?H4 x_1) = ?H5 (?H3 x_1)
[ "Lattice_Algebras.lattice_ab_group_add_class.nprt", "SparseMatrix.nprt_spmat", "SparseMatrix.sparse_row_matrix", "SparseMatrix.sorted_spmat", "SparseMatrix.sorted_spvec" ]
[ "'a \\<Rightarrow> 'a", "(nat \\<times> (nat \\<times> 'a) list) list \\<Rightarrow> (nat \\<times> (nat \\<times> 'a) list) list", "(nat \\<times> (nat \\<times> 'a) list) list \\<Rightarrow> 'a matrix", "(nat \\<times> (nat \\<times> 'a) list) list \\<Rightarrow> bool", "(nat \\<times> 'a) list \\<Rightarrow> bool" ]
[ "class lattice_ab_group_add = ordered_ab_group_add + lattice\nbegin", "primrec nprt_spmat :: \"('a::{lattice_ab_group_add}) spmat \\<Rightarrow> 'a spmat\"\nwhere\n \"nprt_spmat [] = []\"\n| \"nprt_spmat (a#as) = (fst a, nprt_spvec (snd a))#(nprt_spmat as)\"", "definition sparse_row_matrix :: \"('a::ab_group_add) spmat \\<Rightarrow> 'a matrix\"\n where \"sparse_row_matrix arr = foldl (% m r. m + (move_matrix (sparse_row_vector (snd r)) (int (fst r)) 0)) 0 arr\"", "primrec sorted_spmat :: \"'a spmat \\<Rightarrow> bool\"\nwhere\n \"sorted_spmat [] = True\"\n| \"sorted_spmat (a#as) = ((sorted_spvec (snd a)) & (sorted_spmat as))\"", "primrec sorted_spvec :: \"'a spvec \\<Rightarrow> bool\"\nwhere\n \"sorted_spvec [] = True\"\n| sorted_spvec_step: \"sorted_spvec (a#as) = (case as of [] \\<Rightarrow> True | b#bs \\<Rightarrow> ((fst a < fst b) & (sorted_spvec as)))\"" ]
template
###lemma sorted_spvec ?m \<Longrightarrow> sorted_spmat ?m \<Longrightarrow> sparse_row_matrix (nprt_spmat ?m) = nprt (sparse_row_matrix ?m) ###symbols Lattice_Algebras.lattice_ab_group_add_class.nprt :::: 'a \<Rightarrow> 'a SparseMatrix.nprt_spmat :::: (nat \<times> (nat \<times> 'a) list) list \<Rightarrow> (nat \<times> (nat \<times> 'a) list) list SparseMatrix.sparse_row_matrix :::: (nat \<times> (nat \<times> 'a) list) list \<Rightarrow> 'a matrix SparseMatrix.sorted_spmat :::: (nat \<times> (nat \<times> 'a) list) list \<Rightarrow> bool SparseMatrix.sorted_spvec :::: (nat \<times> 'a) list \<Rightarrow> bool ###defs class lattice_ab_group_add = ordered_ab_group_add + lattice begin primrec nprt_spmat :: "('a::{lattice_ab_group_add}) spmat \<Rightarrow> 'a spmat" where "nprt_spmat [] = []" | "nprt_spmat (a#as) = (fst a, nprt_spvec (snd a))#(nprt_spmat as)" definition sparse_row_matrix :: "('a::ab_group_add) spmat \<Rightarrow> 'a matrix" where "sparse_row_matrix arr = foldl (% m r. m + (move_matrix (sparse_row_vector (snd r)) (int (fst r)) 0)) 0 arr" primrec sorted_spmat :: "'a spmat \<Rightarrow> bool" where "sorted_spmat [] = True" | "sorted_spmat (a#as) = ((sorted_spvec (snd a)) & (sorted_spmat as))" primrec sorted_spvec :: "'a spvec \<Rightarrow> bool" where "sorted_spvec [] = True" | sorted_spvec_step: "sorted_spvec (a#as) = (case as of [] \<Rightarrow> True | b#bs \<Rightarrow> ((fst a < fst b) & (sorted_spvec as)))"
###output \<lbrakk> ?H1 x_1; ?H2 x_1\<rbrakk> \<Longrightarrow> ?H3 (?H4 x_1) = ?H5 (?H3 x_1)###end
Deriv
Deriv.DERIV_power_Suc
lemma DERIV_power_Suc: "(f has_field_derivative D) (at x within s) \<Longrightarrow> ((\<lambda>x. f x ^ Suc n) has_field_derivative (1 + of_nat n) * (D * f x ^ n)) (at x within s)"
(?f has_field_derivative ?D) (at ?x within ?s) \<Longrightarrow> ((\<lambda>x. ?f x ^ Suc ?n) has_field_derivative ((1:: ?'a) + of_nat ?n) * (?D * ?f ?x ^ ?n)) (at ?x within ?s)
?H1 x_1 x_2 (?H2 x_3 x_4) \<Longrightarrow> ?H1 (\<lambda>y_0. ?H3 (x_1 y_0) (?H4 x_5)) (?H5 (?H6 ?H7 (?H8 x_5)) (?H5 x_2 (?H3 (x_1 x_3) x_5))) (?H2 x_3 x_4)
[ "Nat.semiring_1_class.of_nat", "Groups.one_class.one", "Groups.plus_class.plus", "Groups.times_class.times", "Nat.Suc", "Power.power_class.power", "Topological_Spaces.topological_space_class.at_within", "Deriv.has_field_derivative" ]
[ "nat \\<Rightarrow> 'a", "'a", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "nat \\<Rightarrow> nat", "'a \\<Rightarrow> nat \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a set \\<Rightarrow> 'a filter", "('a \\<Rightarrow> 'a) \\<Rightarrow> 'a \\<Rightarrow> 'a filter \\<Rightarrow> bool" ]
[ "class one =\n fixes one :: 'a (\"1\")", "class plus =\n fixes plus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"+\" 65)", "class times =\n fixes times :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"*\" 70)", "definition Suc :: \"nat \\<Rightarrow> nat\"\n where \"Suc n = Abs_Nat (Suc_Rep (Rep_Nat n))\"", "primrec power :: \"'a \\<Rightarrow> nat \\<Rightarrow> 'a\" (infixr \"^\" 80)\n where\n power_0: \"a ^ 0 = 1\"\n | power_Suc: \"a ^ Suc n = a * a ^ n\"", "class topological_space = \"open\" +\n assumes open_UNIV [simp, intro]: \"open UNIV\"\n assumes open_Int [intro]: \"open S \\<Longrightarrow> open T \\<Longrightarrow> open (S \\<inter> T)\"\n assumes open_Union [intro]: \"\\<forall>S\\<in>K. open S \\<Longrightarrow> open (\\<Union>K)\"\nbegin", "definition has_field_derivative :: \"('a::real_normed_field \\<Rightarrow> 'a) \\<Rightarrow> 'a \\<Rightarrow> 'a filter \\<Rightarrow> bool\"\n (infix \"(has'_field'_derivative)\" 50)\n where \"(f has_field_derivative D) F \\<longleftrightarrow> (f has_derivative (*) D) F\"" ]
template
###lemma (?f has_field_derivative ?D) (at ?x within ?s) \<Longrightarrow> ((\<lambda>x. ?f x ^ Suc ?n) has_field_derivative ((1:: ?'a) + of_nat ?n) * (?D * ?f ?x ^ ?n)) (at ?x within ?s) ###symbols Nat.semiring_1_class.of_nat :::: nat \<Rightarrow> 'a Groups.one_class.one :::: 'a Groups.plus_class.plus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Groups.times_class.times :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Nat.Suc :::: nat \<Rightarrow> nat Power.power_class.power :::: 'a \<Rightarrow> nat \<Rightarrow> 'a Topological_Spaces.topological_space_class.at_within :::: 'a \<Rightarrow> 'a set \<Rightarrow> 'a filter Deriv.has_field_derivative :::: ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a filter \<Rightarrow> bool ###defs class one = fixes one :: 'a ("1") class plus = fixes plus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "+" 65) class times = fixes times :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "*" 70) definition Suc :: "nat \<Rightarrow> nat" where "Suc n = Abs_Nat (Suc_Rep (Rep_Nat n))" primrec power :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infixr "^" 80) where power_0: "a ^ 0 = 1" | power_Suc: "a ^ Suc n = a * a ^ n" class topological_space = "open" + assumes open_UNIV [simp, intro]: "open UNIV" assumes open_Int [intro]: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<inter> T)" assumes open_Union [intro]: "\<forall>S\<in>K. open S \<Longrightarrow> open (\<Union>K)" begin definition has_field_derivative :: "('a::real_normed_field \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a filter \<Rightarrow> bool" (infix "(has'_field'_derivative)" 50) where "(f has_field_derivative D) F \<longleftrightarrow> (f has_derivative (*) D) F"
###output ?H1 x_1 x_2 (?H2 x_3 x_4) \<Longrightarrow> ?H1 (\<lambda>y_0. ?H3 (x_1 y_0) (?H4 x_5)) (?H5 (?H6 ?H7 (?H8 x_5)) (?H5 x_2 (?H3 (x_1 x_3) x_5))) (?H2 x_3 x_4)###end
List
List.gen_length_code(2)
lemma gen_length_code [code]: "gen_length n [] = n" "gen_length n (x # xs) = gen_length (Suc n) xs"
List.gen_length ?n (?x # ?xs) = List.gen_length (Suc ?n) ?xs
?H1 x_1 (?H2 x_2 x_3) = ?H1 (?H3 x_1) x_3
[ "Nat.Suc", "List.list.Cons", "List.gen_length" ]
[ "nat \\<Rightarrow> nat", "'a \\<Rightarrow> 'a list \\<Rightarrow> 'a list", "nat \\<Rightarrow> 'a list \\<Rightarrow> nat" ]
[ "definition Suc :: \"nat \\<Rightarrow> nat\"\n where \"Suc n = Abs_Nat (Suc_Rep (Rep_Nat n))\"", "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "definition gen_length :: \"nat \\<Rightarrow> 'a list \\<Rightarrow> nat\"\nwhere \"gen_length n xs = n + length xs\"" ]
template
###lemma List.gen_length ?n (?x # ?xs) = List.gen_length (Suc ?n) ?xs ###symbols Nat.Suc :::: nat \<Rightarrow> nat List.list.Cons :::: 'a \<Rightarrow> 'a list \<Rightarrow> 'a list List.gen_length :::: nat \<Rightarrow> 'a list \<Rightarrow> nat ###defs definition Suc :: "nat \<Rightarrow> nat" where "Suc n = Abs_Nat (Suc_Rep (Rep_Nat n))" datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" definition gen_length :: "nat \<Rightarrow> 'a list \<Rightarrow> nat" where "gen_length n xs = n + length xs"
###output ?H1 x_1 (?H2 x_2 x_3) = ?H1 (?H3 x_1) x_3###end
List
List.wf_listrel1_iff
lemma wf_listrel1_iff[simp]: "wf(listrel1 r) = wf r"
wf (listrel1 ?r) = wf ?r
?H1 (?H2 x_1) = ?H1 x_1
[ "List.listrel1", "Wellfounded.wf" ]
[ "('a \\<times> 'a) set \\<Rightarrow> ('a list \\<times> 'a list) set", "('a \\<times> 'a) set \\<Rightarrow> bool" ]
[ "definition listrel1 :: \"('a \\<times> 'a) set \\<Rightarrow> ('a list \\<times> 'a list) set\" where\n\"listrel1 r = {(xs,ys).\n \\<exists>us z z' vs. xs = us @ z # vs \\<and> (z,z') \\<in> r \\<and> ys = us @ z' # vs}\"", "abbreviation wf :: \"('a \\<times> 'a) set \\<Rightarrow> bool\" where\n \"wf \\<equiv> wf_on UNIV\"" ]
template
###lemma wf (listrel1 ?r) = wf ?r ###symbols List.listrel1 :::: ('a \<times> 'a) set \<Rightarrow> ('a list \<times> 'a list) set Wellfounded.wf :::: ('a \<times> 'a) set \<Rightarrow> bool ###defs definition listrel1 :: "('a \<times> 'a) set \<Rightarrow> ('a list \<times> 'a list) set" where "listrel1 r = {(xs,ys). \<exists>us z z' vs. xs = us @ z # vs \<and> (z,z') \<in> r \<and> ys = us @ z' # vs}" abbreviation wf :: "('a \<times> 'a) set \<Rightarrow> bool" where "wf \<equiv> wf_on UNIV"
###output ?H1 (?H2 x_1) = ?H1 x_1###end
Number_Theory/Fib
Fib.gen_fib_fib
lemma gen_fib_fib: "gen_fib (fib n) (fib (Suc n)) m = fib (n + m)"
gen_fib (fib ?n) (fib (Suc ?n)) ?m = fib (?n + ?m)
?H1 (?H2 x_1) (?H2 (?H3 x_1)) x_2 = ?H2 (?H4 x_1 x_2)
[ "Groups.plus_class.plus", "Nat.Suc", "Fib.fib", "Fib.gen_fib" ]
[ "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "nat \\<Rightarrow> nat", "nat \\<Rightarrow> nat", "nat \\<Rightarrow> nat \\<Rightarrow> nat \\<Rightarrow> nat" ]
[ "class plus =\n fixes plus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"+\" 65)", "definition Suc :: \"nat \\<Rightarrow> nat\"\n where \"Suc n = Abs_Nat (Suc_Rep (Rep_Nat n))\"", "fun fib :: \"nat \\<Rightarrow> nat\"\n where\n fib0: \"fib 0 = 0\"\n | fib1: \"fib (Suc 0) = 1\"\n | fib2: \"fib (Suc (Suc n)) = fib (Suc n) + fib n\"", "fun gen_fib :: \"nat \\<Rightarrow> nat \\<Rightarrow> nat \\<Rightarrow> nat\"\n where\n \"gen_fib a b 0 = a\"\n | \"gen_fib a b (Suc 0) = b\"\n | \"gen_fib a b (Suc (Suc n)) = gen_fib b (a + b) (Suc n)\"" ]
template
###lemma gen_fib (fib ?n) (fib (Suc ?n)) ?m = fib (?n + ?m) ###symbols Groups.plus_class.plus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Nat.Suc :::: nat \<Rightarrow> nat Fib.fib :::: nat \<Rightarrow> nat Fib.gen_fib :::: nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat ###defs class plus = fixes plus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "+" 65) definition Suc :: "nat \<Rightarrow> nat" where "Suc n = Abs_Nat (Suc_Rep (Rep_Nat n))" fun fib :: "nat \<Rightarrow> nat" where fib0: "fib 0 = 0" | fib1: "fib (Suc 0) = 1" | fib2: "fib (Suc (Suc n)) = fib (Suc n) + fib n" fun gen_fib :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat" where "gen_fib a b 0 = a" | "gen_fib a b (Suc 0) = b" | "gen_fib a b (Suc (Suc n)) = gen_fib b (a + b) (Suc n)"
###output ?H1 (?H2 x_1) (?H2 (?H3 x_1)) x_2 = ?H2 (?H4 x_1 x_2)###end