theory_file
stringclasses
970 values
lemma_name
stringlengths
6
108
lemma_command
stringlengths
15
14.6k
lemma_object
stringlengths
6
17.2k
template
stringlengths
7
16.1k
symbols
listlengths
0
101
types
listlengths
0
101
defs
listlengths
0
83
output_key
stringclasses
1 value
input
stringlengths
37
79.6k
output
stringlengths
24
16.1k
TLA/Memory/MemoryImplementation
MemoryImplementation.S1Hist
lemma S1Hist: "\<turnstile> [HNext rmhist p]_(c p,r p,m p,rmhist!p) \<and> $(S1 rmhist p) \<longrightarrow> unchanged (rmhist!p)"
\<turnstile> [HNext ?rmhist ?p]_(c ?p, r ?p, m ?p, ?rmhist! ?p) \<and> $S1 ?rmhist ?p \<longrightarrow> unchanged (?rmhist! ?p)
?H1 (?H2 (\<longrightarrow>) (?H2 (\<and>) (?H3 (?H4 x_1 x_2) (?H2 Pair (?H5 x_2) (?H2 Pair (?H6 x_2) (?H2 Pair (?H7 x_2) (?H8 x_1 x_2))))) (?H9 (?H10 x_1 x_2))) (?H11 (?H8 x_1 x_2)))
[ "Action.unch", "MemoryImplementation.S1", "Action.before", "ProcedureInterface.slice", "MemoryImplementation.m", "MemoryImplementation.r", "MemoryImplementation.c", "MemoryImplementation.HNext", "Action.SqAct", "Intensional.lift2", "Intensional.Valid" ]
[ "(state \\<Rightarrow> 'a) \\<Rightarrow> state \\<times> state \\<Rightarrow> bool", "(state \\<Rightarrow> PrIds \\<Rightarrow> histState) \\<Rightarrow> PrIds \\<Rightarrow> state \\<Rightarrow> bool", "(state \\<Rightarrow> 'a) \\<Rightarrow> state \\<times> state \\<Rightarrow> 'a", "(state \\<Rightarrow> 'a \\<Rightarrow> 'b) \\<Rightarrow> 'a \\<Rightarrow> state \\<Rightarrow> 'b", "PrIds \\<Rightarrow> state \\<Rightarrow> (bool \\<times> Vals) \\<times> Vals", "PrIds \\<Rightarrow> state \\<Rightarrow> rpcState \\<times> (bool \\<times> Vals) \\<times> bool \\<times> memOp", "PrIds \\<Rightarrow> state \\<Rightarrow> mClkState \\<times> (bool \\<times> Vals) \\<times> bool \\<times> rpcOp", "(state \\<Rightarrow> PrIds \\<Rightarrow> histState) \\<Rightarrow> PrIds \\<Rightarrow> state \\<times> state \\<Rightarrow> bool", "(state \\<times> state \\<Rightarrow> bool) \\<Rightarrow> (state \\<Rightarrow> 'a) \\<Rightarrow> state \\<times> state \\<Rightarrow> bool", "('a \\<Rightarrow> 'b \\<Rightarrow> 'c) \\<Rightarrow> ('d \\<Rightarrow> 'a) \\<Rightarrow> ('d \\<Rightarrow> 'b) \\<Rightarrow> 'd \\<Rightarrow> 'c", "('a \\<Rightarrow> bool) \\<Rightarrow> bool" ]
[ "consts\n before :: \"'a stfun \\<Rightarrow> 'a trfun\"\n after :: \"'a stfun \\<Rightarrow> 'a trfun\"\n unch :: \"'a stfun \\<Rightarrow> action\"", "definition SqAct :: \"[action, 'a stfun] \\<Rightarrow> action\"\n where square_def: \"SqAct A v \\<equiv> ACT (A \\<or> unchanged v)\"", "definition lift2 :: \"['a \\<Rightarrow> 'b \\<Rightarrow> 'c, ('w::world,'a) expr, ('w,'b) expr] \\<Rightarrow> ('w,'c) expr\"\n where unl_lift2: \"lift2 f x y w \\<equiv> f (x w) (y w)\"", "definition Valid :: \"('w::world) form \\<Rightarrow> bool\"\n where \"Valid A \\<equiv> \\<forall>w. A w\"" ]
template
###lemma \<turnstile> [HNext ?rmhist ?p]_(c ?p, r ?p, m ?p, ?rmhist! ?p) \<and> $S1 ?rmhist ?p \<longrightarrow> unchanged (?rmhist! ?p) ###symbols Action.unch :::: (state \<Rightarrow> 'a) \<Rightarrow> state \<times> state \<Rightarrow> bool MemoryImplementation.S1 :::: (state \<Rightarrow> PrIds \<Rightarrow> histState) \<Rightarrow> PrIds \<Rightarrow> state \<Rightarrow> bool Action.before :::: (state \<Rightarrow> 'a) \<Rightarrow> state \<times> state \<Rightarrow> 'a ProcedureInterface.slice :::: (state \<Rightarrow> 'a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> state \<Rightarrow> 'b MemoryImplementation.m :::: PrIds \<Rightarrow> state \<Rightarrow> (bool \<times> Vals) \<times> Vals MemoryImplementation.r :::: PrIds \<Rightarrow> state \<Rightarrow> rpcState \<times> (bool \<times> Vals) \<times> bool \<times> memOp MemoryImplementation.c :::: PrIds \<Rightarrow> state \<Rightarrow> mClkState \<times> (bool \<times> Vals) \<times> bool \<times> rpcOp MemoryImplementation.HNext :::: (state \<Rightarrow> PrIds \<Rightarrow> histState) \<Rightarrow> PrIds \<Rightarrow> state \<times> state \<Rightarrow> bool Action.SqAct :::: (state \<times> state \<Rightarrow> bool) \<Rightarrow> (state \<Rightarrow> 'a) \<Rightarrow> state \<times> state \<Rightarrow> bool Intensional.lift2 :::: ('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> ('d \<Rightarrow> 'a) \<Rightarrow> ('d \<Rightarrow> 'b) \<Rightarrow> 'd \<Rightarrow> 'c Intensional.Valid :::: ('a \<Rightarrow> bool) \<Rightarrow> bool ###defs consts before :: "'a stfun \<Rightarrow> 'a trfun" after :: "'a stfun \<Rightarrow> 'a trfun" unch :: "'a stfun \<Rightarrow> action" definition SqAct :: "[action, 'a stfun] \<Rightarrow> action" where square_def: "SqAct A v \<equiv> ACT (A \<or> unchanged v)" definition lift2 :: "['a \<Rightarrow> 'b \<Rightarrow> 'c, ('w::world,'a) expr, ('w,'b) expr] \<Rightarrow> ('w,'c) expr" where unl_lift2: "lift2 f x y w \<equiv> f (x w) (y w)" definition Valid :: "('w::world) form \<Rightarrow> bool" where "Valid A \<equiv> \<forall>w. A w"
###output ?H1 (?H2 (\<longrightarrow>) (?H2 (\<and>) (?H3 (?H4 x_1 x_2) (?H2 Pair (?H5 x_2) (?H2 Pair (?H6 x_2) (?H2 Pair (?H7 x_2) (?H8 x_1 x_2))))) (?H9 (?H10 x_1 x_2))) (?H11 (?H8 x_1 x_2)))###end
Matrix_LP/ComputeNumeral
ComputeNumeral.compute_div_mod(11)
null
1 div - numeral ?n = - Parity.adjust_div (divmod num.One ?n)
?H1 ?H2 (?H3 (?H4 x_1)) = ?H3 (?H5 (?H6 ?H7 x_1))
[ "Num.num.One", "Parity.linordered_euclidean_semiring_division_class.divmod", "Parity.adjust_div", "Num.numeral_class.numeral", "Groups.uminus_class.uminus", "Groups.one_class.one", "Rings.divide_class.divide" ]
[ "num", "num \\<Rightarrow> num \\<Rightarrow> 'a \\<times> 'a", "int \\<times> int \\<Rightarrow> int", "num \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a", "'a", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a" ]
[ "datatype num = One | Bit0 num | Bit1 num", "class linordered_euclidean_semiring_division = linordered_euclidean_semiring +\n fixes divmod :: \\<open>num \\<Rightarrow> num \\<Rightarrow> 'a \\<times> 'a\\<close>\n and divmod_step :: \\<open>'a \\<Rightarrow> 'a \\<times> 'a \\<Rightarrow> 'a \\<times> 'a\\<close> \\<comment> \\<open>\n These are conceptually definitions but force generated code\n to be monomorphic wrt. particular instances of this class which\n yields a significant speedup.\\<close>\n assumes divmod_def: \\<open>divmod m n = (numeral m div numeral n, numeral m mod numeral n)\\<close>\n and divmod_step_def [simp]: \\<open>divmod_step l (q, r) =\n (if euclidean_size l \\<le> euclidean_size r then (2 * q + 1, r - l)\n else (2 * q, r))\\<close> \\<comment> \\<open>\n This is a formulation of one step (referring to one digit position)\n in school-method division: compare the dividend at the current\n digit position with the remainder from previous division steps\n and evaluate accordingly.\\<close>\nbegin", "definition adjust_div :: \"int \\<times> int \\<Rightarrow> int\"\nwhere\n \"adjust_div qr = (let (q, r) = qr in q + of_bool (r \\<noteq> 0))\"", "primrec numeral :: \"num \\<Rightarrow> 'a\"\n where\n numeral_One: \"numeral One = 1\"\n | numeral_Bit0: \"numeral (Bit0 n) = numeral n + numeral n\"\n | numeral_Bit1: \"numeral (Bit1 n) = numeral n + numeral n + 1\"", "class uminus =\n fixes uminus :: \"'a \\<Rightarrow> 'a\" (\"- _\" [81] 80)", "class one =\n fixes one :: 'a (\"1\")", "class divide =\n fixes divide :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"div\" 70)" ]
template
###lemma 1 div - numeral ?n = - Parity.adjust_div (divmod num.One ?n) ###symbols Num.num.One :::: num Parity.linordered_euclidean_semiring_division_class.divmod :::: num \<Rightarrow> num \<Rightarrow> 'a \<times> 'a Parity.adjust_div :::: int \<times> int \<Rightarrow> int Num.numeral_class.numeral :::: num \<Rightarrow> 'a Groups.uminus_class.uminus :::: 'a \<Rightarrow> 'a Groups.one_class.one :::: 'a Rings.divide_class.divide :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a ###defs datatype num = One | Bit0 num | Bit1 num class linordered_euclidean_semiring_division = linordered_euclidean_semiring + fixes divmod :: \<open>num \<Rightarrow> num \<Rightarrow> 'a \<times> 'a\<close> and divmod_step :: \<open>'a \<Rightarrow> 'a \<times> 'a \<Rightarrow> 'a \<times> 'a\<close> \<comment> \<open> These are conceptually definitions but force generated code to be monomorphic wrt. particular instances of this class which yields a significant speedup.\<close> assumes divmod_def: \<open>divmod m n = (numeral m div numeral n, numeral m mod numeral n)\<close> and divmod_step_def [simp]: \<open>divmod_step l (q, r) = (if euclidean_size l \<le> euclidean_size r then (2 * q + 1, r - l) else (2 * q, r))\<close> \<comment> \<open> This is a formulation of one step (referring to one digit position) in school-method division: compare the dividend at the current digit position with the remainder from previous division steps and evaluate accordingly.\<close> begin definition adjust_div :: "int \<times> int \<Rightarrow> int" where "adjust_div qr = (let (q, r) = qr in q + of_bool (r \<noteq> 0))" primrec numeral :: "num \<Rightarrow> 'a" where numeral_One: "numeral One = 1" | numeral_Bit0: "numeral (Bit0 n) = numeral n + numeral n" | numeral_Bit1: "numeral (Bit1 n) = numeral n + numeral n + 1" class uminus = fixes uminus :: "'a \<Rightarrow> 'a" ("- _" [81] 80) class one = fixes one :: 'a ("1") class divide = fixes divide :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "div" 70)
###output ?H1 ?H2 (?H3 (?H4 x_1)) = ?H3 (?H5 (?H6 ?H7 x_1))###end
Relation
Relation.reflI
lemma reflI: "(\<And>x. (x, x) \<in> r) \<Longrightarrow> refl r"
(\<And>x. (x, x) \<in> ?r) \<Longrightarrow> refl ?r
(\<And>y_0. (y_0, y_0) \<in> x_1) \<Longrightarrow> ?H1 x_1
[ "Relation.refl" ]
[ "('a \\<times> 'a) set \\<Rightarrow> bool" ]
[ "abbreviation refl :: \"'a rel \\<Rightarrow> bool\" \\<comment> \\<open>reflexivity over a type\\<close>\n where \"refl \\<equiv> refl_on UNIV\"" ]
template
###lemma (\<And>x. (x, x) \<in> ?r) \<Longrightarrow> refl ?r ###symbols Relation.refl :::: ('a \<times> 'a) set \<Rightarrow> bool ###defs abbreviation refl :: "'a rel \<Rightarrow> bool" \<comment> \<open>reflexivity over a type\<close> where "refl \<equiv> refl_on UNIV"
###output (\<And>y_0. (y_0, y_0) \<in> x_1) \<Longrightarrow> ?H1 x_1###end
Predicate_Compile_Examples/Predicate_Compile_Tests
Predicate_Compile_Tests.detect_switches6_PFioBiiI
null
detect_switches6 (?x1.0, ?xa) \<Longrightarrow> (\<lambda>xa. pred.eval (?x xa)) = ?x1.0 \<Longrightarrow> pred.eval (detect_switches6_PFioBii (?x, ?xa)) ()
\<lbrakk> ?H1 (x_1, x_2); (\<lambda>y_0. ?H2 (x_3 y_0)) = x_1\<rbrakk> \<Longrightarrow> ?H2 (?H3 (x_3, x_2)) ?H4
[ "Product_Type.Unity", "Predicate_Compile_Tests.detect_switches6_PFioBii", "Predicate.pred.eval", "Predicate_Compile_Tests.detect_switches6" ]
[ "unit", "('a \\<Rightarrow> 'b Predicate.pred) \\<times> 'a list \\<times> 'b list \\<Rightarrow> unit Predicate.pred", "'a Predicate.pred \\<Rightarrow> 'a \\<Rightarrow> bool", "('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<times> 'a list \\<times> 'b list \\<Rightarrow> bool" ]
[ "definition Unity :: unit (\"'(')\")\n where \"() = Abs_unit True\"", "datatype (plugins only: extraction) (dead 'a) pred = Pred (eval: \"'a \\<Rightarrow> bool\")", "inductive detect_switches6 :: \"(('a => 'b => bool) * 'a list * 'b list) => bool\"\nwhere\n \"detect_switches6 (P, [], [])\"\n| \"detect_switches6 (P, xs, ys) ==> P x y ==> detect_switches6 (P, x # xs, y # ys)\"" ]
template
###lemma detect_switches6 (?x1.0, ?xa) \<Longrightarrow> (\<lambda>xa. pred.eval (?x xa)) = ?x1.0 \<Longrightarrow> pred.eval (detect_switches6_PFioBii (?x, ?xa)) () ###symbols Product_Type.Unity :::: unit Predicate_Compile_Tests.detect_switches6_PFioBii :::: ('a \<Rightarrow> 'b Predicate.pred) \<times> 'a list \<times> 'b list \<Rightarrow> unit Predicate.pred Predicate.pred.eval :::: 'a Predicate.pred \<Rightarrow> 'a \<Rightarrow> bool Predicate_Compile_Tests.detect_switches6 :::: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<times> 'a list \<times> 'b list \<Rightarrow> bool ###defs definition Unity :: unit ("'(')") where "() = Abs_unit True" datatype (plugins only: extraction) (dead 'a) pred = Pred (eval: "'a \<Rightarrow> bool") inductive detect_switches6 :: "(('a => 'b => bool) * 'a list * 'b list) => bool" where "detect_switches6 (P, [], [])" | "detect_switches6 (P, xs, ys) ==> P x y ==> detect_switches6 (P, x # xs, y # ys)"
###output \<lbrakk> ?H1 (x_1, x_2); (\<lambda>y_0. ?H2 (x_3 y_0)) = x_1\<rbrakk> \<Longrightarrow> ?H2 (?H3 (x_3, x_2)) ?H4###end
Analysis/Linear_Algebra
Linear_Algebra.orthogonal_to_subspace_exists_gen
null
span ?S \<subset> span ?T \<Longrightarrow> (\<And>x. x \<noteq> (0:: ?'a) \<Longrightarrow> x \<in> span ?T \<Longrightarrow> (\<And>y. y \<in> span ?S \<Longrightarrow> orthogonal x y) \<Longrightarrow> ?thesis) \<Longrightarrow> ?thesis
\<lbrakk> ?H1 (?H2 x_1) (?H2 x_2); \<And>y_0. \<lbrakk>y_0 \<noteq> ?H3; y_0 \<in> ?H2 x_2; \<And>y_1. y_1 \<in> ?H2 x_1 \<Longrightarrow> ?H4 y_0 y_1\<rbrakk> \<Longrightarrow> x_3\<rbrakk> \<Longrightarrow> x_3
[ "Linear_Algebra.real_inner_class.orthogonal", "Groups.zero_class.zero", "Real_Vector_Spaces.span", "Set.subset" ]
[ "'a \\<Rightarrow> 'a \\<Rightarrow> bool", "'a", "'a set \\<Rightarrow> 'a set", "'a set \\<Rightarrow> 'a set \\<Rightarrow> bool" ]
[ "class zero =\n fixes zero :: 'a (\"0\")", "abbreviation subset :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> bool\"\n where \"subset \\<equiv> less\"" ]
template
###lemma span ?S \<subset> span ?T \<Longrightarrow> (\<And>x. x \<noteq> (0:: ?'a) \<Longrightarrow> x \<in> span ?T \<Longrightarrow> (\<And>y. y \<in> span ?S \<Longrightarrow> orthogonal x y) \<Longrightarrow> ?thesis) \<Longrightarrow> ?thesis ###symbols Linear_Algebra.real_inner_class.orthogonal :::: 'a \<Rightarrow> 'a \<Rightarrow> bool Groups.zero_class.zero :::: 'a Real_Vector_Spaces.span :::: 'a set \<Rightarrow> 'a set Set.subset :::: 'a set \<Rightarrow> 'a set \<Rightarrow> bool ###defs class zero = fixes zero :: 'a ("0") abbreviation subset :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where "subset \<equiv> less"
###output \<lbrakk> ?H1 (?H2 x_1) (?H2 x_2); \<And>y_0. \<lbrakk>y_0 \<noteq> ?H3; y_0 \<in> ?H2 x_2; \<And>y_1. y_1 \<in> ?H2 x_1 \<Longrightarrow> ?H4 y_0 y_1\<rbrakk> \<Longrightarrow> x_3\<rbrakk> \<Longrightarrow> x_3###end
Auth/KerberosIV
KerberosIV.authK_not_AKcryptSK
lemma authK_not_AKcryptSK: "\<lbrakk> Crypt (shrK Tgs) \<lbrace>Agent A, Agent Tgs, Key authK, tk\<rbrace> \<in> parts (spies evs); evs \<in> kerbIV \<rbrakk> \<Longrightarrow> \<not> AKcryptSK K authK evs"
Crypt (shrK Tgs) \<lbrace>Agent ?A, Agent Tgs, Key ?authK, ?tk\<rbrace> \<in> parts (knows Spy ?evs) \<Longrightarrow> ?evs \<in> kerbIV \<Longrightarrow> \<not> AKcryptSK ?K ?authK ?evs
\<lbrakk> ?H1 (?H2 ?H3) (?H4 (?H5 x_1) (?H4 (?H5 ?H3) (?H4 (?H6 x_2) x_3))) \<in> ?H7 (?H8 ?H9 x_4); x_4 \<in> ?H10\<rbrakk> \<Longrightarrow> \<not> ?H11 x_5 x_2 x_4
[ "KerberosIV.AKcryptSK", "KerberosIV.kerbIV", "Message.agent.Spy", "Event.knows", "Message.parts", "Message.msg.Key", "Message.msg.Agent", "Message.msg.MPair", "KerberosIV.Tgs", "Public.shrK", "Message.msg.Crypt" ]
[ "nat \\<Rightarrow> nat \\<Rightarrow> event list \\<Rightarrow> bool", "event list set", "agent", "agent \\<Rightarrow> event list \\<Rightarrow> msg set", "msg set \\<Rightarrow> msg set", "nat \\<Rightarrow> msg", "agent \\<Rightarrow> msg", "msg \\<Rightarrow> msg \\<Rightarrow> msg", "agent", "agent \\<Rightarrow> nat", "nat \\<Rightarrow> msg \\<Rightarrow> msg" ]
[ "definition AKcryptSK :: \"[key, key, event list] \\<Rightarrow> bool\" where\n \"AKcryptSK authK servK evs ==\n \\<exists>A B Ts.\n Says Tgs A (Crypt authK\n \\<lbrace>Key servK, Agent B, Number Ts,\n Crypt (shrK B) \\<lbrace>Agent A, Agent B, Key servK, Number Ts\\<rbrace> \\<rbrace>)\n \\<in> set evs\"", "inductive_set kerbIV :: \"event list set\"\n where\n\n Nil: \"[] \\<in> kerbIV\"\n\n | Fake: \"\\<lbrakk> evsf \\<in> kerbIV; X \\<in> synth (analz (spies evsf)) \\<rbrakk>\n \\<Longrightarrow> Says Spy B X # evsf \\<in> kerbIV\"\n\n(* FROM the initiator *)\n | K1: \"\\<lbrakk> evs1 \\<in> kerbIV \\<rbrakk>\n \\<Longrightarrow> Says A Kas \\<lbrace>Agent A, Agent Tgs, Number (CT evs1)\\<rbrace> # evs1\n \\<in> kerbIV\"\n\n(* Adding the timestamp serves to A in K3 to check that\n she doesn't get a reply too late. This kind of timeouts are ordinary.\n If a server's reply is late, then it is likely to be fake. *)\n\n(*---------------------------------------------------------------------*)\n\n(*FROM Kas *)\n | K2: \"\\<lbrakk> evs2 \\<in> kerbIV; Key authK \\<notin> used evs2; authK \\<in> symKeys;\n Says A' Kas \\<lbrace>Agent A, Agent Tgs, Number T1\\<rbrace> \\<in> set evs2 \\<rbrakk>\n \\<Longrightarrow> Says Kas A\n (Crypt (shrK A) \\<lbrace>Key authK, Agent Tgs, Number (CT evs2),\n (Crypt (shrK Tgs) \\<lbrace>Agent A, Agent Tgs, Key authK,\n Number (CT evs2)\\<rbrace>)\\<rbrace>) # evs2 \\<in> kerbIV\"\n(*\n The internal encryption builds the authTicket.\n The timestamp doesn't change inside the two encryptions: the external copy\n will be used by the initiator in K3; the one inside the\n authTicket by Tgs in K4.\n*)\n\n(*---------------------------------------------------------------------*)\n\n(* FROM the initiator *)\n | K3: \"\\<lbrakk> evs3 \\<in> kerbIV;\n Says A Kas \\<lbrace>Agent A, Agent Tgs, Number T1\\<rbrace> \\<in> set evs3;\n Says Kas' A (Crypt (shrK A) \\<lbrace>Key authK, Agent Tgs, Number Ta,\n authTicket\\<rbrace>) \\<in> set evs3;\n valid Ta wrt T1\n \\<rbrakk>\n \\<Longrightarrow> Says A Tgs \\<lbrace>authTicket,\n (Crypt authK \\<lbrace>Agent A, Number (CT evs3)\\<rbrace>),\n Agent B\\<rbrace> # evs3 \\<in> kerbIV\"\n(*The two events amongst the premises allow A to accept only those authKeys\n that are not issued late. *)\n\n(*---------------------------------------------------------------------*)\n\n(* FROM Tgs *)\n(* Note that the last temporal check is not mentioned in the original MIT\n specification. Adding it makes many goals \"available\" to the peers. \n Theorems that exploit it have the suffix `_u', which stands for updated \n protocol.\n*)\n | K4: \"\\<lbrakk> evs4 \\<in> kerbIV; Key servK \\<notin> used evs4; servK \\<in> symKeys;\n B \\<noteq> Tgs; authK \\<in> symKeys;\n Says A' Tgs \\<lbrace>\n (Crypt (shrK Tgs) \\<lbrace>Agent A, Agent Tgs, Key authK,\n Number Ta\\<rbrace>),\n (Crypt authK \\<lbrace>Agent A, Number T2\\<rbrace>), Agent B\\<rbrace>\n \\<in> set evs4;\n \\<not> expiredAK Ta evs4;\n \\<not> expiredA T2 evs4;\n servKlife + (CT evs4) \\<le> authKlife + Ta\n \\<rbrakk>\n \\<Longrightarrow> Says Tgs A\n (Crypt authK \\<lbrace>Key servK, Agent B, Number (CT evs4),\n Crypt (shrK B) \\<lbrace>Agent A, Agent B, Key servK,\n Number (CT evs4)\\<rbrace> \\<rbrace>)\n # evs4 \\<in> kerbIV\"\n(* Tgs creates a new session key per each request for a service, without\n checking if there is still a fresh one for that service.\n The cipher under Tgs' key is the authTicket, the cipher under B's key\n is the servTicket, which is built now.\n NOTE that the last temporal check is not present in the MIT specification.\n\n*)\n\n(*---------------------------------------------------------------------*)\n\n(* FROM the initiator *)\n | K5: \"\\<lbrakk> evs5 \\<in> kerbIV; authK \\<in> symKeys; servK \\<in> symKeys;\n Says A Tgs\n \\<lbrace>authTicket, Crypt authK \\<lbrace>Agent A, Number T2\\<rbrace>,\n Agent B\\<rbrace>\n \\<in> set evs5;\n Says Tgs' A\n (Crypt authK \\<lbrace>Key servK, Agent B, Number Ts, servTicket\\<rbrace>)\n \\<in> set evs5;\n valid Ts wrt T2 \\<rbrakk>\n \\<Longrightarrow> Says A B \\<lbrace>servTicket,\n Crypt servK \\<lbrace>Agent A, Number (CT evs5)\\<rbrace> \\<rbrace>\n # evs5 \\<in> kerbIV\"\n(* Checks similar to those in K3. *)\n\n(*---------------------------------------------------------------------*)\n\n(* FROM the responder*)\n | K6: \"\\<lbrakk> evs6 \\<in> kerbIV;\n Says A' B \\<lbrace>\n (Crypt (shrK B) \\<lbrace>Agent A, Agent B, Key servK, Number Ts\\<rbrace>),\n (Crypt servK \\<lbrace>Agent A, Number T3\\<rbrace>)\\<rbrace>\n \\<in> set evs6;\n \\<not> expiredSK Ts evs6;\n \\<not> expiredA T3 evs6\n \\<rbrakk>\n \\<Longrightarrow> Says B A (Crypt servK (Number T3))\n # evs6 \\<in> kerbIV\"\n(* Checks similar to those in K4. *)\n\n(*---------------------------------------------------------------------*)\n\n(* Leaking an authK... *)\n | Oops1: \"\\<lbrakk> evsO1 \\<in> kerbIV; A \\<noteq> Spy;\n Says Kas A\n (Crypt (shrK A) \\<lbrace>Key authK, Agent Tgs, Number Ta,\n authTicket\\<rbrace>) \\<in> set evsO1;\n expiredAK Ta evsO1 \\<rbrakk>\n \\<Longrightarrow> Says A Spy \\<lbrace>Agent A, Agent Tgs, Number Ta, Key authK\\<rbrace>\n # evsO1 \\<in> kerbIV\"\n\n(*---------------------------------------------------------------------*)\n\n(*Leaking a servK... *)\n | Oops2: \"\\<lbrakk> evsO2 \\<in> kerbIV; A \\<noteq> Spy;\n Says Tgs A\n (Crypt authK \\<lbrace>Key servK, Agent B, Number Ts, servTicket\\<rbrace>)\n \\<in> set evsO2;\n expiredSK Ts evsO2 \\<rbrakk>\n \\<Longrightarrow> Says A Spy \\<lbrace>Agent A, Agent B, Number Ts, Key servK\\<rbrace>\n # evsO2 \\<in> kerbIV\"", "primrec knows :: \"agent \\<Rightarrow> event list \\<Rightarrow> msg set\"\nwhere\n knows_Nil: \"knows A [] = initState A\"\n| knows_Cons:\n \"knows A (ev # evs) =\n (if A = Spy then \n (case ev of\n Says A' B X \\<Rightarrow> insert X (knows Spy evs)\n | Gets A' X \\<Rightarrow> knows Spy evs\n | Notes A' X \\<Rightarrow> \n if A' \\<in> bad then insert X (knows Spy evs) else knows Spy evs)\n else\n (case ev of\n Says A' B X \\<Rightarrow> \n if A'=A then insert X (knows A evs) else knows A evs\n | Gets A' X \\<Rightarrow> \n if A'=A then insert X (knows A evs) else knows A evs\n | Notes A' X \\<Rightarrow> \n if A'=A then insert X (knows A evs) else knows A evs))\"", "inductive_set\n parts :: \"msg set \\<Rightarrow> msg set\"\n for H :: \"msg set\"\n where\n Inj [intro]: \"X \\<in> H \\<Longrightarrow> X \\<in> parts H\"\n | Fst: \"\\<lbrace>X,Y\\<rbrace> \\<in> parts H \\<Longrightarrow> X \\<in> parts H\"\n | Snd: \"\\<lbrace>X,Y\\<rbrace> \\<in> parts H \\<Longrightarrow> Y \\<in> parts H\"\n | Body: \"Crypt K X \\<in> parts H \\<Longrightarrow> X \\<in> parts H\"", "datatype\n msg = Agent agent \\<comment> \\<open>Agent names\\<close>\n | Number nat \\<comment> \\<open>Ordinary integers, timestamps, ...\\<close>\n | Nonce nat \\<comment> \\<open>Unguessable nonces\\<close>\n | Key key \\<comment> \\<open>Crypto keys\\<close>\n | Hash msg \\<comment> \\<open>Hashing\\<close>\n | MPair msg msg \\<comment> \\<open>Compound messages\\<close>\n | Crypt key msg \\<comment> \\<open>Encryption, public- or shared-key\\<close>", "datatype\n msg = Agent agent \\<comment> \\<open>Agent names\\<close>\n | Number nat \\<comment> \\<open>Ordinary integers, timestamps, ...\\<close>\n | Nonce nat \\<comment> \\<open>Unguessable nonces\\<close>\n | Key key \\<comment> \\<open>Crypto keys\\<close>\n | Hash msg \\<comment> \\<open>Hashing\\<close>\n | MPair msg msg \\<comment> \\<open>Compound messages\\<close>\n | Crypt key msg \\<comment> \\<open>Encryption, public- or shared-key\\<close>", "datatype\n msg = Agent agent \\<comment> \\<open>Agent names\\<close>\n | Number nat \\<comment> \\<open>Ordinary integers, timestamps, ...\\<close>\n | Nonce nat \\<comment> \\<open>Unguessable nonces\\<close>\n | Key key \\<comment> \\<open>Crypto keys\\<close>\n | Hash msg \\<comment> \\<open>Hashing\\<close>\n | MPair msg msg \\<comment> \\<open>Compound messages\\<close>\n | Crypt key msg \\<comment> \\<open>Encryption, public- or shared-key\\<close>", "abbreviation\n Tgs :: agent where \"Tgs == Friend 0\"", "consts\n shrK :: \"agent => key\" \\<comment> \\<open>long-term shared keys\\<close>", "datatype\n msg = Agent agent \\<comment> \\<open>Agent names\\<close>\n | Number nat \\<comment> \\<open>Ordinary integers, timestamps, ...\\<close>\n | Nonce nat \\<comment> \\<open>Unguessable nonces\\<close>\n | Key key \\<comment> \\<open>Crypto keys\\<close>\n | Hash msg \\<comment> \\<open>Hashing\\<close>\n | MPair msg msg \\<comment> \\<open>Compound messages\\<close>\n | Crypt key msg \\<comment> \\<open>Encryption, public- or shared-key\\<close>" ]
template
###lemma Crypt (shrK Tgs) \<lbrace>Agent ?A, Agent Tgs, Key ?authK, ?tk\<rbrace> \<in> parts (knows Spy ?evs) \<Longrightarrow> ?evs \<in> kerbIV \<Longrightarrow> \<not> AKcryptSK ?K ?authK ?evs ###symbols KerberosIV.AKcryptSK :::: nat \<Rightarrow> nat \<Rightarrow> event list \<Rightarrow> bool KerberosIV.kerbIV :::: event list set Message.agent.Spy :::: agent Event.knows :::: agent \<Rightarrow> event list \<Rightarrow> msg set Message.parts :::: msg set \<Rightarrow> msg set Message.msg.Key :::: nat \<Rightarrow> msg Message.msg.Agent :::: agent \<Rightarrow> msg Message.msg.MPair :::: msg \<Rightarrow> msg \<Rightarrow> msg KerberosIV.Tgs :::: agent Public.shrK :::: agent \<Rightarrow> nat Message.msg.Crypt :::: nat \<Rightarrow> msg \<Rightarrow> msg ###defs definition AKcryptSK :: "[key, key, event list] \<Rightarrow> bool" where "AKcryptSK authK servK evs == \<exists>A B Ts. Says Tgs A (Crypt authK \<lbrace>Key servK, Agent B, Number Ts, Crypt (shrK B) \<lbrace>Agent A, Agent B, Key servK, Number Ts\<rbrace> \<rbrace>) \<in> set evs" inductive_set kerbIV :: "event list set" where Nil: "[] \<in> kerbIV" | Fake: "\<lbrakk> evsf \<in> kerbIV; X \<in> synth (analz (spies evsf)) \<rbrakk> \<Longrightarrow> Says Spy B X # evsf \<in> kerbIV" (* FROM the initiator *) | K1: "\<lbrakk> evs1 \<in> kerbIV \<rbrakk> \<Longrightarrow> Says A Kas \<lbrace>Agent A, Agent Tgs, Number (CT evs1)\<rbrace> # evs1 \<in> kerbIV" (* Adding the timestamp serves to A in K3 to check that she doesn't get a reply too late. This kind of timeouts are ordinary. If a server's reply is late, then it is likely to be fake. *) (*---------------------------------------------------------------------*) (*FROM Kas *) | K2: "\<lbrakk> evs2 \<in> kerbIV; Key authK \<notin> used evs2; authK \<in> symKeys; Says A' Kas \<lbrace>Agent A, Agent Tgs, Number T1\<rbrace> \<in> set evs2 \<rbrakk> \<Longrightarrow> Says Kas A (Crypt (shrK A) \<lbrace>Key authK, Agent Tgs, Number (CT evs2), (Crypt (shrK Tgs) \<lbrace>Agent A, Agent Tgs, Key authK, Number (CT evs2)\<rbrace>)\<rbrace>) # evs2 \<in> kerbIV" (* The internal encryption builds the authTicket. The timestamp doesn't change inside the two encryptions: the external copy will be used by the initiator in K3; the one inside the authTicket by Tgs in K4. *) (*---------------------------------------------------------------------*) (* FROM the initiator *) | K3: "\<lbrakk> evs3 \<in> kerbIV; Says A Kas \<lbrace>Agent A, Agent Tgs, Number T1\<rbrace> \<in> set evs3; Says Kas' A (Crypt (shrK A) \<lbrace>Key authK, Agent Tgs, Number Ta, authTicket\<rbrace>) \<in> set evs3; valid Ta wrt T1 \<rbrakk> \<Longrightarrow> Says A Tgs \<lbrace>authTicket, (Crypt authK \<lbrace>Agent A, Number (CT evs3)\<rbrace>), Agent B\<rbrace> # evs3 \<in> kerbIV" (*The two events amongst the premises allow A to accept only those authKeys that are not issued late. *) (*---------------------------------------------------------------------*) (* FROM Tgs *) (* Note that the last temporal check is not mentioned in the original MIT specification. Adding it makes many goals "available" to the peers. Theorems that exploit it have the suffix `_u', which stands for updated protocol. *) | K4: "\<lbrakk> evs4 \<in> kerbIV; Key servK \<notin> used evs4; servK \<in> symKeys; B \<noteq> Tgs; authK \<in> symKeys; Says A' Tgs \<lbrace> (Crypt (shrK Tgs) \<lbrace>Agent A, Agent Tgs, Key authK, Number Ta\<rbrace>), (Crypt authK \<lbrace>Agent A, Number T2\<rbrace>), Agent B\<rbrace> \<in> set evs4; \<not> expiredAK Ta evs4; \<not> expiredA T2 evs4; servKlife + (CT evs4) \<le> authKlife + Ta \<rbrakk> \<Longrightarrow> Says Tgs A (Crypt authK \<lbrace>Key servK, Agent B, Number (CT evs4), Crypt (shrK B) \<lbrace>Agent A, Agent B, Key servK, Number (CT evs4)\<rbrace> \<rbrace>) # evs4 \<in> kerbIV" (* Tgs creates a new session key per each request for a service, without checking if there is still a fresh one for that service. The cipher under Tgs' key is the authTicket, the cipher under B's key is the servTicket, which is built now. NOTE that the last temporal check is not present in the MIT specification. *) (*---------------------------------------------------------------------*) (* FROM the initiator *) | K5: "\<lbrakk> evs5 \<in> kerbIV; authK \<in> symKeys; servK \<in> symKeys; Says A Tgs \<lbrace>authTicket, Crypt authK \<lbrace>Agent A, Number T2\<rbrace>, Agent B\<rbrace> \<in> set evs5; Says Tgs' A (Crypt authK \<lbrace>Key servK, Agent B, Number Ts, servTicket\<rbrace>) \<in> set evs5; valid Ts wrt T2 \<rbrakk> \<Longrightarrow> Says A B \<lbrace>servTicket, Crypt servK \<lbrace>Agent A, Number (CT evs5)\<rbrace> \<rbrace> # evs5 \<in> kerbIV" (* Checks similar to those in K3. *) (*---------------------------------------------------------------------*) (* FROM the responder*) | K6: "\<lbrakk> evs6 \<in> kerbIV; Says A' B \<lbrace> (Crypt (shrK B) \<lbrace>Agent A, Agent B, Key servK, Number Ts\<rbrace>), (Crypt servK \<lbrace>Agent A, Number T3\<rbrace>)\<rbrace> \<in> set evs6; \<not> expiredSK Ts evs6; \<not> expiredA T3 evs6 \<rbrakk> \<Longrightarrow> Says B A (Crypt servK (Number T3)) # evs6 \<in> kerbIV" (* Checks similar to those in K4. *) (*---------------------------------------------------------------------*) (* Leaking an authK... *) | Oops1: "\<lbrakk> evsO1 \<in> kerbIV; A \<noteq> Spy; Says Kas A (Crypt (shrK A) \<lbrace>Key authK, Agent Tgs, Number Ta, authTicket\<rbrace>) \<in> set evsO1; expiredAK Ta evsO1 \<rbrakk> \<Longrightarrow> Says A Spy \<lbrace>Agent A, Agent Tgs, Number Ta, Key authK\<rbrace> # evsO1 \<in> kerbIV" (*---------------------------------------------------------------------*) (*Leaking a servK... *) | Oops2: "\<lbrakk> evsO2 \<in> kerbIV; A \<noteq> Spy; Says Tgs A (Crypt authK \<lbrace>Key servK, Agent B, Number Ts, servTicket\<rbrace>) \<in> set evsO2; expiredSK Ts evsO2 \<rbrakk> \<Longrightarrow> Says A Spy \<lbrace>Agent A, Agent B, Number Ts, Key servK\<rbrace> # evsO2 \<in> kerbIV" primrec knows :: "agent \<Rightarrow> event list \<Rightarrow> msg set" where knows_Nil: "knows A [] = initState A" | knows_Cons: "knows A (ev # evs) = (if A = Spy then (case ev of Says A' B X \<Rightarrow> insert X (knows Spy evs) | Gets A' X \<Rightarrow> knows Spy evs | Notes A' X \<Rightarrow> if A' \<in> bad then insert X (knows Spy evs) else knows Spy evs) else (case ev of Says A' B X \<Rightarrow> if A'=A then insert X (knows A evs) else knows A evs | Gets A' X \<Rightarrow> if A'=A then insert X (knows A evs) else knows A evs | Notes A' X \<Rightarrow> if A'=A then insert X (knows A evs) else knows A evs))" inductive_set parts :: "msg set \<Rightarrow> msg set" for H :: "msg set" where Inj [intro]: "X \<in> H \<Longrightarrow> X \<in> parts H" | Fst: "\<lbrace>X,Y\<rbrace> \<in> parts H \<Longrightarrow> X \<in> parts H" | Snd: "\<lbrace>X,Y\<rbrace> \<in> parts H \<Longrightarrow> Y \<in> parts H" | Body: "Crypt K X \<in> parts H \<Longrightarrow> X \<in> parts H" datatype msg = Agent agent \<comment> \<open>Agent names\<close> | Number nat \<comment> \<open>Ordinary integers, timestamps, ...\<close> | Nonce nat \<comment> \<open>Unguessable nonces\<close> | Key key \<comment> \<open>Crypto keys\<close> | Hash msg \<comment> \<open>Hashing\<close> | MPair msg msg \<comment> \<open>Compound messages\<close> | Crypt key msg \<comment> \<open>Encryption, public- or shared-key\<close> datatype msg = Agent agent \<comment> \<open>Agent names\<close> | Number nat \<comment> \<open>Ordinary integers, timestamps, ...\<close> | Nonce nat \<comment> \<open>Unguessable nonces\<close> | Key key \<comment> \<open>Crypto keys\<close> | Hash msg \<comment> \<open>Hashing\<close> | MPair msg msg \<comment> \<open>Compound messages\<close> | Crypt key msg \<comment> \<open>Encryption, public- or shared-key\<close> datatype msg = Agent agent \<comment> \<open>Agent names\<close> | Number nat \<comment> \<open>Ordinary integers, timestamps, ...\<close> | Nonce nat \<comment> \<open>Unguessable nonces\<close> | Key key \<comment> \<open>Crypto keys\<close> | Hash msg \<comment> \<open>Hashing\<close> | MPair msg msg \<comment> \<open>Compound messages\<close> | Crypt key msg \<comment> \<open>Encryption, public- or shared-key\<close> abbreviation Tgs :: agent where "Tgs == Friend 0" consts shrK :: "agent => key" \<comment> \<open>long-term shared keys\<close> datatype msg = Agent agent \<comment> \<open>Agent names\<close> | Number nat \<comment> \<open>Ordinary integers, timestamps, ...\<close> | Nonce nat \<comment> \<open>Unguessable nonces\<close> | Key key \<comment> \<open>Crypto keys\<close> | Hash msg \<comment> \<open>Hashing\<close> | MPair msg msg \<comment> \<open>Compound messages\<close> | Crypt key msg \<comment> \<open>Encryption, public- or shared-key\<close>
###output \<lbrakk> ?H1 (?H2 ?H3) (?H4 (?H5 x_1) (?H4 (?H5 ?H3) (?H4 (?H6 x_2) x_3))) \<in> ?H7 (?H8 ?H9 x_4); x_4 \<in> ?H10\<rbrakk> \<Longrightarrow> \<not> ?H11 x_5 x_2 x_4###end
Analysis/Weierstrass_Theorems
Weierstrass_Theorems.Stone_Weierstrass_polynomial_function
theorem Stone_Weierstrass_polynomial_function: fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" assumes S: "compact S" and f: "continuous_on S f" and e: "0 < e" shows "\<exists>g. polynomial_function g \<and> (\<forall>x \<in> S. norm(f x - g x) < e)"
compact ?S \<Longrightarrow> continuous_on ?S ?f \<Longrightarrow> 0 < ?e \<Longrightarrow> \<exists>g. polynomial_function g \<and> (\<forall>x\<in> ?S. norm (?f x - g x) < ?e)
\<lbrakk> ?H1 x_1; ?H2 x_1 x_2; ?H3 < x_3\<rbrakk> \<Longrightarrow> \<exists>y_0. ?H4 y_0 \<and> (\<forall>y_1\<in>x_1. ?H5 (?H6 (x_2 y_1) (y_0 y_1)) < x_3)
[ "Groups.minus_class.minus", "Real_Vector_Spaces.norm_class.norm", "Weierstrass_Theorems.polynomial_function", "Groups.zero_class.zero", "Topological_Spaces.continuous_on", "Topological_Spaces.topological_space_class.compact" ]
[ "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a \\<Rightarrow> real", "('a \\<Rightarrow> 'b) \\<Rightarrow> bool", "'a", "'a set \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> bool", "'a set \\<Rightarrow> bool" ]
[ "class minus =\n fixes minus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"-\" 65)", "class norm =\n fixes norm :: \"'a \\<Rightarrow> real\"", "class zero =\n fixes zero :: 'a (\"0\")", "definition continuous_on :: \"'a set \\<Rightarrow> ('a::topological_space \\<Rightarrow> 'b::topological_space) \\<Rightarrow> bool\"\n where \"continuous_on s f \\<longleftrightarrow> (\\<forall>x\\<in>s. (f \\<longlongrightarrow> f x) (at x within s))\"", "class topological_space = \"open\" +\n assumes open_UNIV [simp, intro]: \"open UNIV\"\n assumes open_Int [intro]: \"open S \\<Longrightarrow> open T \\<Longrightarrow> open (S \\<inter> T)\"\n assumes open_Union [intro]: \"\\<forall>S\\<in>K. open S \\<Longrightarrow> open (\\<Union>K)\"\nbegin" ]
template
###lemma compact ?S \<Longrightarrow> continuous_on ?S ?f \<Longrightarrow> 0 < ?e \<Longrightarrow> \<exists>g. polynomial_function g \<and> (\<forall>x\<in> ?S. norm (?f x - g x) < ?e) ###symbols Groups.minus_class.minus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Real_Vector_Spaces.norm_class.norm :::: 'a \<Rightarrow> real Weierstrass_Theorems.polynomial_function :::: ('a \<Rightarrow> 'b) \<Rightarrow> bool Groups.zero_class.zero :::: 'a Topological_Spaces.continuous_on :::: 'a set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool Topological_Spaces.topological_space_class.compact :::: 'a set \<Rightarrow> bool ###defs class minus = fixes minus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "-" 65) class norm = fixes norm :: "'a \<Rightarrow> real" class zero = fixes zero :: 'a ("0") definition continuous_on :: "'a set \<Rightarrow> ('a::topological_space \<Rightarrow> 'b::topological_space) \<Rightarrow> bool" where "continuous_on s f \<longleftrightarrow> (\<forall>x\<in>s. (f \<longlongrightarrow> f x) (at x within s))" class topological_space = "open" + assumes open_UNIV [simp, intro]: "open UNIV" assumes open_Int [intro]: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<inter> T)" assumes open_Union [intro]: "\<forall>S\<in>K. open S \<Longrightarrow> open (\<Union>K)" begin
###output \<lbrakk> ?H1 x_1; ?H2 x_1 x_2; ?H3 < x_3\<rbrakk> \<Longrightarrow> \<exists>y_0. ?H4 y_0 \<and> (\<forall>y_1\<in>x_1. ?H5 (?H6 (x_2 y_1) (y_0 y_1)) < x_3)###end
Complex_Analysis/Winding_Numbers
Winding_Numbers.winding_number_lt_half
lemma winding_number_lt_half: assumes "valid_path \<gamma>" "a \<bullet> z \<le> b" "path_image \<gamma> \<subseteq> {w. a \<bullet> w > b}" shows "\<bar>Re (winding_number \<gamma> z)\<bar> < 1/2"
valid_path ?\<gamma> \<Longrightarrow> ?a \<bullet> ?z \<le> ?b \<Longrightarrow> path_image ?\<gamma> \<subseteq> {w. ?b < ?a \<bullet> w} \<Longrightarrow> \<bar>Re (winding_number ?\<gamma> ?z)\<bar> < 1 / 2
\<lbrakk> ?H1 x_1; ?H2 x_2 x_3 \<le> x_4; ?H3 (?H4 x_1) (?H5 (\<lambda>y_0. x_4 < ?H2 x_2 y_0))\<rbrakk> \<Longrightarrow> ?H6 (?H7 (?H8 x_1 x_3)) < ?H9 ?H10 (?H11 (?H12 ?H13))
[ "Num.num.One", "Num.num.Bit0", "Num.numeral_class.numeral", "Groups.one_class.one", "Fields.inverse_class.inverse_divide", "Winding_Numbers.winding_number", "Complex.complex.Re", "Groups.abs_class.abs", "Set.Collect", "Path_Connected.path_image", "Set.subset_eq", "Inner_Product.real_inner_class.inner", "Smooth_Paths.valid_path" ]
[ "num", "num \\<Rightarrow> num", "num \\<Rightarrow> 'a", "'a", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "(real \\<Rightarrow> complex) \\<Rightarrow> complex \\<Rightarrow> complex", "complex \\<Rightarrow> real", "'a \\<Rightarrow> 'a", "('a \\<Rightarrow> bool) \\<Rightarrow> 'a set", "(real \\<Rightarrow> 'a) \\<Rightarrow> 'a set", "'a set \\<Rightarrow> 'a set \\<Rightarrow> bool", "'a \\<Rightarrow> 'a \\<Rightarrow> real", "(real \\<Rightarrow> 'a) \\<Rightarrow> bool" ]
[ "datatype num = One | Bit0 num | Bit1 num", "datatype num = One | Bit0 num | Bit1 num", "primrec numeral :: \"num \\<Rightarrow> 'a\"\n where\n numeral_One: \"numeral One = 1\"\n | numeral_Bit0: \"numeral (Bit0 n) = numeral n + numeral n\"\n | numeral_Bit1: \"numeral (Bit1 n) = numeral n + numeral n + 1\"", "class one =\n fixes one :: 'a (\"1\")", "class inverse = divide +\n fixes inverse :: \"'a \\<Rightarrow> 'a\"\nbegin", "codatatype complex = Complex (Re: real) (Im: real)", "class abs =\n fixes abs :: \"'a \\<Rightarrow> 'a\" (\"\\<bar>_\\<bar>\")", "abbreviation subset_eq :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> bool\"\n where \"subset_eq \\<equiv> less_eq\"", "class real_inner = real_vector + sgn_div_norm + dist_norm + uniformity_dist + open_uniformity +\n fixes inner :: \"'a \\<Rightarrow> 'a \\<Rightarrow> real\"\n assumes inner_commute: \"inner x y = inner y x\"\n and inner_add_left: \"inner (x + y) z = inner x z + inner y z\"\n and inner_scaleR_left [simp]: \"inner (scaleR r x) y = r * (inner x y)\"\n and inner_ge_zero [simp]: \"0 \\<le> inner x x\"\n and inner_eq_zero_iff [simp]: \"inner x x = 0 \\<longleftrightarrow> x = 0\"\n and norm_eq_sqrt_inner: \"norm x = sqrt (inner x x)\"\nbegin" ]
template
###lemma valid_path ?\<gamma> \<Longrightarrow> ?a \<bullet> ?z \<le> ?b \<Longrightarrow> path_image ?\<gamma> \<subseteq> {w. ?b < ?a \<bullet> w} \<Longrightarrow> \<bar>Re (winding_number ?\<gamma> ?z)\<bar> < 1 / 2 ###symbols Num.num.One :::: num Num.num.Bit0 :::: num \<Rightarrow> num Num.numeral_class.numeral :::: num \<Rightarrow> 'a Groups.one_class.one :::: 'a Fields.inverse_class.inverse_divide :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Winding_Numbers.winding_number :::: (real \<Rightarrow> complex) \<Rightarrow> complex \<Rightarrow> complex Complex.complex.Re :::: complex \<Rightarrow> real Groups.abs_class.abs :::: 'a \<Rightarrow> 'a Set.Collect :::: ('a \<Rightarrow> bool) \<Rightarrow> 'a set Path_Connected.path_image :::: (real \<Rightarrow> 'a) \<Rightarrow> 'a set Set.subset_eq :::: 'a set \<Rightarrow> 'a set \<Rightarrow> bool Inner_Product.real_inner_class.inner :::: 'a \<Rightarrow> 'a \<Rightarrow> real Smooth_Paths.valid_path :::: (real \<Rightarrow> 'a) \<Rightarrow> bool ###defs datatype num = One | Bit0 num | Bit1 num datatype num = One | Bit0 num | Bit1 num primrec numeral :: "num \<Rightarrow> 'a" where numeral_One: "numeral One = 1" | numeral_Bit0: "numeral (Bit0 n) = numeral n + numeral n" | numeral_Bit1: "numeral (Bit1 n) = numeral n + numeral n + 1" class one = fixes one :: 'a ("1") class inverse = divide + fixes inverse :: "'a \<Rightarrow> 'a" begin codatatype complex = Complex (Re: real) (Im: real) class abs = fixes abs :: "'a \<Rightarrow> 'a" ("\<bar>_\<bar>") abbreviation subset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where "subset_eq \<equiv> less_eq" class real_inner = real_vector + sgn_div_norm + dist_norm + uniformity_dist + open_uniformity + fixes inner :: "'a \<Rightarrow> 'a \<Rightarrow> real" assumes inner_commute: "inner x y = inner y x" and inner_add_left: "inner (x + y) z = inner x z + inner y z" and inner_scaleR_left [simp]: "inner (scaleR r x) y = r * (inner x y)" and inner_ge_zero [simp]: "0 \<le> inner x x" and inner_eq_zero_iff [simp]: "inner x x = 0 \<longleftrightarrow> x = 0" and norm_eq_sqrt_inner: "norm x = sqrt (inner x x)" begin
###output \<lbrakk> ?H1 x_1; ?H2 x_2 x_3 \<le> x_4; ?H3 (?H4 x_1) (?H5 (\<lambda>y_0. x_4 < ?H2 x_2 y_0))\<rbrakk> \<Longrightarrow> ?H6 (?H7 (?H8 x_1 x_3)) < ?H9 ?H10 (?H11 (?H12 ?H13))###end
Analysis/Path_Connected
Path_Connected.simple_path_join3I
lemma simple_path_join3I: assumes "arc p1" "arc p2" "arc p3" assumes "path_image p1 \<inter> path_image p2 \<subseteq> {pathstart p2}" assumes "path_image p2 \<inter> path_image p3 \<subseteq> {pathstart p3}" assumes "path_image p1 \<inter> path_image p3 \<subseteq> {pathstart p1} \<inter> {pathfinish p3}" assumes "pathfinish p1 = pathstart p2" "pathfinish p2 = pathstart p3" shows "simple_path (p1 +++ p2 +++ p3)"
arc ?p1.0 \<Longrightarrow> arc ?p2.0 \<Longrightarrow> arc ?p3.0 \<Longrightarrow> path_image ?p1.0 \<inter> path_image ?p2.0 \<subseteq> {pathstart ?p2.0} \<Longrightarrow> path_image ?p2.0 \<inter> path_image ?p3.0 \<subseteq> {pathstart ?p3.0} \<Longrightarrow> path_image ?p1.0 \<inter> path_image ?p3.0 \<subseteq> {pathstart ?p1.0} \<inter> {pathfinish ?p3.0} \<Longrightarrow> pathfinish ?p1.0 = pathstart ?p2.0 \<Longrightarrow> pathfinish ?p2.0 = pathstart ?p3.0 \<Longrightarrow> simple_path (?p1.0 +++ ?p2.0 +++ ?p3.0)
\<lbrakk> ?H1 x_1; ?H1 x_2; ?H1 x_3; ?H2 (?H3 (?H4 x_1) (?H4 x_2)) (?H5 (?H6 x_2) ?H7); ?H2 (?H3 (?H4 x_2) (?H4 x_3)) (?H5 (?H6 x_3) ?H7); ?H2 (?H3 (?H4 x_1) (?H4 x_3)) (?H3 (?H5 (?H6 x_1) ?H7) (?H5 (?H8 x_3) ?H7)); ?H8 x_1 = ?H6 x_2; ?H8 x_2 = ?H6 x_3\<rbrakk> \<Longrightarrow> ?H9 (?H10 x_1 (?H10 x_2 x_3))
[ "Path_Connected.joinpaths", "Path_Connected.simple_path", "Path_Connected.pathfinish", "Set.empty", "Path_Connected.pathstart", "Set.insert", "Path_Connected.path_image", "Set.inter", "Set.subset_eq", "Path_Connected.arc" ]
[ "(real \\<Rightarrow> 'a) \\<Rightarrow> (real \\<Rightarrow> 'a) \\<Rightarrow> real \\<Rightarrow> 'a", "(real \\<Rightarrow> 'a) \\<Rightarrow> bool", "(real \\<Rightarrow> 'a) \\<Rightarrow> 'a", "'a set", "(real \\<Rightarrow> 'a) \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a set \\<Rightarrow> 'a set", "(real \\<Rightarrow> 'a) \\<Rightarrow> 'a set", "'a set \\<Rightarrow> 'a set \\<Rightarrow> 'a set", "'a set \\<Rightarrow> 'a set \\<Rightarrow> bool", "(real \\<Rightarrow> 'a) \\<Rightarrow> bool" ]
[ "abbreviation empty :: \"'a set\" (\"{}\")\n where \"{} \\<equiv> bot\"", "definition insert :: \"'a \\<Rightarrow> 'a set \\<Rightarrow> 'a set\"\n where insert_compr: \"insert a B = {x. x = a \\<or> x \\<in> B}\"", "abbreviation inter :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> 'a set\" (infixl \"\\<inter>\" 70)\n where \"(\\<inter>) \\<equiv> inf\"", "abbreviation subset_eq :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> bool\"\n where \"subset_eq \\<equiv> less_eq\"" ]
template
###lemma arc ?p1.0 \<Longrightarrow> arc ?p2.0 \<Longrightarrow> arc ?p3.0 \<Longrightarrow> path_image ?p1.0 \<inter> path_image ?p2.0 \<subseteq> {pathstart ?p2.0} \<Longrightarrow> path_image ?p2.0 \<inter> path_image ?p3.0 \<subseteq> {pathstart ?p3.0} \<Longrightarrow> path_image ?p1.0 \<inter> path_image ?p3.0 \<subseteq> {pathstart ?p1.0} \<inter> {pathfinish ?p3.0} \<Longrightarrow> pathfinish ?p1.0 = pathstart ?p2.0 \<Longrightarrow> pathfinish ?p2.0 = pathstart ?p3.0 \<Longrightarrow> simple_path (?p1.0 +++ ?p2.0 +++ ?p3.0) ###symbols Path_Connected.joinpaths :::: (real \<Rightarrow> 'a) \<Rightarrow> (real \<Rightarrow> 'a) \<Rightarrow> real \<Rightarrow> 'a Path_Connected.simple_path :::: (real \<Rightarrow> 'a) \<Rightarrow> bool Path_Connected.pathfinish :::: (real \<Rightarrow> 'a) \<Rightarrow> 'a Set.empty :::: 'a set Path_Connected.pathstart :::: (real \<Rightarrow> 'a) \<Rightarrow> 'a Set.insert :::: 'a \<Rightarrow> 'a set \<Rightarrow> 'a set Path_Connected.path_image :::: (real \<Rightarrow> 'a) \<Rightarrow> 'a set Set.inter :::: 'a set \<Rightarrow> 'a set \<Rightarrow> 'a set Set.subset_eq :::: 'a set \<Rightarrow> 'a set \<Rightarrow> bool Path_Connected.arc :::: (real \<Rightarrow> 'a) \<Rightarrow> bool ###defs abbreviation empty :: "'a set" ("{}") where "{} \<equiv> bot" definition insert :: "'a \<Rightarrow> 'a set \<Rightarrow> 'a set" where insert_compr: "insert a B = {x. x = a \<or> x \<in> B}" abbreviation inter :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "\<inter>" 70) where "(\<inter>) \<equiv> inf" abbreviation subset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where "subset_eq \<equiv> less_eq"
###output \<lbrakk> ?H1 x_1; ?H1 x_2; ?H1 x_3; ?H2 (?H3 (?H4 x_1) (?H4 x_2)) (?H5 (?H6 x_2) ?H7); ?H2 (?H3 (?H4 x_2) (?H4 x_3)) (?H5 (?H6 x_3) ?H7); ?H2 (?H3 (?H4 x_1) (?H4 x_3)) (?H3 (?H5 (?H6 x_1) ?H7) (?H5 (?H8 x_3) ?H7)); ?H8 x_1 = ?H6 x_2; ?H8 x_2 = ?H6 x_3\<rbrakk> \<Longrightarrow> ?H9 (?H10 x_1 (?H10 x_2 x_3))###end
GCD
GCD.gcd_0_int
lemma gcd_0_int [simp]: "gcd x 0 = \<bar>x\<bar>" for x :: int
gcd ?x 0 = \<bar> ?x\<bar>
?H1 x_1 ?H2 = ?H3 x_1
[ "Groups.abs_class.abs", "Groups.zero_class.zero", "GCD.gcd_class.gcd" ]
[ "'a \\<Rightarrow> 'a", "'a", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a" ]
[ "class abs =\n fixes abs :: \"'a \\<Rightarrow> 'a\" (\"\\<bar>_\\<bar>\")", "class zero =\n fixes zero :: 'a (\"0\")", "class gcd = zero + one + dvd +\n fixes gcd :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\"\n and lcm :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\"" ]
template
###lemma gcd ?x 0 = \<bar> ?x\<bar> ###symbols Groups.abs_class.abs :::: 'a \<Rightarrow> 'a Groups.zero_class.zero :::: 'a GCD.gcd_class.gcd :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a ###defs class abs = fixes abs :: "'a \<Rightarrow> 'a" ("\<bar>_\<bar>") class zero = fixes zero :: 'a ("0") class gcd = zero + one + dvd + fixes gcd :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" and lcm :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"
###output ?H1 x_1 ?H2 = ?H3 x_1###end
Set_Interval
Set_Interval.sum_natinterval_diff
lemma sum_natinterval_diff: fixes f:: "nat \<Rightarrow> ('a::ab_group_add)" shows "sum (\<lambda>k. f k - f(k + 1)) {(m::nat) .. n} = (if m \<le> n then f m - f(n + 1) else 0)"
(\<Sum>k = ?m.. ?n. ?f k - ?f (k + 1)) = (if ?m \<le> ?n then ?f ?m - ?f (?n + 1) else (0:: ?'a))
?H1 (\<lambda>y_0. ?H2 (x_1 y_0) (x_1 (?H3 y_0 ?H4))) (?H5 x_2 x_3) = (if x_2 \<le> x_3 then ?H2 (x_1 x_2) (x_1 (?H3 x_3 ?H4)) else ?H6)
[ "Groups.zero_class.zero", "Set_Interval.ord_class.atLeastAtMost", "Groups.one_class.one", "Groups.plus_class.plus", "Groups.minus_class.minus", "Groups_Big.comm_monoid_add_class.sum" ]
[ "'a", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a set", "'a", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b" ]
[ "class zero =\n fixes zero :: 'a (\"0\")", "class one =\n fixes one :: 'a (\"1\")", "class plus =\n fixes plus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"+\" 65)", "class minus =\n fixes minus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"-\" 65)" ]
template
###lemma (\<Sum>k = ?m.. ?n. ?f k - ?f (k + 1)) = (if ?m \<le> ?n then ?f ?m - ?f (?n + 1) else (0:: ?'a)) ###symbols Groups.zero_class.zero :::: 'a Set_Interval.ord_class.atLeastAtMost :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a set Groups.one_class.one :::: 'a Groups.plus_class.plus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Groups.minus_class.minus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Groups_Big.comm_monoid_add_class.sum :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b ###defs class zero = fixes zero :: 'a ("0") class one = fixes one :: 'a ("1") class plus = fixes plus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "+" 65) class minus = fixes minus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "-" 65)
###output ?H1 (\<lambda>y_0. ?H2 (x_1 y_0) (x_1 (?H3 y_0 ?H4))) (?H5 x_2 x_3) = (if x_2 \<le> x_3 then ?H2 (x_1 x_2) (x_1 (?H3 x_3 ?H4)) else ?H6)###end
Transfer
Transfer.transfer_raw(157)
null
bi_total ?A \<Longrightarrow> bi_total ?B \<Longrightarrow> Transfer.Rel (rel_fun (rel_fun ?A (rel_fun ?B (=))) (=)) right_total right_total
\<lbrakk> ?H1 x_1; ?H1 x_2\<rbrakk> \<Longrightarrow> ?H2 (?H3 (?H3 x_1 (?H3 x_2 (=))) (=)) ?H4 ?H4
[ "Transfer.right_total", "BNF_Def.rel_fun", "Transfer.Rel", "Transfer.bi_total" ]
[ "('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> bool", "('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> ('c \\<Rightarrow> 'd \\<Rightarrow> bool) \\<Rightarrow> ('a \\<Rightarrow> 'c) \\<Rightarrow> ('b \\<Rightarrow> 'd) \\<Rightarrow> bool", "('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> 'a \\<Rightarrow> 'b \\<Rightarrow> bool", "('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> bool" ]
[ "definition right_total :: \"('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> bool\"\n where \"right_total R \\<longleftrightarrow> (\\<forall>y. \\<exists>x. R x y)\"", "definition\n rel_fun :: \"('a \\<Rightarrow> 'c \\<Rightarrow> bool) \\<Rightarrow> ('b \\<Rightarrow> 'd \\<Rightarrow> bool) \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> ('c \\<Rightarrow> 'd) \\<Rightarrow> bool\"\nwhere\n \"rel_fun A B = (\\<lambda>f g. \\<forall>x y. A x y \\<longrightarrow> B (f x) (g y))\"", "definition Rel :: \"('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> 'a \\<Rightarrow> 'b \\<Rightarrow> bool\"\n where \"Rel r \\<equiv> r\"", "definition bi_total :: \"('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> bool\"\n where \"bi_total R \\<longleftrightarrow> (\\<forall>x. \\<exists>y. R x y) \\<and> (\\<forall>y. \\<exists>x. R x y)\"" ]
template
###lemma bi_total ?A \<Longrightarrow> bi_total ?B \<Longrightarrow> Transfer.Rel (rel_fun (rel_fun ?A (rel_fun ?B (=))) (=)) right_total right_total ###symbols Transfer.right_total :::: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool BNF_Def.rel_fun :::: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('c \<Rightarrow> 'd \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'c) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> bool Transfer.Rel :::: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool Transfer.bi_total :::: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool ###defs definition right_total :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool" where "right_total R \<longleftrightarrow> (\<forall>y. \<exists>x. R x y)" definition rel_fun :: "('a \<Rightarrow> 'c \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'd \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('c \<Rightarrow> 'd) \<Rightarrow> bool" where "rel_fun A B = (\<lambda>f g. \<forall>x y. A x y \<longrightarrow> B (f x) (g y))" definition Rel :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool" where "Rel r \<equiv> r" definition bi_total :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool" where "bi_total R \<longleftrightarrow> (\<forall>x. \<exists>y. R x y) \<and> (\<forall>y. \<exists>x. R x y)"
###output \<lbrakk> ?H1 x_1; ?H1 x_2\<rbrakk> \<Longrightarrow> ?H2 (?H3 (?H3 x_1 (?H3 x_2 (=))) (=)) ?H4 ?H4###end
HOL
HOL.no_atp(67)
null
?P (case ?prod of (x, xa) \<Rightarrow> ?f x xa) = (\<nexists>x1 x2. ?prod = (x1, x2) \<and> \<not> ?P (?f x1 x2))
x_1 (?H1 x_2 x_3) = (\<nexists>y_0 y_1. x_3 = (y_0, y_1) \<and> \<not> x_1 (x_2 y_0 y_1))
[ "Product_Type.prod.case_prod" ]
[ "('a \\<Rightarrow> 'b \\<Rightarrow> 'c) \\<Rightarrow> 'a \\<times> 'b \\<Rightarrow> 'c" ]
[ "definition \"prod = {f. \\<exists>a b. f = Pair_Rep (a::'a) (b::'b)}\"" ]
template
###lemma ?P (case ?prod of (x, xa) \<Rightarrow> ?f x xa) = (\<nexists>x1 x2. ?prod = (x1, x2) \<and> \<not> ?P (?f x1 x2)) ###symbols Product_Type.prod.case_prod :::: ('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c ###defs definition "prod = {f. \<exists>a b. f = Pair_Rep (a::'a) (b::'b)}"
###output x_1 (?H1 x_2 x_3) = (\<nexists>y_0 y_1. x_3 = (y_0, y_1) \<and> \<not> x_1 (x_2 y_0 y_1))###end
Analysis/Elementary_Topology
Elementary_Topology.seq_compact_Int_closed
lemma seq_compact_Int_closed: assumes "seq_compact S" and "closed T" shows "seq_compact (S \<inter> T)"
seq_compact ?S \<Longrightarrow> closed ?T \<Longrightarrow> seq_compact (?S \<inter> ?T)
\<lbrakk> ?H1 x_1; ?H2 x_2\<rbrakk> \<Longrightarrow> ?H1 (?H3 x_1 x_2)
[ "Set.inter", "Topological_Spaces.topological_space_class.closed", "Elementary_Topology.seq_compact" ]
[ "'a set \\<Rightarrow> 'a set \\<Rightarrow> 'a set", "'a set \\<Rightarrow> bool", "'a set \\<Rightarrow> bool" ]
[ "abbreviation inter :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> 'a set\" (infixl \"\\<inter>\" 70)\n where \"(\\<inter>) \\<equiv> inf\"", "class topological_space = \"open\" +\n assumes open_UNIV [simp, intro]: \"open UNIV\"\n assumes open_Int [intro]: \"open S \\<Longrightarrow> open T \\<Longrightarrow> open (S \\<inter> T)\"\n assumes open_Union [intro]: \"\\<forall>S\\<in>K. open S \\<Longrightarrow> open (\\<Union>K)\"\nbegin" ]
template
###lemma seq_compact ?S \<Longrightarrow> closed ?T \<Longrightarrow> seq_compact (?S \<inter> ?T) ###symbols Set.inter :::: 'a set \<Rightarrow> 'a set \<Rightarrow> 'a set Topological_Spaces.topological_space_class.closed :::: 'a set \<Rightarrow> bool Elementary_Topology.seq_compact :::: 'a set \<Rightarrow> bool ###defs abbreviation inter :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "\<inter>" 70) where "(\<inter>) \<equiv> inf" class topological_space = "open" + assumes open_UNIV [simp, intro]: "open UNIV" assumes open_Int [intro]: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<inter> T)" assumes open_Union [intro]: "\<forall>S\<in>K. open S \<Longrightarrow> open (\<Union>K)" begin
###output \<lbrakk> ?H1 x_1; ?H2 x_2\<rbrakk> \<Longrightarrow> ?H1 (?H3 x_1 x_2)###end
UNITY/Comp/Progress
Progress.atLeast_ensures
lemma atLeast_ensures: "FF \<in> atLeast (k - 1) ensures atLeast (k::int)"
FF \<in> { ?k - 1..} ensures { ?k..}
?H1 \<in> ?H2 (?H3 (?H4 x_1 ?H5)) (?H3 x_1)
[ "Groups.one_class.one", "Groups.minus_class.minus", "Set_Interval.ord_class.atLeast", "WFair.ensures", "Progress.FF" ]
[ "'a", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a set", "'a set \\<Rightarrow> 'a set \\<Rightarrow> 'a program set", "int program" ]
[ "class one =\n fixes one :: 'a (\"1\")", "class minus =\n fixes minus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"-\" 65)", "definition\n ensures :: \"['a set, 'a set] => 'a program set\" (infixl \"ensures\" 60) where\n \"A ensures B == (A-B co A \\<union> B) \\<inter> transient (A-B)\"" ]
template
###lemma FF \<in> { ?k - 1..} ensures { ?k..} ###symbols Groups.one_class.one :::: 'a Groups.minus_class.minus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Set_Interval.ord_class.atLeast :::: 'a \<Rightarrow> 'a set WFair.ensures :::: 'a set \<Rightarrow> 'a set \<Rightarrow> 'a program set Progress.FF :::: int program ###defs class one = fixes one :: 'a ("1") class minus = fixes minus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "-" 65) definition ensures :: "['a set, 'a set] => 'a program set" (infixl "ensures" 60) where "A ensures B == (A-B co A \<union> B) \<inter> transient (A-B)"
###output ?H1 \<in> ?H2 (?H3 (?H4 x_1 ?H5)) (?H3 x_1)###end
Bali/DefiniteAssignmentCorrect
DefiniteAssignmentCorrect.union_subseteqIl
lemma union_subseteqIl: "\<lbrakk>A \<union> B \<subseteq> C; A' \<subseteq> A\<rbrakk> \<Longrightarrow> A' \<union> B \<subseteq> C"
?A \<union> ?B \<subseteq> ?C \<Longrightarrow> ?A' \<subseteq> ?A \<Longrightarrow> ?A' \<union> ?B \<subseteq> ?C
\<lbrakk> ?H1 (?H2 x_1 x_2) x_3; ?H1 x_4 x_1\<rbrakk> \<Longrightarrow> ?H1 (?H2 x_4 x_2) x_3
[ "Set.union", "Set.subset_eq" ]
[ "'a set \\<Rightarrow> 'a set \\<Rightarrow> 'a set", "'a set \\<Rightarrow> 'a set \\<Rightarrow> bool" ]
[ "abbreviation union :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> 'a set\" (infixl \"\\<union>\" 65)\n where \"union \\<equiv> sup\"", "abbreviation subset_eq :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> bool\"\n where \"subset_eq \\<equiv> less_eq\"" ]
template
###lemma ?A \<union> ?B \<subseteq> ?C \<Longrightarrow> ?A' \<subseteq> ?A \<Longrightarrow> ?A' \<union> ?B \<subseteq> ?C ###symbols Set.union :::: 'a set \<Rightarrow> 'a set \<Rightarrow> 'a set Set.subset_eq :::: 'a set \<Rightarrow> 'a set \<Rightarrow> bool ###defs abbreviation union :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "\<union>" 65) where "union \<equiv> sup" abbreviation subset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where "subset_eq \<equiv> less_eq"
###output \<lbrakk> ?H1 (?H2 x_1 x_2) x_3; ?H1 x_4 x_1\<rbrakk> \<Longrightarrow> ?H1 (?H2 x_4 x_2) x_3###end
Transitive_Closure
Transitive_Closure.finite_trancl_ntranl
lemma finite_trancl_ntranl: "finite R \<Longrightarrow> trancl R = ntrancl (card R - 1) R"
finite ?R \<Longrightarrow> ?R\<^sup>+ = ntrancl (card ?R - 1) ?R
?H1 x_1 \<Longrightarrow> ?H2 x_1 = ?H3 (?H4 (?H5 x_1) ?H6) x_1
[ "Groups.one_class.one", "Finite_Set.card", "Groups.minus_class.minus", "Transitive_Closure.ntrancl", "Transitive_Closure.trancl", "Finite_Set.finite" ]
[ "'a", "'a set \\<Rightarrow> nat", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "nat \\<Rightarrow> ('a \\<times> 'a) set \\<Rightarrow> ('a \\<times> 'a) set", "('a \\<times> 'a) set \\<Rightarrow> ('a \\<times> 'a) set", "'a set \\<Rightarrow> bool" ]
[ "class one =\n fixes one :: 'a (\"1\")", "class minus =\n fixes minus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"-\" 65)", "definition ntrancl :: \"nat \\<Rightarrow> ('a \\<times> 'a) set \\<Rightarrow> ('a \\<times> 'a) set\"\n where \"ntrancl n R = (\\<Union>i\\<in>{i. 0 < i \\<and> i \\<le> Suc n}. R ^^ i)\"", "inductive_set trancl :: \"('a \\<times> 'a) set \\<Rightarrow> ('a \\<times> 'a) set\" (\"(_\\<^sup>+)\" [1000] 999)\n for r :: \"('a \\<times> 'a) set\"\n where\n r_into_trancl [intro, Pure.intro]: \"(a, b) \\<in> r \\<Longrightarrow> (a, b) \\<in> r\\<^sup>+\"\n | trancl_into_trancl [Pure.intro]: \"(a, b) \\<in> r\\<^sup>+ \\<Longrightarrow> (b, c) \\<in> r \\<Longrightarrow> (a, c) \\<in> r\\<^sup>+\"", "class finite =\n assumes finite_UNIV: \"finite (UNIV :: 'a set)\"\nbegin" ]
template
###lemma finite ?R \<Longrightarrow> ?R\<^sup>+ = ntrancl (card ?R - 1) ?R ###symbols Groups.one_class.one :::: 'a Finite_Set.card :::: 'a set \<Rightarrow> nat Groups.minus_class.minus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Transitive_Closure.ntrancl :::: nat \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set Transitive_Closure.trancl :::: ('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set Finite_Set.finite :::: 'a set \<Rightarrow> bool ###defs class one = fixes one :: 'a ("1") class minus = fixes minus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "-" 65) definition ntrancl :: "nat \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set" where "ntrancl n R = (\<Union>i\<in>{i. 0 < i \<and> i \<le> Suc n}. R ^^ i)" inductive_set trancl :: "('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set" ("(_\<^sup>+)" [1000] 999) for r :: "('a \<times> 'a) set" where r_into_trancl [intro, Pure.intro]: "(a, b) \<in> r \<Longrightarrow> (a, b) \<in> r\<^sup>+" | trancl_into_trancl [Pure.intro]: "(a, b) \<in> r\<^sup>+ \<Longrightarrow> (b, c) \<in> r \<Longrightarrow> (a, c) \<in> r\<^sup>+" class finite = assumes finite_UNIV: "finite (UNIV :: 'a set)" begin
###output ?H1 x_1 \<Longrightarrow> ?H2 x_1 = ?H3 (?H4 (?H5 x_1) ?H6) x_1###end
HOLCF/IOA/Pred
Predicate.not_is_empty_single
null
\<not> Predicate.is_empty (Predicate.single ?x)
\<not> ?H1 (?H2 x_1)
[ "Predicate.single", "Predicate.is_empty" ]
[ "'a \\<Rightarrow> 'a Predicate.pred", "'a Predicate.pred \\<Rightarrow> bool" ]
[ "definition single :: \"'a \\<Rightarrow> 'a pred\" where\n \"single x = Pred ((=) x)\"", "definition is_empty :: \"'a pred \\<Rightarrow> bool\" where\n \"is_empty A \\<longleftrightarrow> A = \\<bottom>\"" ]
template
###lemma \<not> Predicate.is_empty (Predicate.single ?x) ###symbols Predicate.single :::: 'a \<Rightarrow> 'a Predicate.pred Predicate.is_empty :::: 'a Predicate.pred \<Rightarrow> bool ###defs definition single :: "'a \<Rightarrow> 'a pred" where "single x = Pred ((=) x)" definition is_empty :: "'a pred \<Rightarrow> bool" where "is_empty A \<longleftrightarrow> A = \<bottom>"
###output \<not> ?H1 (?H2 x_1)###end
Library/Extended_Nat
Extended_Nat.idiff_infinity_right
lemma idiff_infinity_right [simp, code]: "enat a - \<infinity> = 0"
enat ?a - \<infinity> = 0
?H1 (?H2 x_1) ?H3 = ?H4
[ "Groups.zero_class.zero", "Extended_Nat.infinity_class.infinity", "Extended_Nat.enat", "Groups.minus_class.minus" ]
[ "'a", "'a", "nat \\<Rightarrow> enat", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a" ]
[ "class zero =\n fixes zero :: 'a (\"0\")", "class infinity =\n fixes infinity :: \"'a\" (\"\\<infinity>\")", "definition enat :: \"nat \\<Rightarrow> enat\" where\n \"enat n = Abs_enat (Some n)\"", "class minus =\n fixes minus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"-\" 65)" ]
template
###lemma enat ?a - \<infinity> = 0 ###symbols Groups.zero_class.zero :::: 'a Extended_Nat.infinity_class.infinity :::: 'a Extended_Nat.enat :::: nat \<Rightarrow> enat Groups.minus_class.minus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a ###defs class zero = fixes zero :: 'a ("0") class infinity = fixes infinity :: "'a" ("\<infinity>") definition enat :: "nat \<Rightarrow> enat" where "enat n = Abs_enat (Some n)" class minus = fixes minus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "-" 65)
###output ?H1 (?H2 x_1) ?H3 = ?H4###end
Library/Word
Word.unat_drop_bit_eq
lemma unat_drop_bit_eq: \<open>unat (drop_bit n w) = drop_bit n (unat w)\<close>
unat (drop_bit ?n ?w) = drop_bit ?n (unat ?w)
?H1 (?H2 x_1 x_2) = ?H2 x_1 (?H1 x_2)
[ "Bit_Operations.semiring_bit_operations_class.drop_bit", "Word.unat" ]
[ "nat \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a word \\<Rightarrow> nat" ]
[ "class semiring_bit_operations = semiring_bits +\n fixes \"and\" :: \\<open>'a \\<Rightarrow> 'a \\<Rightarrow> 'a\\<close> (infixr \\<open>AND\\<close> 64)\n and or :: \\<open>'a \\<Rightarrow> 'a \\<Rightarrow> 'a\\<close> (infixr \\<open>OR\\<close> 59)\n and xor :: \\<open>'a \\<Rightarrow> 'a \\<Rightarrow> 'a\\<close> (infixr \\<open>XOR\\<close> 59)\n and mask :: \\<open>nat \\<Rightarrow> 'a\\<close>\n and set_bit :: \\<open>nat \\<Rightarrow> 'a \\<Rightarrow> 'a\\<close>\n and unset_bit :: \\<open>nat \\<Rightarrow> 'a \\<Rightarrow> 'a\\<close>\n and flip_bit :: \\<open>nat \\<Rightarrow> 'a \\<Rightarrow> 'a\\<close>\n and push_bit :: \\<open>nat \\<Rightarrow> 'a \\<Rightarrow> 'a\\<close>\n and drop_bit :: \\<open>nat \\<Rightarrow> 'a \\<Rightarrow> 'a\\<close>\n and take_bit :: \\<open>nat \\<Rightarrow> 'a \\<Rightarrow> 'a\\<close>\n assumes and_rec: \\<open>a AND b = of_bool (odd a \\<and> odd b) + 2 * ((a div 2) AND (b div 2))\\<close>\n and or_rec: \\<open>a OR b = of_bool (odd a \\<or> odd b) + 2 * ((a div 2) OR (b div 2))\\<close>\n and xor_rec: \\<open>a XOR b = of_bool (odd a \\<noteq> odd b) + 2 * ((a div 2) XOR (b div 2))\\<close>\n and mask_eq_exp_minus_1: \\<open>mask n = 2 ^ n - 1\\<close>\n and set_bit_eq_or: \\<open>set_bit n a = a OR push_bit n 1\\<close>\n and unset_bit_eq_or_xor: \\<open>unset_bit n a = (a OR push_bit n 1) XOR push_bit n 1\\<close>\n and flip_bit_eq_xor: \\<open>flip_bit n a = a XOR push_bit n 1\\<close>\n and push_bit_eq_mult: \\<open>push_bit n a = a * 2 ^ n\\<close>\n and drop_bit_eq_div: \\<open>drop_bit n a = a div 2 ^ n\\<close>\n and take_bit_eq_mod: \\<open>take_bit n a = a mod 2 ^ n\\<close>\nbegin", "abbreviation unat :: \\<open>'a::len word \\<Rightarrow> nat\\<close>\n where \\<open>unat \\<equiv> unsigned\\<close>" ]
template
###lemma unat (drop_bit ?n ?w) = drop_bit ?n (unat ?w) ###symbols Bit_Operations.semiring_bit_operations_class.drop_bit :::: nat \<Rightarrow> 'a \<Rightarrow> 'a Word.unat :::: 'a word \<Rightarrow> nat ###defs class semiring_bit_operations = semiring_bits + fixes "and" :: \<open>'a \<Rightarrow> 'a \<Rightarrow> 'a\<close> (infixr \<open>AND\<close> 64) and or :: \<open>'a \<Rightarrow> 'a \<Rightarrow> 'a\<close> (infixr \<open>OR\<close> 59) and xor :: \<open>'a \<Rightarrow> 'a \<Rightarrow> 'a\<close> (infixr \<open>XOR\<close> 59) and mask :: \<open>nat \<Rightarrow> 'a\<close> and set_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close> and unset_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close> and flip_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close> and push_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close> and drop_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close> and take_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close> assumes and_rec: \<open>a AND b = of_bool (odd a \<and> odd b) + 2 * ((a div 2) AND (b div 2))\<close> and or_rec: \<open>a OR b = of_bool (odd a \<or> odd b) + 2 * ((a div 2) OR (b div 2))\<close> and xor_rec: \<open>a XOR b = of_bool (odd a \<noteq> odd b) + 2 * ((a div 2) XOR (b div 2))\<close> and mask_eq_exp_minus_1: \<open>mask n = 2 ^ n - 1\<close> and set_bit_eq_or: \<open>set_bit n a = a OR push_bit n 1\<close> and unset_bit_eq_or_xor: \<open>unset_bit n a = (a OR push_bit n 1) XOR push_bit n 1\<close> and flip_bit_eq_xor: \<open>flip_bit n a = a XOR push_bit n 1\<close> and push_bit_eq_mult: \<open>push_bit n a = a * 2 ^ n\<close> and drop_bit_eq_div: \<open>drop_bit n a = a div 2 ^ n\<close> and take_bit_eq_mod: \<open>take_bit n a = a mod 2 ^ n\<close> begin abbreviation unat :: \<open>'a::len word \<Rightarrow> nat\<close> where \<open>unat \<equiv> unsigned\<close>
###output ?H1 (?H2 x_1 x_2) = ?H2 x_1 (?H1 x_2)###end
Library/Extended_Real
Extended_Real.sums_ereal_positive
lemma sums_ereal_positive: fixes f :: "nat \<Rightarrow> ereal" assumes "\<And>i. 0 \<le> f i" shows "f sums (SUP n. \<Sum>i<n. f i)"
(\<And>i. 0 \<le> ?f i) \<Longrightarrow> ?f sums (SUP n. sum ?f {..<n})
(\<And>y_0. ?H1 \<le> x_1 y_0) \<Longrightarrow> ?H2 x_1 (?H3 (?H4 (\<lambda>y_1. ?H5 x_1 (?H6 y_1))))
[ "Set_Interval.ord_class.lessThan", "Groups_Big.comm_monoid_add_class.sum", "Set.range", "Complete_Lattices.Sup_class.Sup", "Series.sums", "Groups.zero_class.zero" ]
[ "'a \\<Rightarrow> 'a set", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'b set", "'a set \\<Rightarrow> 'a", "(nat \\<Rightarrow> 'a) \\<Rightarrow> 'a \\<Rightarrow> bool", "'a" ]
[ "abbreviation range :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'b set\" \\<comment> \\<open>of function\\<close>\n where \"range f \\<equiv> f ` UNIV\"", "class Sup =\n fixes Sup :: \"'a set \\<Rightarrow> 'a\" (\"\\<Squnion> _\" [900] 900)", "definition sums :: \"(nat \\<Rightarrow> 'a::{topological_space, comm_monoid_add}) \\<Rightarrow> 'a \\<Rightarrow> bool\"\n (infixr \"sums\" 80)\n where \"f sums s \\<longleftrightarrow> (\\<lambda>n. \\<Sum>i<n. f i) \\<longlonglongrightarrow> s\"", "class zero =\n fixes zero :: 'a (\"0\")" ]
template
###lemma (\<And>i. 0 \<le> ?f i) \<Longrightarrow> ?f sums (SUP n. sum ?f {..<n}) ###symbols Set_Interval.ord_class.lessThan :::: 'a \<Rightarrow> 'a set Groups_Big.comm_monoid_add_class.sum :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b Set.range :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'b set Complete_Lattices.Sup_class.Sup :::: 'a set \<Rightarrow> 'a Series.sums :::: (nat \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> bool Groups.zero_class.zero :::: 'a ###defs abbreviation range :: "('a \<Rightarrow> 'b) \<Rightarrow> 'b set" \<comment> \<open>of function\<close> where "range f \<equiv> f ` UNIV" class Sup = fixes Sup :: "'a set \<Rightarrow> 'a" ("\<Squnion> _" [900] 900) definition sums :: "(nat \<Rightarrow> 'a::{topological_space, comm_monoid_add}) \<Rightarrow> 'a \<Rightarrow> bool" (infixr "sums" 80) where "f sums s \<longleftrightarrow> (\<lambda>n. \<Sum>i<n. f i) \<longlonglongrightarrow> s" class zero = fixes zero :: 'a ("0")
###output (\<And>y_0. ?H1 \<le> x_1 y_0) \<Longrightarrow> ?H2 x_1 (?H3 (?H4 (\<lambda>y_1. ?H5 x_1 (?H6 y_1))))###end
Matrix_LP/SparseMatrix
SparseMatrix.sorted_sp_simps(4)
null
sorted_spmat (?a # ?as) = (sorted_spvec (snd ?a) \<and> sorted_spmat ?as)
?H1 (?H2 x_1 x_2) = (?H3 (?H4 x_1) \<and> ?H1 x_2)
[ "Product_Type.prod.snd", "SparseMatrix.sorted_spvec", "List.list.Cons", "SparseMatrix.sorted_spmat" ]
[ "'a \\<times> 'b \\<Rightarrow> 'b", "(nat \\<times> 'a) list \\<Rightarrow> bool", "'a \\<Rightarrow> 'a list \\<Rightarrow> 'a list", "(nat \\<times> (nat \\<times> 'a) list) list \\<Rightarrow> bool" ]
[ "definition \"prod = {f. \\<exists>a b. f = Pair_Rep (a::'a) (b::'b)}\"", "primrec sorted_spvec :: \"'a spvec \\<Rightarrow> bool\"\nwhere\n \"sorted_spvec [] = True\"\n| sorted_spvec_step: \"sorted_spvec (a#as) = (case as of [] \\<Rightarrow> True | b#bs \\<Rightarrow> ((fst a < fst b) & (sorted_spvec as)))\"", "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "primrec sorted_spmat :: \"'a spmat \\<Rightarrow> bool\"\nwhere\n \"sorted_spmat [] = True\"\n| \"sorted_spmat (a#as) = ((sorted_spvec (snd a)) & (sorted_spmat as))\"" ]
template
###lemma sorted_spmat (?a # ?as) = (sorted_spvec (snd ?a) \<and> sorted_spmat ?as) ###symbols Product_Type.prod.snd :::: 'a \<times> 'b \<Rightarrow> 'b SparseMatrix.sorted_spvec :::: (nat \<times> 'a) list \<Rightarrow> bool List.list.Cons :::: 'a \<Rightarrow> 'a list \<Rightarrow> 'a list SparseMatrix.sorted_spmat :::: (nat \<times> (nat \<times> 'a) list) list \<Rightarrow> bool ###defs definition "prod = {f. \<exists>a b. f = Pair_Rep (a::'a) (b::'b)}" primrec sorted_spvec :: "'a spvec \<Rightarrow> bool" where "sorted_spvec [] = True" | sorted_spvec_step: "sorted_spvec (a#as) = (case as of [] \<Rightarrow> True | b#bs \<Rightarrow> ((fst a < fst b) & (sorted_spvec as)))" datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" primrec sorted_spmat :: "'a spmat \<Rightarrow> bool" where "sorted_spmat [] = True" | "sorted_spmat (a#as) = ((sorted_spvec (snd a)) & (sorted_spmat as))"
###output ?H1 (?H2 x_1 x_2) = (?H3 (?H4 x_1) \<and> ?H1 x_2)###end
Groups
Groups_List.prod_list_transfer
null
?A (1:: ?'a) (1:: ?'b) \<Longrightarrow> rel_fun ?A (rel_fun ?A ?A) (*) (*) \<Longrightarrow> rel_fun (list_all2 ?A) ?A prod_list prod_list
\<lbrakk>x_1 ?H1 ?H1; ?H2 x_1 (?H2 x_1 x_1) ?H3 ?H3\<rbrakk> \<Longrightarrow> ?H2 (?H4 x_1) x_1 ?H5 ?H5
[ "Groups_List.monoid_mult_class.prod_list", "List.list.list_all2", "Groups.times_class.times", "BNF_Def.rel_fun", "Groups.one_class.one" ]
[ "'a list \\<Rightarrow> 'a", "('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> 'a list \\<Rightarrow> 'b list \\<Rightarrow> bool", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> ('c \\<Rightarrow> 'd \\<Rightarrow> bool) \\<Rightarrow> ('a \\<Rightarrow> 'c) \\<Rightarrow> ('b \\<Rightarrow> 'd) \\<Rightarrow> bool", "'a" ]
[ "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "class times =\n fixes times :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"*\" 70)", "definition\n rel_fun :: \"('a \\<Rightarrow> 'c \\<Rightarrow> bool) \\<Rightarrow> ('b \\<Rightarrow> 'd \\<Rightarrow> bool) \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> ('c \\<Rightarrow> 'd) \\<Rightarrow> bool\"\nwhere\n \"rel_fun A B = (\\<lambda>f g. \\<forall>x y. A x y \\<longrightarrow> B (f x) (g y))\"", "class one =\n fixes one :: 'a (\"1\")" ]
template
###lemma ?A (1:: ?'a) (1:: ?'b) \<Longrightarrow> rel_fun ?A (rel_fun ?A ?A) (*) (*) \<Longrightarrow> rel_fun (list_all2 ?A) ?A prod_list prod_list ###symbols Groups_List.monoid_mult_class.prod_list :::: 'a list \<Rightarrow> 'a List.list.list_all2 :::: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'b list \<Rightarrow> bool Groups.times_class.times :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a BNF_Def.rel_fun :::: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('c \<Rightarrow> 'd \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'c) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> bool Groups.one_class.one :::: 'a ###defs datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" class times = fixes times :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "*" 70) definition rel_fun :: "('a \<Rightarrow> 'c \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'd \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('c \<Rightarrow> 'd) \<Rightarrow> bool" where "rel_fun A B = (\<lambda>f g. \<forall>x y. A x y \<longrightarrow> B (f x) (g y))" class one = fixes one :: 'a ("1")
###output \<lbrakk>x_1 ?H1 ?H1; ?H2 x_1 (?H2 x_1 x_1) ?H3 ?H3\<rbrakk> \<Longrightarrow> ?H2 (?H4 x_1) x_1 ?H5 ?H5###end
Analysis/Product_Vector
Product_Vector.norm_commute
lemma norm_commute: "norm (x,y) = norm (y,x)"
norm (?x, ?y) = norm (?y, ?x)
?H1 (x_1, x_2) = ?H1 (x_2, x_1)
[ "Real_Vector_Spaces.norm_class.norm" ]
[ "'a \\<Rightarrow> real" ]
[ "class norm =\n fixes norm :: \"'a \\<Rightarrow> real\"" ]
template
###lemma norm (?x, ?y) = norm (?y, ?x) ###symbols Real_Vector_Spaces.norm_class.norm :::: 'a \<Rightarrow> real ###defs class norm = fixes norm :: "'a \<Rightarrow> real"
###output ?H1 (x_1, x_2) = ?H1 (x_2, x_1)###end
Computational_Algebra/Nth_Powers
Nth_Powers.nth_root_nat_aux2(1)
lemma nth_root_nat_aux2: assumes "k > 0" shows "finite {m::nat. m ^ k \<le> n}" "{m::nat. m ^ k \<le> n} \<noteq> {}"
0 < ?k \<Longrightarrow> finite {m. m ^ ?k \<le> ?n}
?H1 < x_1 \<Longrightarrow> ?H2 (?H3 (\<lambda>y_0. ?H4 y_0 x_1 \<le> x_2))
[ "Power.power_class.power", "Set.Collect", "Finite_Set.finite", "Groups.zero_class.zero" ]
[ "'a \\<Rightarrow> nat \\<Rightarrow> 'a", "('a \\<Rightarrow> bool) \\<Rightarrow> 'a set", "'a set \\<Rightarrow> bool", "'a" ]
[ "primrec power :: \"'a \\<Rightarrow> nat \\<Rightarrow> 'a\" (infixr \"^\" 80)\n where\n power_0: \"a ^ 0 = 1\"\n | power_Suc: \"a ^ Suc n = a * a ^ n\"", "class finite =\n assumes finite_UNIV: \"finite (UNIV :: 'a set)\"\nbegin", "class zero =\n fixes zero :: 'a (\"0\")" ]
template
###lemma 0 < ?k \<Longrightarrow> finite {m. m ^ ?k \<le> ?n} ###symbols Power.power_class.power :::: 'a \<Rightarrow> nat \<Rightarrow> 'a Set.Collect :::: ('a \<Rightarrow> bool) \<Rightarrow> 'a set Finite_Set.finite :::: 'a set \<Rightarrow> bool Groups.zero_class.zero :::: 'a ###defs primrec power :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infixr "^" 80) where power_0: "a ^ 0 = 1" | power_Suc: "a ^ Suc n = a * a ^ n" class finite = assumes finite_UNIV: "finite (UNIV :: 'a set)" begin class zero = fixes zero :: 'a ("0")
###output ?H1 < x_1 \<Longrightarrow> ?H2 (?H3 (\<lambda>y_0. ?H4 y_0 x_1 \<le> x_2))###end
Complex_Analysis/Complex_Analysis
Complex_Analysis_Basics.holomorphic_on_prod
null
(\<And>i. i \<in> ?I \<Longrightarrow> ?f i holomorphic_on ?A) \<Longrightarrow> (\<lambda>x. \<Prod>i\<in> ?I. ?f i x) holomorphic_on ?A
(\<And>y_0. y_0 \<in> x_1 \<Longrightarrow> ?H1 (x_2 y_0) x_3) \<Longrightarrow> ?H1 (\<lambda>y_1. ?H2 (\<lambda>y_2. x_2 y_2 y_1) x_1) x_3
[ "Groups_Big.comm_monoid_mult_class.prod", "Complex_Analysis_Basics.holomorphic_on" ]
[ "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b", "(complex \\<Rightarrow> complex) \\<Rightarrow> complex set \\<Rightarrow> bool" ]
[]
template
###lemma (\<And>i. i \<in> ?I \<Longrightarrow> ?f i holomorphic_on ?A) \<Longrightarrow> (\<lambda>x. \<Prod>i\<in> ?I. ?f i x) holomorphic_on ?A ###symbols Groups_Big.comm_monoid_mult_class.prod :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b Complex_Analysis_Basics.holomorphic_on :::: (complex \<Rightarrow> complex) \<Rightarrow> complex set \<Rightarrow> bool ###defs
###output (\<And>y_0. y_0 \<in> x_1 \<Longrightarrow> ?H1 (x_2 y_0) x_3) \<Longrightarrow> ?H1 (\<lambda>y_1. ?H2 (\<lambda>y_2. x_2 y_2 y_1) x_1) x_3###end
Nonstandard_Analysis/NSA
NSA.HFinite_Infinitesimal_not_zero
lemma HFinite_Infinitesimal_not_zero: "x \<in> HFinite-Infinitesimal \<Longrightarrow> x \<noteq> 0"
?x \<in> HFinite - Infinitesimal \<Longrightarrow> ?x \<noteq> 0
x_1 \<in> ?H1 ?H2 ?H3 \<Longrightarrow> x_1 \<noteq> ?H4
[ "Groups.zero_class.zero", "NSA.Infinitesimal", "NSA.HFinite", "Groups.minus_class.minus" ]
[ "'a", "'a star set", "'a star set", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a" ]
[ "class zero =\n fixes zero :: 'a (\"0\")", "definition Infinitesimal :: \"('a::real_normed_vector) star set\"\n where \"Infinitesimal = {x. \\<forall>r \\<in> Reals. 0 < r \\<longrightarrow> hnorm x < r}\"", "definition HFinite :: \"('a::real_normed_vector) star set\"\n where \"HFinite = {x. \\<exists>r \\<in> Reals. hnorm x < r}\"", "class minus =\n fixes minus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"-\" 65)" ]
template
###lemma ?x \<in> HFinite - Infinitesimal \<Longrightarrow> ?x \<noteq> 0 ###symbols Groups.zero_class.zero :::: 'a NSA.Infinitesimal :::: 'a star set NSA.HFinite :::: 'a star set Groups.minus_class.minus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a ###defs class zero = fixes zero :: 'a ("0") definition Infinitesimal :: "('a::real_normed_vector) star set" where "Infinitesimal = {x. \<forall>r \<in> Reals. 0 < r \<longrightarrow> hnorm x < r}" definition HFinite :: "('a::real_normed_vector) star set" where "HFinite = {x. \<exists>r \<in> Reals. hnorm x < r}" class minus = fixes minus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "-" 65)
###output x_1 \<in> ?H1 ?H2 ?H3 \<Longrightarrow> x_1 \<noteq> ?H4###end
List
List.split_list_last
lemma split_list_last: "x \<in> set xs \<Longrightarrow> \<exists>ys zs. xs = ys @ x # zs \<and> x \<notin> set zs"
?x \<in> set ?xs \<Longrightarrow> \<exists>ys zs. ?xs = ys @ ?x # zs \<and> ?x \<notin> set zs
x_1 \<in> ?H1 x_2 \<Longrightarrow> \<exists>y_0 y_1. x_2 = ?H2 y_0 (?H3 x_1 y_1) \<and> ?H4 x_1 (?H1 y_1)
[ "Set.not_member", "List.list.Cons", "List.append", "List.list.set" ]
[ "'a \\<Rightarrow> 'a set \\<Rightarrow> bool", "'a \\<Rightarrow> 'a list \\<Rightarrow> 'a list", "'a list \\<Rightarrow> 'a list \\<Rightarrow> 'a list", "'a list \\<Rightarrow> 'a set" ]
[ "abbreviation not_member\n where \"not_member x A \\<equiv> \\<not> (x \\<in> A)\" \\<comment> \\<open>non-membership\\<close>", "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "primrec append :: \"'a list \\<Rightarrow> 'a list \\<Rightarrow> 'a list\" (infixr \"@\" 65) where\nappend_Nil: \"[] @ ys = ys\" |\nappend_Cons: \"(x#xs) @ ys = x # xs @ ys\"", "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"" ]
template
###lemma ?x \<in> set ?xs \<Longrightarrow> \<exists>ys zs. ?xs = ys @ ?x # zs \<and> ?x \<notin> set zs ###symbols Set.not_member :::: 'a \<Rightarrow> 'a set \<Rightarrow> bool List.list.Cons :::: 'a \<Rightarrow> 'a list \<Rightarrow> 'a list List.append :::: 'a list \<Rightarrow> 'a list \<Rightarrow> 'a list List.list.set :::: 'a list \<Rightarrow> 'a set ###defs abbreviation not_member where "not_member x A \<equiv> \<not> (x \<in> A)" \<comment> \<open>non-membership\<close> datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" primrec append :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" (infixr "@" 65) where append_Nil: "[] @ ys = ys" | append_Cons: "(x#xs) @ ys = x # xs @ ys" datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []"
###output x_1 \<in> ?H1 x_2 \<Longrightarrow> \<exists>y_0 y_1. x_2 = ?H2 y_0 (?H3 x_1 y_1) \<and> ?H4 x_1 (?H1 y_1)###end
IMP/Sec_Type_Expr
Sec_Type_Expr.bval_eq_if_eq_le
lemma bval_eq_if_eq_le: "\<lbrakk> s\<^sub>1 = s\<^sub>2 (\<le> l); sec b \<le> l \<rbrakk> \<Longrightarrow> bval b s\<^sub>1 = bval b s\<^sub>2"
?s\<^sub>1 = ?s\<^sub>2 (\<le> ?l) \<Longrightarrow> sec ?b \<le> ?l \<Longrightarrow> bval ?b ?s\<^sub>1 = bval ?b ?s\<^sub>2
\<lbrakk> ?H1 x_1 x_2 x_3; ?H2 x_4 \<le> x_3\<rbrakk> \<Longrightarrow> ?H3 x_4 x_1 = ?H3 x_4 x_2
[ "BExp.bval", "Sec_Type_Expr.sec_class.sec", "Sec_Type_Expr.eq_le" ]
[ "bexp \\<Rightarrow> (char list \\<Rightarrow> int) \\<Rightarrow> bool", "'a \\<Rightarrow> nat", "(char list \\<Rightarrow> int) \\<Rightarrow> (char list \\<Rightarrow> int) \\<Rightarrow> nat \\<Rightarrow> bool" ]
[ "fun bval :: \"bexp \\<Rightarrow> state \\<Rightarrow> bool\" where\n\"bval (Bc v) s = v\" |\n\"bval (Not b) s = (\\<not> bval b s)\" |\n\"bval (And b\\<^sub>1 b\\<^sub>2) s = (bval b\\<^sub>1 s \\<and> bval b\\<^sub>2 s)\" |\n\"bval (Less a\\<^sub>1 a\\<^sub>2) s = (aval a\\<^sub>1 s < aval a\\<^sub>2 s)\"", "class sec =\nfixes sec :: \"'a \\<Rightarrow> nat\"", "abbreviation eq_le :: \"state \\<Rightarrow> state \\<Rightarrow> level \\<Rightarrow> bool\"\n (\"(_ = _ '(\\<le> _'))\" [51,51,0] 50) where\n\"s = s' (\\<le> l) == (\\<forall> x. sec x \\<le> l \\<longrightarrow> s x = s' x)\"" ]
template
###lemma ?s\<^sub>1 = ?s\<^sub>2 (\<le> ?l) \<Longrightarrow> sec ?b \<le> ?l \<Longrightarrow> bval ?b ?s\<^sub>1 = bval ?b ?s\<^sub>2 ###symbols BExp.bval :::: bexp \<Rightarrow> (char list \<Rightarrow> int) \<Rightarrow> bool Sec_Type_Expr.sec_class.sec :::: 'a \<Rightarrow> nat Sec_Type_Expr.eq_le :::: (char list \<Rightarrow> int) \<Rightarrow> (char list \<Rightarrow> int) \<Rightarrow> nat \<Rightarrow> bool ###defs fun bval :: "bexp \<Rightarrow> state \<Rightarrow> bool" where "bval (Bc v) s = v" | "bval (Not b) s = (\<not> bval b s)" | "bval (And b\<^sub>1 b\<^sub>2) s = (bval b\<^sub>1 s \<and> bval b\<^sub>2 s)" | "bval (Less a\<^sub>1 a\<^sub>2) s = (aval a\<^sub>1 s < aval a\<^sub>2 s)" class sec = fixes sec :: "'a \<Rightarrow> nat" abbreviation eq_le :: "state \<Rightarrow> state \<Rightarrow> level \<Rightarrow> bool" ("(_ = _ '(\<le> _'))" [51,51,0] 50) where "s = s' (\<le> l) == (\<forall> x. sec x \<le> l \<longrightarrow> s x = s' x)"
###output \<lbrakk> ?H1 x_1 x_2 x_3; ?H2 x_4 \<le> x_3\<rbrakk> \<Longrightarrow> ?H3 x_4 x_1 = ?H3 x_4 x_2###end
Fun_Def
Fun_Def.nat_descend_induct
lemma nat_descend_induct [case_names base descend]: fixes P :: "nat \<Rightarrow> bool" assumes H1: "\<And>k. k > n \<Longrightarrow> P k" assumes H2: "\<And>k. k \<le> n \<Longrightarrow> (\<And>i. i > k \<Longrightarrow> P i) \<Longrightarrow> P k" shows "P m"
(\<And>k. ?n < k \<Longrightarrow> ?P k) \<Longrightarrow> (\<And>k. k \<le> ?n \<Longrightarrow> (\<And>i. k < i \<Longrightarrow> ?P i) \<Longrightarrow> ?P k) \<Longrightarrow> ?P ?m
\<lbrakk>\<And>y_0. x_1 < y_0 \<Longrightarrow> x_2 y_0; \<And>y_1. \<lbrakk>y_1 \<le> x_1; \<And>y_2. y_1 < y_2 \<Longrightarrow> x_2 y_2\<rbrakk> \<Longrightarrow> x_2 y_1\<rbrakk> \<Longrightarrow> x_2 x_3
[]
[]
[]
template
###lemma (\<And>k. ?n < k \<Longrightarrow> ?P k) \<Longrightarrow> (\<And>k. k \<le> ?n \<Longrightarrow> (\<And>i. k < i \<Longrightarrow> ?P i) \<Longrightarrow> ?P k) \<Longrightarrow> ?P ?m ###symbols ###defs
###output \<lbrakk>\<And>y_0. x_1 < y_0 \<Longrightarrow> x_2 y_0; \<And>y_1. \<lbrakk>y_1 \<le> x_1; \<And>y_2. y_1 < y_2 \<Longrightarrow> x_2 y_2\<rbrakk> \<Longrightarrow> x_2 y_1\<rbrakk> \<Longrightarrow> x_2 x_3###end
Meson
Meson.conj_forward
lemma conj_forward: "\<lbrakk>P'\<and>Q'; P' \<Longrightarrow> P; Q' \<Longrightarrow> Q \<rbrakk> \<Longrightarrow> P\<and>Q"
?P' \<and> ?Q' \<Longrightarrow> (?P' \<Longrightarrow> ?P) \<Longrightarrow> (?Q' \<Longrightarrow> ?Q) \<Longrightarrow> ?P \<and> ?Q
\<lbrakk>x_1 \<and> x_2; x_1 \<Longrightarrow> x_3; x_2 \<Longrightarrow> x_4\<rbrakk> \<Longrightarrow> x_3 \<and> x_4
[]
[]
[]
template
###lemma ?P' \<and> ?Q' \<Longrightarrow> (?P' \<Longrightarrow> ?P) \<Longrightarrow> (?Q' \<Longrightarrow> ?Q) \<Longrightarrow> ?P \<and> ?Q ###symbols ###defs
###output \<lbrakk>x_1 \<and> x_2; x_1 \<Longrightarrow> x_3; x_2 \<Longrightarrow> x_4\<rbrakk> \<Longrightarrow> x_3 \<and> x_4###end
Complex_Analysis/Complex_Residues
Complex_Residues.residue_lmul
lemma residue_lmul: assumes "open s" "z \<in> s" and f_holo: "f holomorphic_on s - {z}" shows "residue (\<lambda>z. c * (f z)) z= c * residue f z"
open ?s \<Longrightarrow> ?z \<in> ?s \<Longrightarrow> ?f holomorphic_on ?s - { ?z} \<Longrightarrow> residue (\<lambda>z. ?c * ?f z) ?z = ?c * residue ?f ?z
\<lbrakk> ?H1 x_1; x_2 \<in> x_1; ?H2 x_3 (?H3 x_1 (?H4 x_2 ?H5))\<rbrakk> \<Longrightarrow> ?H6 (\<lambda>y_0. ?H7 x_4 (x_3 y_0)) x_2 = ?H7 x_4 (?H6 x_3 x_2)
[ "Groups.times_class.times", "Complex_Residues.residue", "Set.empty", "Set.insert", "Groups.minus_class.minus", "Complex_Analysis_Basics.holomorphic_on", "Topological_Spaces.open_class.open" ]
[ "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "(complex \\<Rightarrow> complex) \\<Rightarrow> complex \\<Rightarrow> complex", "'a set", "'a \\<Rightarrow> 'a set \\<Rightarrow> 'a set", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "(complex \\<Rightarrow> complex) \\<Rightarrow> complex set \\<Rightarrow> bool", "'a set \\<Rightarrow> bool" ]
[ "class times =\n fixes times :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"*\" 70)", "abbreviation empty :: \"'a set\" (\"{}\")\n where \"{} \\<equiv> bot\"", "definition insert :: \"'a \\<Rightarrow> 'a set \\<Rightarrow> 'a set\"\n where insert_compr: \"insert a B = {x. x = a \\<or> x \\<in> B}\"", "class minus =\n fixes minus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"-\" 65)", "class \"open\" =\n fixes \"open\" :: \"'a set \\<Rightarrow> bool\"" ]
template
###lemma open ?s \<Longrightarrow> ?z \<in> ?s \<Longrightarrow> ?f holomorphic_on ?s - { ?z} \<Longrightarrow> residue (\<lambda>z. ?c * ?f z) ?z = ?c * residue ?f ?z ###symbols Groups.times_class.times :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Complex_Residues.residue :::: (complex \<Rightarrow> complex) \<Rightarrow> complex \<Rightarrow> complex Set.empty :::: 'a set Set.insert :::: 'a \<Rightarrow> 'a set \<Rightarrow> 'a set Groups.minus_class.minus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Complex_Analysis_Basics.holomorphic_on :::: (complex \<Rightarrow> complex) \<Rightarrow> complex set \<Rightarrow> bool Topological_Spaces.open_class.open :::: 'a set \<Rightarrow> bool ###defs class times = fixes times :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "*" 70) abbreviation empty :: "'a set" ("{}") where "{} \<equiv> bot" definition insert :: "'a \<Rightarrow> 'a set \<Rightarrow> 'a set" where insert_compr: "insert a B = {x. x = a \<or> x \<in> B}" class minus = fixes minus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "-" 65) class "open" = fixes "open" :: "'a set \<Rightarrow> bool"
###output \<lbrakk> ?H1 x_1; x_2 \<in> x_1; ?H2 x_3 (?H3 x_1 (?H4 x_2 ?H5))\<rbrakk> \<Longrightarrow> ?H6 (\<lambda>y_0. ?H7 x_4 (x_3 y_0)) x_2 = ?H7 x_4 (?H6 x_3 x_2)###end
Imperative_HOL/Array
Array.execute_map_entry(1)
lemma execute_map_entry [execute_simps]: "i < length h a \<Longrightarrow> execute (map_entry i f a) h = Some (a, update a i (f (get h a ! i)) h)" "i \<ge> length h a \<Longrightarrow> execute (map_entry i f a) h = None"
?i < Array.length ?h ?a \<Longrightarrow> execute (Array.map_entry ?i ?f ?a) ?h = Some (?a, Array.update ?a ?i (?f (Array.get ?h ?a ! ?i)) ?h)
x_1 < ?H1 x_2 x_3 \<Longrightarrow> ?H2 (?H3 x_1 x_4 x_3) x_2 = ?H4 (x_3, ?H5 x_3 x_1 (x_4 (?H6 (?H7 x_2 x_3) x_1)) x_2)
[ "Array.get", "List.nth", "Array.update", "Option.option.Some", "Array.map_entry", "Heap_Monad.execute", "Array.length" ]
[ "heap \\<Rightarrow> 'a array \\<Rightarrow> 'a list", "'a list \\<Rightarrow> nat \\<Rightarrow> 'a", "'a array \\<Rightarrow> nat \\<Rightarrow> 'a \\<Rightarrow> heap \\<Rightarrow> heap", "'a \\<Rightarrow> 'a option", "nat \\<Rightarrow> ('a \\<Rightarrow> 'a) \\<Rightarrow> 'a array \\<Rightarrow> 'a array Heap", "'a Heap \\<Rightarrow> heap \\<Rightarrow> ('a \\<times> heap) option", "heap \\<Rightarrow> 'a array \\<Rightarrow> nat" ]
[ "definition get :: \"heap \\<Rightarrow> 'a::heap array \\<Rightarrow> 'a list\" where\n \"get h a = map from_nat (arrays h (TYPEREP('a)) (addr_of_array a))\"", "primrec (nonexhaustive) nth :: \"'a list => nat => 'a\" (infixl \"!\" 100) where\nnth_Cons: \"(x # xs) ! n = (case n of 0 \\<Rightarrow> x | Suc k \\<Rightarrow> xs ! k)\"\n \\<comment> \\<open>Warning: simpset does not contain this definition, but separate\n theorems for \\<open>n = 0\\<close> and \\<open>n = Suc k\\<close>\\<close>", "definition update :: \"'a::heap array \\<Rightarrow> nat \\<Rightarrow> 'a \\<Rightarrow> heap \\<Rightarrow> heap\" where\n \"update a i x h = set a ((get h a)[i:=x]) h\"", "datatype 'a option =\n None\n | Some (the: 'a)", "definition map_entry :: \"nat \\<Rightarrow> ('a::heap \\<Rightarrow> 'a) \\<Rightarrow> 'a array \\<Rightarrow> 'a array Heap\" where\n [code del]: \"map_entry i f a = Heap_Monad.guard (\\<lambda>h. i < length h a)\n (\\<lambda>h. (a, update a i (f (get h a ! i)) h))\"", "primrec execute :: \"'a Heap \\<Rightarrow> heap \\<Rightarrow> ('a \\<times> heap) option\" where\n [code del]: \"execute (Heap f) = f\"", "definition length :: \"heap \\<Rightarrow> 'a::heap array \\<Rightarrow> nat\" where\n \"length h a = List.length (get h a)\"" ]
template
###lemma ?i < Array.length ?h ?a \<Longrightarrow> execute (Array.map_entry ?i ?f ?a) ?h = Some (?a, Array.update ?a ?i (?f (Array.get ?h ?a ! ?i)) ?h) ###symbols Array.get :::: heap \<Rightarrow> 'a array \<Rightarrow> 'a list List.nth :::: 'a list \<Rightarrow> nat \<Rightarrow> 'a Array.update :::: 'a array \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> heap \<Rightarrow> heap Option.option.Some :::: 'a \<Rightarrow> 'a option Array.map_entry :::: nat \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a array \<Rightarrow> 'a array Heap Heap_Monad.execute :::: 'a Heap \<Rightarrow> heap \<Rightarrow> ('a \<times> heap) option Array.length :::: heap \<Rightarrow> 'a array \<Rightarrow> nat ###defs definition get :: "heap \<Rightarrow> 'a::heap array \<Rightarrow> 'a list" where "get h a = map from_nat (arrays h (TYPEREP('a)) (addr_of_array a))" primrec (nonexhaustive) nth :: "'a list => nat => 'a" (infixl "!" 100) where nth_Cons: "(x # xs) ! n = (case n of 0 \<Rightarrow> x | Suc k \<Rightarrow> xs ! k)" \<comment> \<open>Warning: simpset does not contain this definition, but separate theorems for \<open>n = 0\<close> and \<open>n = Suc k\<close>\<close> definition update :: "'a::heap array \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> heap \<Rightarrow> heap" where "update a i x h = set a ((get h a)[i:=x]) h" datatype 'a option = None | Some (the: 'a) definition map_entry :: "nat \<Rightarrow> ('a::heap \<Rightarrow> 'a) \<Rightarrow> 'a array \<Rightarrow> 'a array Heap" where [code del]: "map_entry i f a = Heap_Monad.guard (\<lambda>h. i < length h a) (\<lambda>h. (a, update a i (f (get h a ! i)) h))" primrec execute :: "'a Heap \<Rightarrow> heap \<Rightarrow> ('a \<times> heap) option" where [code del]: "execute (Heap f) = f" definition length :: "heap \<Rightarrow> 'a::heap array \<Rightarrow> nat" where "length h a = List.length (get h a)"
###output x_1 < ?H1 x_2 x_3 \<Longrightarrow> ?H2 (?H3 x_1 x_4 x_3) x_2 = ?H4 (x_3, ?H5 x_3 x_1 (x_4 (?H6 (?H7 x_2 x_3) x_1)) x_2)###end
Bali/Trans
Transfer.transfer_raw(38)
null
Transfer.Rel ?A (1:: ?'a) (1:: ?'b) \<Longrightarrow> Transfer.Rel (rel_fun ?A (rel_fun ?A ?A)) (*) (*) \<Longrightarrow> Transfer.Rel (rel_fun (list_all2 ?A) ?A) prod_list prod_list
\<lbrakk> ?H1 x_1 ?H2 ?H2; ?H1 (?H3 x_1 (?H3 x_1 x_1)) ?H4 ?H4\<rbrakk> \<Longrightarrow> ?H1 (?H3 (?H5 x_1) x_1) ?H6 ?H6
[ "Groups_List.monoid_mult_class.prod_list", "List.list.list_all2", "Groups.times_class.times", "BNF_Def.rel_fun", "Groups.one_class.one", "Transfer.Rel" ]
[ "'a list \\<Rightarrow> 'a", "('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> 'a list \\<Rightarrow> 'b list \\<Rightarrow> bool", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> ('c \\<Rightarrow> 'd \\<Rightarrow> bool) \\<Rightarrow> ('a \\<Rightarrow> 'c) \\<Rightarrow> ('b \\<Rightarrow> 'd) \\<Rightarrow> bool", "'a", "('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> 'a \\<Rightarrow> 'b \\<Rightarrow> bool" ]
[ "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "class times =\n fixes times :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"*\" 70)", "definition\n rel_fun :: \"('a \\<Rightarrow> 'c \\<Rightarrow> bool) \\<Rightarrow> ('b \\<Rightarrow> 'd \\<Rightarrow> bool) \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> ('c \\<Rightarrow> 'd) \\<Rightarrow> bool\"\nwhere\n \"rel_fun A B = (\\<lambda>f g. \\<forall>x y. A x y \\<longrightarrow> B (f x) (g y))\"", "class one =\n fixes one :: 'a (\"1\")", "definition Rel :: \"('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> 'a \\<Rightarrow> 'b \\<Rightarrow> bool\"\n where \"Rel r \\<equiv> r\"" ]
template
###lemma Transfer.Rel ?A (1:: ?'a) (1:: ?'b) \<Longrightarrow> Transfer.Rel (rel_fun ?A (rel_fun ?A ?A)) (*) (*) \<Longrightarrow> Transfer.Rel (rel_fun (list_all2 ?A) ?A) prod_list prod_list ###symbols Groups_List.monoid_mult_class.prod_list :::: 'a list \<Rightarrow> 'a List.list.list_all2 :::: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'b list \<Rightarrow> bool Groups.times_class.times :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a BNF_Def.rel_fun :::: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('c \<Rightarrow> 'd \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'c) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> bool Groups.one_class.one :::: 'a Transfer.Rel :::: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool ###defs datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" class times = fixes times :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "*" 70) definition rel_fun :: "('a \<Rightarrow> 'c \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'd \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('c \<Rightarrow> 'd) \<Rightarrow> bool" where "rel_fun A B = (\<lambda>f g. \<forall>x y. A x y \<longrightarrow> B (f x) (g y))" class one = fixes one :: 'a ("1") definition Rel :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool" where "Rel r \<equiv> r"
###output \<lbrakk> ?H1 x_1 ?H2 ?H2; ?H1 (?H3 x_1 (?H3 x_1 x_1)) ?H4 ?H4\<rbrakk> \<Longrightarrow> ?H1 (?H3 (?H5 x_1) x_1) ?H6 ?H6###end
Library/Multiset_Order
Multiset_Order.mset_le_single_iff
lemma mset_le_single_iff[iff]: "{#x#} \<le> {#y#} \<longleftrightarrow> x \<le> y" for x y :: "'a::order"
({# ?x#} \<le> {# ?y#}) = (?x \<le> ?y)
(?H1 x_1 ?H2 \<le> ?H1 x_2 ?H2) = (x_1 \<le> x_2)
[ "Multiset.empty_mset", "Multiset.add_mset" ]
[ "'a multiset", "'a \\<Rightarrow> 'a multiset \\<Rightarrow> 'a multiset" ]
[ "abbreviation empty_mset :: \\<open>'a multiset\\<close> (\\<open>{#}\\<close>)\n where \\<open>empty_mset \\<equiv> 0\\<close>" ]
template
###lemma ({# ?x#} \<le> {# ?y#}) = (?x \<le> ?y) ###symbols Multiset.empty_mset :::: 'a multiset Multiset.add_mset :::: 'a \<Rightarrow> 'a multiset \<Rightarrow> 'a multiset ###defs abbreviation empty_mset :: \<open>'a multiset\<close> (\<open>{#}\<close>) where \<open>empty_mset \<equiv> 0\<close>
###output (?H1 x_1 ?H2 \<le> ?H1 x_2 ?H2) = (x_1 \<le> x_2)###end
Combinatorics/Transposition
Transposition.inj_on_transpose
lemma inj_on_transpose [simp]: \<open>inj_on (transpose a b) A\<close>
inj_on (Transposition.transpose ?a ?b) ?A
?H1 (?H2 x_1 x_2) x_3
[ "Transposition.transpose", "Fun.inj_on" ]
[ "'a \\<Rightarrow> 'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> bool" ]
[ "definition transpose :: \\<open>'a \\<Rightarrow> 'a \\<Rightarrow> 'a \\<Rightarrow> 'a\\<close>\n where \\<open>transpose a b c = (if c = a then b else if c = b then a else c)\\<close>", "definition inj_on :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> bool\" \\<comment> \\<open>injective\\<close>\n where \"inj_on f A \\<longleftrightarrow> (\\<forall>x\\<in>A. \\<forall>y\\<in>A. f x = f y \\<longrightarrow> x = y)\"" ]
template
###lemma inj_on (Transposition.transpose ?a ?b) ?A ###symbols Transposition.transpose :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a Fun.inj_on :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> bool ###defs definition transpose :: \<open>'a \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a\<close> where \<open>transpose a b c = (if c = a then b else if c = b then a else c)\<close> definition inj_on :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> bool" \<comment> \<open>injective\<close> where "inj_on f A \<longleftrightarrow> (\<forall>x\<in>A. \<forall>y\<in>A. f x = f y \<longrightarrow> x = y)"
###output ?H1 (?H2 x_1 x_2) x_3###end
Analysis/Further_Topology
Further_Topology.extend_map_UNIV_to_sphere_cofinite
null
DIM(?'a) \<le> DIM(?'b) \<Longrightarrow> 0 \<le> ?r \<Longrightarrow> compact ?S \<Longrightarrow> continuous_on ?S ?f \<Longrightarrow> ?f \<in> ?S \<rightarrow> sphere ?a ?r \<Longrightarrow> (\<And>C. C \<in> components (- ?S) \<Longrightarrow> bounded C \<Longrightarrow> C \<inter> ?L \<noteq> {}) \<Longrightarrow> (\<And>K g. finite K \<Longrightarrow> K \<subseteq> ?L \<Longrightarrow> disjnt K ?S \<Longrightarrow> continuous_on (- K) g \<Longrightarrow> g \<in> - K \<rightarrow> sphere ?a ?r \<Longrightarrow> (\<And>x. x \<in> ?S \<Longrightarrow> g x = ?f x) \<Longrightarrow> ?thesis) \<Longrightarrow> ?thesis
\<lbrakk> ?H1 ?H2 \<le> ?H1 ?H2; ?H3 \<le> x_1; ?H4 x_2; ?H5 x_2 x_3; x_3 \<in> ?H6 x_2 (?H7 x_4 x_1); \<And>y_0. \<lbrakk>y_0 \<in> ?H8 (?H9 x_2); ?H10 y_0\<rbrakk> \<Longrightarrow> ?H11 y_0 x_5 \<noteq> ?H12; \<And>y_1 y_2. \<lbrakk> ?H13 y_1; ?H14 y_1 x_5; ?H15 y_1 x_2; ?H5 (?H9 y_1) y_2; y_2 \<in> ?H6 (?H9 y_1) (?H7 x_4 x_1); \<And>y_3. y_3 \<in> x_2 \<Longrightarrow> y_2 y_3 = x_3 y_3\<rbrakk> \<Longrightarrow> x_6\<rbrakk> \<Longrightarrow> x_6
[ "Set.disjnt", "Set.subset_eq", "Finite_Set.finite", "Set.empty", "Set.inter", "Elementary_Metric_Spaces.metric_space_class.bounded", "Groups.uminus_class.uminus", "Connected.components", "Elementary_Metric_Spaces.sphere", "FuncSet.funcset", "Topological_Spaces.continuous_on", "Topological_Spaces.topological_space_class.compact", "Groups.zero_class.zero", "Euclidean_Space.euclidean_space_class.Basis", "Finite_Set.card" ]
[ "'a set \\<Rightarrow> 'a set \\<Rightarrow> bool", "'a set \\<Rightarrow> 'a set \\<Rightarrow> bool", "'a set \\<Rightarrow> bool", "'a set", "'a set \\<Rightarrow> 'a set \\<Rightarrow> 'a set", "'a set \\<Rightarrow> bool", "'a \\<Rightarrow> 'a", "'a set \\<Rightarrow> 'a set set", "'a \\<Rightarrow> real \\<Rightarrow> 'a set", "'a set \\<Rightarrow> 'b set \\<Rightarrow> ('a \\<Rightarrow> 'b) set", "'a set \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> bool", "'a set \\<Rightarrow> bool", "'a", "'a set", "'a set \\<Rightarrow> nat" ]
[ "definition disjnt :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> bool\"\n where \"disjnt A B \\<longleftrightarrow> A \\<inter> B = {}\"", "abbreviation subset_eq :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> bool\"\n where \"subset_eq \\<equiv> less_eq\"", "class finite =\n assumes finite_UNIV: \"finite (UNIV :: 'a set)\"\nbegin", "abbreviation empty :: \"'a set\" (\"{}\")\n where \"{} \\<equiv> bot\"", "abbreviation inter :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> 'a set\" (infixl \"\\<inter>\" 70)\n where \"(\\<inter>) \\<equiv> inf\"", "class uminus =\n fixes uminus :: \"'a \\<Rightarrow> 'a\" (\"- _\" [81] 80)", "abbreviation funcset :: \"'a set \\<Rightarrow> 'b set \\<Rightarrow> ('a \\<Rightarrow> 'b) set\" (infixr \"\\<rightarrow>\" 60)\n where \"A \\<rightarrow> B \\<equiv> Pi A (\\<lambda>_. B)\"", "definition continuous_on :: \"'a set \\<Rightarrow> ('a::topological_space \\<Rightarrow> 'b::topological_space) \\<Rightarrow> bool\"\n where \"continuous_on s f \\<longleftrightarrow> (\\<forall>x\\<in>s. (f \\<longlongrightarrow> f x) (at x within s))\"", "class topological_space = \"open\" +\n assumes open_UNIV [simp, intro]: \"open UNIV\"\n assumes open_Int [intro]: \"open S \\<Longrightarrow> open T \\<Longrightarrow> open (S \\<inter> T)\"\n assumes open_Union [intro]: \"\\<forall>S\\<in>K. open S \\<Longrightarrow> open (\\<Union>K)\"\nbegin", "class zero =\n fixes zero :: 'a (\"0\")", "class euclidean_space = real_inner +\n fixes Basis :: \"'a set\"\n assumes nonempty_Basis [simp]: \"Basis \\<noteq> {}\"\n assumes finite_Basis [simp]: \"finite Basis\"\n assumes inner_Basis:\n \"\\<lbrakk>u \\<in> Basis; v \\<in> Basis\\<rbrakk> \\<Longrightarrow> inner u v = (if u = v then 1 else 0)\"\n assumes euclidean_all_zero_iff:\n \"(\\<forall>u\\<in>Basis. inner x u = 0) \\<longleftrightarrow> (x = 0)\"" ]
template
###lemma DIM(?'a) \<le> DIM(?'b) \<Longrightarrow> 0 \<le> ?r \<Longrightarrow> compact ?S \<Longrightarrow> continuous_on ?S ?f \<Longrightarrow> ?f \<in> ?S \<rightarrow> sphere ?a ?r \<Longrightarrow> (\<And>C. C \<in> components (- ?S) \<Longrightarrow> bounded C \<Longrightarrow> C \<inter> ?L \<noteq> {}) \<Longrightarrow> (\<And>K g. finite K \<Longrightarrow> K \<subseteq> ?L \<Longrightarrow> disjnt K ?S \<Longrightarrow> continuous_on (- K) g \<Longrightarrow> g \<in> - K \<rightarrow> sphere ?a ?r \<Longrightarrow> (\<And>x. x \<in> ?S \<Longrightarrow> g x = ?f x) \<Longrightarrow> ?thesis) \<Longrightarrow> ?thesis ###symbols Set.disjnt :::: 'a set \<Rightarrow> 'a set \<Rightarrow> bool Set.subset_eq :::: 'a set \<Rightarrow> 'a set \<Rightarrow> bool Finite_Set.finite :::: 'a set \<Rightarrow> bool Set.empty :::: 'a set Set.inter :::: 'a set \<Rightarrow> 'a set \<Rightarrow> 'a set Elementary_Metric_Spaces.metric_space_class.bounded :::: 'a set \<Rightarrow> bool Groups.uminus_class.uminus :::: 'a \<Rightarrow> 'a Connected.components :::: 'a set \<Rightarrow> 'a set set Elementary_Metric_Spaces.sphere :::: 'a \<Rightarrow> real \<Rightarrow> 'a set FuncSet.funcset :::: 'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> 'b) set Topological_Spaces.continuous_on :::: 'a set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool Topological_Spaces.topological_space_class.compact :::: 'a set \<Rightarrow> bool Groups.zero_class.zero :::: 'a Euclidean_Space.euclidean_space_class.Basis :::: 'a set Finite_Set.card :::: 'a set \<Rightarrow> nat ###defs definition disjnt :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where "disjnt A B \<longleftrightarrow> A \<inter> B = {}" abbreviation subset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where "subset_eq \<equiv> less_eq" class finite = assumes finite_UNIV: "finite (UNIV :: 'a set)" begin abbreviation empty :: "'a set" ("{}") where "{} \<equiv> bot" abbreviation inter :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "\<inter>" 70) where "(\<inter>) \<equiv> inf" class uminus = fixes uminus :: "'a \<Rightarrow> 'a" ("- _" [81] 80) abbreviation funcset :: "'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> 'b) set" (infixr "\<rightarrow>" 60) where "A \<rightarrow> B \<equiv> Pi A (\<lambda>_. B)" definition continuous_on :: "'a set \<Rightarrow> ('a::topological_space \<Rightarrow> 'b::topological_space) \<Rightarrow> bool" where "continuous_on s f \<longleftrightarrow> (\<forall>x\<in>s. (f \<longlongrightarrow> f x) (at x within s))" class topological_space = "open" + assumes open_UNIV [simp, intro]: "open UNIV" assumes open_Int [intro]: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<inter> T)" assumes open_Union [intro]: "\<forall>S\<in>K. open S \<Longrightarrow> open (\<Union>K)" begin class zero = fixes zero :: 'a ("0") class euclidean_space = real_inner + fixes Basis :: "'a set" assumes nonempty_Basis [simp]: "Basis \<noteq> {}" assumes finite_Basis [simp]: "finite Basis" assumes inner_Basis: "\<lbrakk>u \<in> Basis; v \<in> Basis\<rbrakk> \<Longrightarrow> inner u v = (if u = v then 1 else 0)" assumes euclidean_all_zero_iff: "(\<forall>u\<in>Basis. inner x u = 0) \<longleftrightarrow> (x = 0)"
###output \<lbrakk> ?H1 ?H2 \<le> ?H1 ?H2; ?H3 \<le> x_1; ?H4 x_2; ?H5 x_2 x_3; x_3 \<in> ?H6 x_2 (?H7 x_4 x_1); \<And>y_0. \<lbrakk>y_0 \<in> ?H8 (?H9 x_2); ?H10 y_0\<rbrakk> \<Longrightarrow> ?H11 y_0 x_5 \<noteq> ?H12; \<And>y_1 y_2. \<lbrakk> ?H13 y_1; ?H14 y_1 x_5; ?H15 y_1 x_2; ?H5 (?H9 y_1) y_2; y_2 \<in> ?H6 (?H9 y_1) (?H7 x_4 x_1); \<And>y_3. y_3 \<in> x_2 \<Longrightarrow> y_2 y_3 = x_3 y_3\<rbrakk> \<Longrightarrow> x_6\<rbrakk> \<Longrightarrow> x_6###end
HOL
HOL.no_atp(11)
null
?y \<le> ?x \<Longrightarrow> ?z \<le> ?y \<Longrightarrow> ?z \<le> ?x
\<lbrakk>x_1 \<le> x_2; x_3 \<le> x_1\<rbrakk> \<Longrightarrow> x_3 \<le> x_2
[]
[]
[]
template
###lemma ?y \<le> ?x \<Longrightarrow> ?z \<le> ?y \<Longrightarrow> ?z \<le> ?x ###symbols ###defs
###output \<lbrakk>x_1 \<le> x_2; x_3 \<le> x_1\<rbrakk> \<Longrightarrow> x_3 \<le> x_2###end
Groebner_Basis
Groebner_Basis.dnf(1)
lemma dnf: "(P \<and> (Q \<or> R)) = ((P\<and>Q) \<or> (P\<and>R))" "((Q \<or> R) \<and> P) = ((Q\<and>P) \<or> (R\<and>P))" "(P \<and> Q) = (Q \<and> P)" "(P \<or> Q) = (Q \<or> P)"
(?P \<and> (?Q \<or> ?R)) = (?P \<and> ?Q \<or> ?P \<and> ?R)
(x_1 \<and> (x_2 \<or> x_3)) = (x_1 \<and> x_2 \<or> x_1 \<and> x_3)
[]
[]
[]
template
###lemma (?P \<and> (?Q \<or> ?R)) = (?P \<and> ?Q \<or> ?P \<and> ?R) ###symbols ###defs
###output (x_1 \<and> (x_2 \<or> x_3)) = (x_1 \<and> x_2 \<or> x_1 \<and> x_3)###end
Bali/Trans
Transfer.transfer_raw(54)
null
Transfer.Rel (rel_fun (list_all2 ?A) (list_all2 (list_all2 ?A))) subseqs subseqs
?H1 (?H2 (?H3 x_1) (?H3 (?H3 x_1))) ?H4 ?H4
[ "List.subseqs", "List.list.list_all2", "BNF_Def.rel_fun", "Transfer.Rel" ]
[ "'a list \\<Rightarrow> 'a list list", "('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> 'a list \\<Rightarrow> 'b list \\<Rightarrow> bool", "('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> ('c \\<Rightarrow> 'd \\<Rightarrow> bool) \\<Rightarrow> ('a \\<Rightarrow> 'c) \\<Rightarrow> ('b \\<Rightarrow> 'd) \\<Rightarrow> bool", "('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> 'a \\<Rightarrow> 'b \\<Rightarrow> bool" ]
[ "primrec subseqs :: \"'a list \\<Rightarrow> 'a list list\" where\n\"subseqs [] = [[]]\" |\n\"subseqs (x#xs) = (let xss = subseqs xs in map (Cons x) xss @ xss)\"", "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "definition\n rel_fun :: \"('a \\<Rightarrow> 'c \\<Rightarrow> bool) \\<Rightarrow> ('b \\<Rightarrow> 'd \\<Rightarrow> bool) \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> ('c \\<Rightarrow> 'd) \\<Rightarrow> bool\"\nwhere\n \"rel_fun A B = (\\<lambda>f g. \\<forall>x y. A x y \\<longrightarrow> B (f x) (g y))\"", "definition Rel :: \"('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> 'a \\<Rightarrow> 'b \\<Rightarrow> bool\"\n where \"Rel r \\<equiv> r\"" ]
template
###lemma Transfer.Rel (rel_fun (list_all2 ?A) (list_all2 (list_all2 ?A))) subseqs subseqs ###symbols List.subseqs :::: 'a list \<Rightarrow> 'a list list List.list.list_all2 :::: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'b list \<Rightarrow> bool BNF_Def.rel_fun :::: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('c \<Rightarrow> 'd \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'c) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> bool Transfer.Rel :::: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool ###defs primrec subseqs :: "'a list \<Rightarrow> 'a list list" where "subseqs [] = [[]]" | "subseqs (x#xs) = (let xss = subseqs xs in map (Cons x) xss @ xss)" datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" definition rel_fun :: "('a \<Rightarrow> 'c \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'd \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('c \<Rightarrow> 'd) \<Rightarrow> bool" where "rel_fun A B = (\<lambda>f g. \<forall>x y. A x y \<longrightarrow> B (f x) (g y))" definition Rel :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool" where "Rel r \<equiv> r"
###output ?H1 (?H2 (?H3 x_1) (?H3 (?H3 x_1))) ?H4 ?H4###end
Nominal/Examples/Lambda_mu
Lambda_mu.swap_simps(3)
null
[(?a, ?b)] \<bullet> ?b = ?a
?H1 (?H2 (x_1, x_2) ?H3) x_2 = x_1
[ "List.list.Nil", "List.list.Cons", "Nominal.perm" ]
[ "'a list", "'a \\<Rightarrow> 'a list \\<Rightarrow> 'a list", "('a \\<times> 'a) list \\<Rightarrow> 'b \\<Rightarrow> 'b" ]
[ "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "consts \n perm :: \"'x prm \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixr \\<open>\\<bullet>\\<close> 80)\n swap :: \"('x \\<times> 'x) \\<Rightarrow> 'x \\<Rightarrow> 'x\"" ]
template
###lemma [(?a, ?b)] \<bullet> ?b = ?a ###symbols List.list.Nil :::: 'a list List.list.Cons :::: 'a \<Rightarrow> 'a list \<Rightarrow> 'a list Nominal.perm :::: ('a \<times> 'a) list \<Rightarrow> 'b \<Rightarrow> 'b ###defs datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" consts perm :: "'x prm \<Rightarrow> 'a \<Rightarrow> 'a" (infixr \<open>\<bullet>\<close> 80) swap :: "('x \<times> 'x) \<Rightarrow> 'x \<Rightarrow> 'x"
###output ?H1 (?H2 (x_1, x_2) ?H3) x_2 = x_1###end
Imperative_HOL/ex/List_Sublist
List_Sublist.nths_take
lemma nths_take: "nths xs {j. j < m} = take m xs"
nths ?xs {j. j < ?m} = take ?m ?xs
?H1 x_1 (?H2 (\<lambda>y_0. y_0 < x_2)) = ?H3 x_2 x_1
[ "List.take", "Set.Collect", "List.nths" ]
[ "nat \\<Rightarrow> 'a list \\<Rightarrow> 'a list", "('a \\<Rightarrow> bool) \\<Rightarrow> 'a set", "'a list \\<Rightarrow> nat set \\<Rightarrow> 'a list" ]
[ "primrec take:: \"nat \\<Rightarrow> 'a list \\<Rightarrow> 'a list\" where\ntake_Nil:\"take n [] = []\" |\ntake_Cons: \"take n (x # xs) = (case n of 0 \\<Rightarrow> [] | Suc m \\<Rightarrow> x # take m xs)\"\n \\<comment> \\<open>Warning: simpset does not contain this definition, but separate\n theorems for \\<open>n = 0\\<close> and \\<open>n = Suc k\\<close>\\<close>", "definition nths :: \"'a list => nat set => 'a list\" where\n\"nths xs A = map fst (filter (\\<lambda>p. snd p \\<in> A) (zip xs [0..<size xs]))\"" ]
template
###lemma nths ?xs {j. j < ?m} = take ?m ?xs ###symbols List.take :::: nat \<Rightarrow> 'a list \<Rightarrow> 'a list Set.Collect :::: ('a \<Rightarrow> bool) \<Rightarrow> 'a set List.nths :::: 'a list \<Rightarrow> nat set \<Rightarrow> 'a list ###defs primrec take:: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list" where take_Nil:"take n [] = []" | take_Cons: "take n (x # xs) = (case n of 0 \<Rightarrow> [] | Suc m \<Rightarrow> x # take m xs)" \<comment> \<open>Warning: simpset does not contain this definition, but separate theorems for \<open>n = 0\<close> and \<open>n = Suc k\<close>\<close> definition nths :: "'a list => nat set => 'a list" where "nths xs A = map fst (filter (\<lambda>p. snd p \<in> A) (zip xs [0..<size xs]))"
###output ?H1 x_1 (?H2 (\<lambda>y_0. y_0 < x_2)) = ?H3 x_2 x_1###end
Analysis/Abstract_Topological_Spaces
Abstract_Topological_Spaces.proper_map_into_k_space_eq
lemma proper_map_into_k_space_eq: assumes "k_space Y" shows "proper_map X Y f \<longleftrightarrow> f \<in> (topspace X) \<rightarrow> topspace Y \<and> (\<forall>K. compactin Y K \<longrightarrow> proper_map (subtopology X {x \<in> topspace X. f x \<in> K}) (subtopology Y K) f)" (is "?lhs \<longleftrightarrow> ?rhs")
k_space ?Y \<Longrightarrow> proper_map ?X ?Y ?f = (?f \<in> topspace ?X \<rightarrow> topspace ?Y \<and> (\<forall>K. compactin ?Y K \<longrightarrow> proper_map (subtopology ?X {x \<in> topspace ?X. ?f x \<in> K}) (subtopology ?Y K) ?f))
?H1 x_1 \<Longrightarrow> ?H2 x_2 x_1 x_3 = (x_3 \<in> ?H3 (?H4 x_2) (?H4 x_1) \<and> (\<forall>y_0. ?H5 x_1 y_0 \<longrightarrow> ?H2 (?H6 x_2 (?H7 (\<lambda>y_1. y_1 \<in> ?H4 x_2 \<and> x_3 y_1 \<in> y_0))) (?H6 x_1 y_0) x_3))
[ "Set.Collect", "Abstract_Topology.subtopology", "Abstract_Topology.compactin", "Abstract_Topology.topspace", "FuncSet.funcset", "Abstract_Topology.proper_map", "Abstract_Topological_Spaces.k_space" ]
[ "('a \\<Rightarrow> bool) \\<Rightarrow> 'a set", "'a topology \\<Rightarrow> 'a set \\<Rightarrow> 'a topology", "'a topology \\<Rightarrow> 'a set \\<Rightarrow> bool", "'a topology \\<Rightarrow> 'a set", "'a set \\<Rightarrow> 'b set \\<Rightarrow> ('a \\<Rightarrow> 'b) set", "'a topology \\<Rightarrow> 'b topology \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> bool", "'a topology \\<Rightarrow> bool" ]
[ "definition compactin where\n \"compactin X S \\<longleftrightarrow>\n S \\<subseteq> topspace X \\<and>\n (\\<forall>\\<U>. (\\<forall>U \\<in> \\<U>. openin X U) \\<and> S \\<subseteq> \\<Union>\\<U>\n \\<longrightarrow> (\\<exists>\\<F>. finite \\<F> \\<and> \\<F> \\<subseteq> \\<U> \\<and> S \\<subseteq> \\<Union>\\<F>))\"", "definition \"topspace T = \\<Union>{S. openin T S}\"", "abbreviation funcset :: \"'a set \\<Rightarrow> 'b set \\<Rightarrow> ('a \\<Rightarrow> 'b) set\" (infixr \"\\<rightarrow>\" 60)\n where \"A \\<rightarrow> B \\<equiv> Pi A (\\<lambda>_. B)\"", "definition proper_map\n where\n \"proper_map X Y f \\<equiv>\n closed_map X Y f \\<and> (\\<forall>y \\<in> topspace Y. compactin X {x \\<in> topspace X. f x = y})\"", "definition k_space where\n \"k_space X \\<equiv>\n \\<forall>S. S \\<subseteq> topspace X \\<longrightarrow> \n (closedin X S \\<longleftrightarrow> (\\<forall>K. compactin X K \\<longrightarrow> closedin (subtopology X K) (K \\<inter> S)))\"" ]
template
###lemma k_space ?Y \<Longrightarrow> proper_map ?X ?Y ?f = (?f \<in> topspace ?X \<rightarrow> topspace ?Y \<and> (\<forall>K. compactin ?Y K \<longrightarrow> proper_map (subtopology ?X {x \<in> topspace ?X. ?f x \<in> K}) (subtopology ?Y K) ?f)) ###symbols Set.Collect :::: ('a \<Rightarrow> bool) \<Rightarrow> 'a set Abstract_Topology.subtopology :::: 'a topology \<Rightarrow> 'a set \<Rightarrow> 'a topology Abstract_Topology.compactin :::: 'a topology \<Rightarrow> 'a set \<Rightarrow> bool Abstract_Topology.topspace :::: 'a topology \<Rightarrow> 'a set FuncSet.funcset :::: 'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> 'b) set Abstract_Topology.proper_map :::: 'a topology \<Rightarrow> 'b topology \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool Abstract_Topological_Spaces.k_space :::: 'a topology \<Rightarrow> bool ###defs definition compactin where "compactin X S \<longleftrightarrow> S \<subseteq> topspace X \<and> (\<forall>\<U>. (\<forall>U \<in> \<U>. openin X U) \<and> S \<subseteq> \<Union>\<U> \<longrightarrow> (\<exists>\<F>. finite \<F> \<and> \<F> \<subseteq> \<U> \<and> S \<subseteq> \<Union>\<F>))" definition "topspace T = \<Union>{S. openin T S}" abbreviation funcset :: "'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> 'b) set" (infixr "\<rightarrow>" 60) where "A \<rightarrow> B \<equiv> Pi A (\<lambda>_. B)" definition proper_map where "proper_map X Y f \<equiv> closed_map X Y f \<and> (\<forall>y \<in> topspace Y. compactin X {x \<in> topspace X. f x = y})" definition k_space where "k_space X \<equiv> \<forall>S. S \<subseteq> topspace X \<longrightarrow> (closedin X S \<longleftrightarrow> (\<forall>K. compactin X K \<longrightarrow> closedin (subtopology X K) (K \<inter> S)))"
###output ?H1 x_1 \<Longrightarrow> ?H2 x_2 x_1 x_3 = (x_3 \<in> ?H3 (?H4 x_2) (?H4 x_1) \<and> (\<forall>y_0. ?H5 x_1 y_0 \<longrightarrow> ?H2 (?H6 x_2 (?H7 (\<lambda>y_1. y_1 \<in> ?H4 x_2 \<and> x_3 y_1 \<in> y_0))) (?H6 x_1 y_0) x_3))###end
Library/Infinite_Set
Infinite_Set.enumerate_Suc''
lemma enumerate_Suc'': fixes S :: "'a::wellorder set" assumes "infinite S" shows "enumerate S (Suc n) = (LEAST s. s \<in> S \<and> enumerate S n < s)"
infinite ?S \<Longrightarrow> wellorder_class.enumerate ?S (Suc ?n) = (LEAST s. s \<in> ?S \<and> wellorder_class.enumerate ?S ?n < s)
?H1 x_1 \<Longrightarrow> ?H2 x_1 (?H3 x_2) = ?H4 (\<lambda>y_0. y_0 \<in> x_1 \<and> ?H2 x_1 x_2 < y_0)
[ "Orderings.ord_class.Least", "Nat.Suc", "Infinite_Set.wellorder_class.enumerate", "Finite_Set.infinite" ]
[ "('a \\<Rightarrow> bool) \\<Rightarrow> 'a", "nat \\<Rightarrow> nat", "'a set \\<Rightarrow> nat \\<Rightarrow> 'a", "'a set \\<Rightarrow> bool" ]
[ "class ord =\n fixes less_eq :: \"'a \\<Rightarrow> 'a \\<Rightarrow> bool\"\n and less :: \"'a \\<Rightarrow> 'a \\<Rightarrow> bool\"\nbegin", "definition Suc :: \"nat \\<Rightarrow> nat\"\n where \"Suc n = Abs_Nat (Suc_Rep (Rep_Nat n))\"", "abbreviation infinite :: \"'a set \\<Rightarrow> bool\"\n where \"infinite S \\<equiv> \\<not> finite S\"" ]
template
###lemma infinite ?S \<Longrightarrow> wellorder_class.enumerate ?S (Suc ?n) = (LEAST s. s \<in> ?S \<and> wellorder_class.enumerate ?S ?n < s) ###symbols Orderings.ord_class.Least :::: ('a \<Rightarrow> bool) \<Rightarrow> 'a Nat.Suc :::: nat \<Rightarrow> nat Infinite_Set.wellorder_class.enumerate :::: 'a set \<Rightarrow> nat \<Rightarrow> 'a Finite_Set.infinite :::: 'a set \<Rightarrow> bool ###defs class ord = fixes less_eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool" and less :: "'a \<Rightarrow> 'a \<Rightarrow> bool" begin definition Suc :: "nat \<Rightarrow> nat" where "Suc n = Abs_Nat (Suc_Rep (Rep_Nat n))" abbreviation infinite :: "'a set \<Rightarrow> bool" where "infinite S \<equiv> \<not> finite S"
###output ?H1 x_1 \<Longrightarrow> ?H2 x_1 (?H3 x_2) = ?H4 (\<lambda>y_0. y_0 \<in> x_1 \<and> ?H2 x_1 x_2 < y_0)###end
Set_Interval
Set_Interval.atLeastAtMostSuc_conv
lemma atLeastAtMostSuc_conv: "m \<le> Suc n \<Longrightarrow> {m..Suc n} = insert (Suc n) {m..n}"
?m \<le> Suc ?n \<Longrightarrow> { ?m..Suc ?n} = insert (Suc ?n) { ?m.. ?n}
x_1 \<le> ?H1 x_2 \<Longrightarrow> ?H2 x_1 (?H1 x_2) = ?H3 (?H1 x_2) (?H2 x_1 x_2)
[ "Set.insert", "Set_Interval.ord_class.atLeastAtMost", "Nat.Suc" ]
[ "'a \\<Rightarrow> 'a set \\<Rightarrow> 'a set", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a set", "nat \\<Rightarrow> nat" ]
[ "definition insert :: \"'a \\<Rightarrow> 'a set \\<Rightarrow> 'a set\"\n where insert_compr: \"insert a B = {x. x = a \\<or> x \\<in> B}\"", "definition Suc :: \"nat \\<Rightarrow> nat\"\n where \"Suc n = Abs_Nat (Suc_Rep (Rep_Nat n))\"" ]
template
###lemma ?m \<le> Suc ?n \<Longrightarrow> { ?m..Suc ?n} = insert (Suc ?n) { ?m.. ?n} ###symbols Set.insert :::: 'a \<Rightarrow> 'a set \<Rightarrow> 'a set Set_Interval.ord_class.atLeastAtMost :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a set Nat.Suc :::: nat \<Rightarrow> nat ###defs definition insert :: "'a \<Rightarrow> 'a set \<Rightarrow> 'a set" where insert_compr: "insert a B = {x. x = a \<or> x \<in> B}" definition Suc :: "nat \<Rightarrow> nat" where "Suc n = Abs_Nat (Suc_Rep (Rep_Nat n))"
###output x_1 \<le> ?H1 x_2 \<Longrightarrow> ?H2 x_1 (?H1 x_2) = ?H3 (?H1 x_2) (?H2 x_1 x_2)###end
Library/Old_Datatype
Old_Datatype.ntrunc_equality
lemma ntrunc_equality: "(!!k. ntrunc k M = ntrunc k N) ==> M=N"
(\<And>k. ntrunc k ?M = ntrunc k ?N) \<Longrightarrow> ?M = ?N
(\<And>y_0. ?H1 y_0 x_1 = ?H1 y_0 x_2) \<Longrightarrow> x_1 = x_2
[ "Old_Datatype.ntrunc" ]
[ "nat \\<Rightarrow> ('a, 'b) Old_Datatype.node set \\<Rightarrow> ('a, 'b) Old_Datatype.node set" ]
[ "definition ntrunc :: \"[nat, ('a, 'b) dtree] => ('a, 'b) dtree\"\n where \"ntrunc k N == {n. n\\<in>N \\<and> ndepth(n)<k}\"" ]
template
###lemma (\<And>k. ntrunc k ?M = ntrunc k ?N) \<Longrightarrow> ?M = ?N ###symbols Old_Datatype.ntrunc :::: nat \<Rightarrow> ('a, 'b) Old_Datatype.node set \<Rightarrow> ('a, 'b) Old_Datatype.node set ###defs definition ntrunc :: "[nat, ('a, 'b) dtree] => ('a, 'b) dtree" where "ntrunc k N == {n. n\<in>N \<and> ndepth(n)<k}"
###output (\<And>y_0. ?H1 y_0 x_1 = ?H1 y_0 x_2) \<Longrightarrow> x_1 = x_2###end
MicroJava/J/WellForm
WellForm.wf_prog_ws_prog
lemma wf_prog_ws_prog [intro]: "wf_prog wf_mb G \<Longrightarrow> ws_prog G"
wf_prog ?wf_mb ?G \<Longrightarrow> ws_prog ?G
?H1 x_1 x_2 \<Longrightarrow> ?H2 x_2
[ "WellForm.ws_prog", "WellForm.wf_prog" ]
[ "'a prog \\<Rightarrow> bool", "('a prog \\<Rightarrow> cname \\<Rightarrow> 'a mdecl \\<Rightarrow> bool) \\<Rightarrow> 'a prog \\<Rightarrow> bool" ]
[ "definition\n wf_prog :: \"prog \\<Rightarrow> bool\" where\n \"wf_prog G = (let is = ifaces G; cs = classes G in\n ObjectC \\<in> set cs \\<and> \n (\\<forall> m\\<in>set Object_mdecls. accmodi m \\<noteq> Package) \\<and>\n (\\<forall>xn. SXcptC xn \\<in> set cs) \\<and>\n (\\<forall>i\\<in>set is. wf_idecl G i) \\<and> unique is \\<and>\n (\\<forall>c\\<in>set cs. wf_cdecl G c) \\<and> unique cs)\"" ]
template
###lemma wf_prog ?wf_mb ?G \<Longrightarrow> ws_prog ?G ###symbols WellForm.ws_prog :::: 'a prog \<Rightarrow> bool WellForm.wf_prog :::: ('a prog \<Rightarrow> cname \<Rightarrow> 'a mdecl \<Rightarrow> bool) \<Rightarrow> 'a prog \<Rightarrow> bool ###defs definition wf_prog :: "prog \<Rightarrow> bool" where "wf_prog G = (let is = ifaces G; cs = classes G in ObjectC \<in> set cs \<and> (\<forall> m\<in>set Object_mdecls. accmodi m \<noteq> Package) \<and> (\<forall>xn. SXcptC xn \<in> set cs) \<and> (\<forall>i\<in>set is. wf_idecl G i) \<and> unique is \<and> (\<forall>c\<in>set cs. wf_cdecl G c) \<and> unique cs)"
###output ?H1 x_1 x_2 \<Longrightarrow> ?H2 x_2###end
List
List.bind_simps(1)
lemma bind_simps [simp]: "List.bind [] f = []" "List.bind (x # xs) f = f x @ List.bind xs f"
List.bind [] ?f = []
?H1 ?H2 x_1 = ?H2
[ "List.list.Nil", "List.bind" ]
[ "'a list", "'a list \\<Rightarrow> ('a \\<Rightarrow> 'b list) \\<Rightarrow> 'b list" ]
[ "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "definition bind :: \"'a list \\<Rightarrow> ('a \\<Rightarrow> 'b list) \\<Rightarrow> 'b list\" where\n\"bind xs f = concat (map f xs)\"" ]
template
###lemma List.bind [] ?f = [] ###symbols List.list.Nil :::: 'a list List.bind :::: 'a list \<Rightarrow> ('a \<Rightarrow> 'b list) \<Rightarrow> 'b list ###defs datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" definition bind :: "'a list \<Rightarrow> ('a \<Rightarrow> 'b list) \<Rightarrow> 'b list" where "bind xs f = concat (map f xs)"
###output ?H1 ?H2 x_1 = ?H2###end
Induct/Sexp
Sexp.sexp_case_Leaf
lemma sexp_case_Leaf [simp]: "sexp_case c d e (Leaf a) = c(a)"
sexp_case ?c ?d ?e (Leaf ?a) = ?c ?a
?H1 x_1 x_2 x_3 (?H2 x_4) = x_1 x_4
[ "Sexp.Leaf", "Sexp.sexp_case" ]
[ "'a \\<Rightarrow> ('a, 'b) Old_Datatype.node set", "('a \\<Rightarrow> 'b) \\<Rightarrow> (nat \\<Rightarrow> 'b) \\<Rightarrow> (('a, unit) Old_Datatype.node set \\<Rightarrow> ('a, unit) Old_Datatype.node set \\<Rightarrow> 'b) \\<Rightarrow> ('a, unit) Old_Datatype.node set \\<Rightarrow> 'b" ]
[ "abbreviation \"Leaf == Old_Datatype.Leaf\"", "definition\n sexp_case :: \"['a=>'b, nat=>'b, ['a item, 'a item]=>'b, \n 'a item] => 'b\" where\n \"sexp_case c d e M = (THE z. (\\<exists>x. M=Leaf(x) & z=c(x)) \n | (\\<exists>k. M=Numb(k) & z=d(k)) \n | (\\<exists>N1 N2. M = Scons N1 N2 & z=e N1 N2))\"" ]
template
###lemma sexp_case ?c ?d ?e (Leaf ?a) = ?c ?a ###symbols Sexp.Leaf :::: 'a \<Rightarrow> ('a, 'b) Old_Datatype.node set Sexp.sexp_case :::: ('a \<Rightarrow> 'b) \<Rightarrow> (nat \<Rightarrow> 'b) \<Rightarrow> (('a, unit) Old_Datatype.node set \<Rightarrow> ('a, unit) Old_Datatype.node set \<Rightarrow> 'b) \<Rightarrow> ('a, unit) Old_Datatype.node set \<Rightarrow> 'b ###defs abbreviation "Leaf == Old_Datatype.Leaf" definition sexp_case :: "['a=>'b, nat=>'b, ['a item, 'a item]=>'b, 'a item] => 'b" where "sexp_case c d e M = (THE z. (\<exists>x. M=Leaf(x) & z=c(x)) | (\<exists>k. M=Numb(k) & z=d(k)) | (\<exists>N1 N2. M = Scons N1 N2 & z=e N1 N2))"
###output ?H1 x_1 x_2 x_3 (?H2 x_4) = x_1 x_4###end
Library/Mapping
Mapping.All_mapping_alist
lemma All_mapping_alist: "(\<And>k v. (k, v) \<in> set xs \<Longrightarrow> P k v) \<Longrightarrow> All_mapping (Mapping.of_alist xs) P"
(\<And>k v. (k, v) \<in> set ?xs \<Longrightarrow> ?P k v) \<Longrightarrow> All_mapping (Mapping.of_alist ?xs) ?P
(\<And>y_0 y_1. (y_0, y_1) \<in> ?H1 x_1 \<Longrightarrow> x_2 y_0 y_1) \<Longrightarrow> ?H2 (?H3 x_1) x_2
[ "Mapping.of_alist", "Mapping.All_mapping", "List.list.set" ]
[ "('a \\<times> 'b) list \\<Rightarrow> ('a, 'b) mapping", "('a, 'b) mapping \\<Rightarrow> ('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> bool", "'a list \\<Rightarrow> 'a set" ]
[ "definition of_alist :: \"('k \\<times> 'v) list \\<Rightarrow> ('k, 'v) mapping\"\n where \"of_alist xs = foldr (\\<lambda>(k, v) m. update k v m) xs empty\"", "definition \"All_mapping m P \\<longleftrightarrow>\n (\\<forall>x. case Mapping.lookup m x of None \\<Rightarrow> True | Some y \\<Rightarrow> P x y)\"", "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"" ]
template
###lemma (\<And>k v. (k, v) \<in> set ?xs \<Longrightarrow> ?P k v) \<Longrightarrow> All_mapping (Mapping.of_alist ?xs) ?P ###symbols Mapping.of_alist :::: ('a \<times> 'b) list \<Rightarrow> ('a, 'b) mapping Mapping.All_mapping :::: ('a, 'b) mapping \<Rightarrow> ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool List.list.set :::: 'a list \<Rightarrow> 'a set ###defs definition of_alist :: "('k \<times> 'v) list \<Rightarrow> ('k, 'v) mapping" where "of_alist xs = foldr (\<lambda>(k, v) m. update k v m) xs empty" definition "All_mapping m P \<longleftrightarrow> (\<forall>x. case Mapping.lookup m x of None \<Rightarrow> True | Some y \<Rightarrow> P x y)" datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []"
###output (\<And>y_0 y_1. (y_0, y_1) \<in> ?H1 x_1 \<Longrightarrow> x_2 y_0 y_1) \<Longrightarrow> ?H2 (?H3 x_1) x_2###end
Analysis/Abstract_Metric_Spaces
Abstract_Metric_Spaces.uniformly_continuous_map_paired
lemma uniformly_continuous_map_paired: "uniformly_continuous_map m (prod_metric m1 m2) (\<lambda>x. (f x, g x)) \<longleftrightarrow> uniformly_continuous_map m m1 f \<and> uniformly_continuous_map m m2 g"
uniformly_continuous_map ?m (prod_metric ?m1.0 ?m2.0) (\<lambda>x. (?f x, ?g x)) = (uniformly_continuous_map ?m ?m1.0 ?f \<and> uniformly_continuous_map ?m ?m2.0 ?g)
?H1 x_1 (?H2 x_2 x_3) (\<lambda>y_0. (x_4 y_0, x_5 y_0)) = (?H1 x_1 x_2 x_4 \<and> ?H1 x_1 x_3 x_5)
[ "Abstract_Metric_Spaces.prod_metric", "Abstract_Metric_Spaces.uniformly_continuous_map" ]
[ "'a metric \\<Rightarrow> 'b metric \\<Rightarrow> ('a \\<times> 'b) metric", "'a metric \\<Rightarrow> 'b metric \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> bool" ]
[ "definition prod_metric where\n \"prod_metric \\<equiv> \\<lambda>m1 m2. metric (mspace m1 \\<times> mspace m2, prod_dist (mdist m1) (mdist m2))\"", "definition uniformly_continuous_map \n where \"uniformly_continuous_map \\<equiv> \n \\<lambda>m1 m2 f. f \\<in> mspace m1 \\<rightarrow> mspace m2 \\<and>\n (\\<forall>\\<epsilon>>0. \\<exists>\\<delta>>0. \\<forall>x \\<in> mspace m1. \\<forall>y \\<in> mspace m1. \n mdist m1 y x < \\<delta> \\<longrightarrow> mdist m2 (f y) (f x) < \\<epsilon>)\"" ]
template
###lemma uniformly_continuous_map ?m (prod_metric ?m1.0 ?m2.0) (\<lambda>x. (?f x, ?g x)) = (uniformly_continuous_map ?m ?m1.0 ?f \<and> uniformly_continuous_map ?m ?m2.0 ?g) ###symbols Abstract_Metric_Spaces.prod_metric :::: 'a metric \<Rightarrow> 'b metric \<Rightarrow> ('a \<times> 'b) metric Abstract_Metric_Spaces.uniformly_continuous_map :::: 'a metric \<Rightarrow> 'b metric \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool ###defs definition prod_metric where "prod_metric \<equiv> \<lambda>m1 m2. metric (mspace m1 \<times> mspace m2, prod_dist (mdist m1) (mdist m2))" definition uniformly_continuous_map where "uniformly_continuous_map \<equiv> \<lambda>m1 m2 f. f \<in> mspace m1 \<rightarrow> mspace m2 \<and> (\<forall>\<epsilon>>0. \<exists>\<delta>>0. \<forall>x \<in> mspace m1. \<forall>y \<in> mspace m1. mdist m1 y x < \<delta> \<longrightarrow> mdist m2 (f y) (f x) < \<epsilon>)"
###output ?H1 x_1 (?H2 x_2 x_3) (\<lambda>y_0. (x_4 y_0, x_5 y_0)) = (?H1 x_1 x_2 x_4 \<and> ?H1 x_1 x_3 x_5)###end
Library/Dlist
Dlist.doubles_Cons_same
lemma doubles_Cons_same: "double\<^sup>*\<^sup>* xs ys \<Longrightarrow> double\<^sup>*\<^sup>* (x # xs) (x # ys)"
Dlist.double\<^sup>*\<^sup>* ?xs ?ys \<Longrightarrow> Dlist.double\<^sup>*\<^sup>* (?x # ?xs) (?x # ?ys)
?H1 ?H2 x_1 x_2 \<Longrightarrow> ?H1 ?H2 (?H3 x_3 x_1) (?H3 x_3 x_2)
[ "List.list.Cons", "Dlist.double", "Transitive_Closure.rtranclp" ]
[ "'a \\<Rightarrow> 'a list \\<Rightarrow> 'a list", "'a list \\<Rightarrow> 'a list \\<Rightarrow> bool", "('a \\<Rightarrow> 'a \\<Rightarrow> bool) \\<Rightarrow> 'a \\<Rightarrow> 'a \\<Rightarrow> bool" ]
[ "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "inductive double :: \"'a list \\<Rightarrow> 'a list \\<Rightarrow> bool\" where\n \"double (xs @ ys) (xs @ x # ys)\" if \"x \\<in> set ys\"" ]
template
###lemma Dlist.double\<^sup>*\<^sup>* ?xs ?ys \<Longrightarrow> Dlist.double\<^sup>*\<^sup>* (?x # ?xs) (?x # ?ys) ###symbols List.list.Cons :::: 'a \<Rightarrow> 'a list \<Rightarrow> 'a list Dlist.double :::: 'a list \<Rightarrow> 'a list \<Rightarrow> bool Transitive_Closure.rtranclp :::: ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool ###defs datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" inductive double :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" where "double (xs @ ys) (xs @ x # ys)" if "x \<in> set ys"
###output ?H1 ?H2 x_1 x_2 \<Longrightarrow> ?H1 ?H2 (?H3 x_3 x_1) (?H3 x_3 x_2)###end
Real_Asymp/Multiseries_Expansion
Multiseries_Expansion.landau_reduce_to_top(12)
null
(\<lambda>x. ?f (inverse x)) \<in> o(\<lambda>x. ?g (inverse x)) \<Longrightarrow> ?f \<in> o[at_right 0](?g)
(\<lambda>y_0. x_1 (?H1 y_0)) \<in> ?H2 (\<lambda>y_1. x_2 (?H1 y_1)) \<Longrightarrow> x_1 \<in> ?H3 (?H4 ?H5) x_2
[ "Groups.zero_class.zero", "Topological_Spaces.order_topology_class.at_right", "Landau_Symbols.smallo", "Landau_Symbols.smallo_at_top", "Fields.inverse_class.inverse" ]
[ "'a", "'a \\<Rightarrow> 'a filter", "'a filter \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> ('a \\<Rightarrow> 'b) set", "('a \\<Rightarrow> 'b) \\<Rightarrow> ('a \\<Rightarrow> 'b) set", "'a \\<Rightarrow> 'a" ]
[ "class zero =\n fixes zero :: 'a (\"0\")", "class order_topology = order + \"open\" +\n assumes open_generated_order: \"open = generate_topology (range (\\<lambda>a. {..< a}) \\<union> range (\\<lambda>a. {a <..}))\"\nbegin", "definition smallo :: \"'a filter \\<Rightarrow> ('a \\<Rightarrow> ('b :: real_normed_field)) \\<Rightarrow> ('a \\<Rightarrow> 'b) set\"\n (\\<open>(1o[_]'(_'))\\<close>)\n where \"smallo F g = {f. (\\<forall>c>0. eventually (\\<lambda>x. norm (f x) \\<le> c * norm (g x)) F)}\"", "abbreviation smallo_at_top (\\<open>(2o'(_'))\\<close>) where\n \"o(g) \\<equiv> smallo at_top g\"", "class inverse = divide +\n fixes inverse :: \"'a \\<Rightarrow> 'a\"\nbegin" ]
template
###lemma (\<lambda>x. ?f (inverse x)) \<in> o(\<lambda>x. ?g (inverse x)) \<Longrightarrow> ?f \<in> o[at_right 0](?g) ###symbols Groups.zero_class.zero :::: 'a Topological_Spaces.order_topology_class.at_right :::: 'a \<Rightarrow> 'a filter Landau_Symbols.smallo :::: 'a filter \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b) set Landau_Symbols.smallo_at_top :::: ('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b) set Fields.inverse_class.inverse :::: 'a \<Rightarrow> 'a ###defs class zero = fixes zero :: 'a ("0") class order_topology = order + "open" + assumes open_generated_order: "open = generate_topology (range (\<lambda>a. {..< a}) \<union> range (\<lambda>a. {a <..}))" begin definition smallo :: "'a filter \<Rightarrow> ('a \<Rightarrow> ('b :: real_normed_field)) \<Rightarrow> ('a \<Rightarrow> 'b) set" (\<open>(1o[_]'(_'))\<close>) where "smallo F g = {f. (\<forall>c>0. eventually (\<lambda>x. norm (f x) \<le> c * norm (g x)) F)}" abbreviation smallo_at_top (\<open>(2o'(_'))\<close>) where "o(g) \<equiv> smallo at_top g" class inverse = divide + fixes inverse :: "'a \<Rightarrow> 'a" begin
###output (\<lambda>y_0. x_1 (?H1 y_0)) \<in> ?H2 (\<lambda>y_1. x_2 (?H1 y_1)) \<Longrightarrow> x_1 \<in> ?H3 (?H4 ?H5) x_2###end
Analysis/Polytope
Polytope.face_of_Times_decomp
null
(?C face_of ?S \<times> ?S') = (\<exists>F F'. F face_of ?S \<and> F' face_of ?S' \<and> ?C = F \<times> F')
?H1 x_1 (?H2 x_2 x_3) = (\<exists>y_0 y_1. ?H1 y_0 x_2 \<and> ?H1 y_1 x_3 \<and> x_1 = ?H2 y_0 y_1)
[ "Product_Type.Times", "Polytope.face_of" ]
[ "'a set \\<Rightarrow> 'b set \\<Rightarrow> ('a \\<times> 'b) set", "'a set \\<Rightarrow> 'a set \\<Rightarrow> bool" ]
[ "abbreviation Times :: \"'a set \\<Rightarrow> 'b set \\<Rightarrow> ('a \\<times> 'b) set\" (infixr \"\\<times>\" 80)\n where \"A \\<times> B \\<equiv> Sigma A (\\<lambda>_. B)\"" ]
template
###lemma (?C face_of ?S \<times> ?S') = (\<exists>F F'. F face_of ?S \<and> F' face_of ?S' \<and> ?C = F \<times> F') ###symbols Product_Type.Times :::: 'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<times> 'b) set Polytope.face_of :::: 'a set \<Rightarrow> 'a set \<Rightarrow> bool ###defs abbreviation Times :: "'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<times> 'b) set" (infixr "\<times>" 80) where "A \<times> B \<equiv> Sigma A (\<lambda>_. B)"
###output ?H1 x_1 (?H2 x_2 x_3) = (\<exists>y_0 y_1. ?H1 y_0 x_2 \<and> ?H1 y_1 x_3 \<and> x_1 = ?H2 y_0 y_1)###end
Set_Interval
Set_Interval.bounded_nat_set_is_finite
lemma bounded_nat_set_is_finite: "(\<forall>i\<in>N. i < (n::nat)) \<Longrightarrow> finite N"
\<forall>i\<in> ?N. i < ?n \<Longrightarrow> finite ?N
\<forall>y_0\<in>x_1. y_0 < x_2 \<Longrightarrow> ?H1 x_1
[ "Finite_Set.finite" ]
[ "'a set \\<Rightarrow> bool" ]
[ "class finite =\n assumes finite_UNIV: \"finite (UNIV :: 'a set)\"\nbegin" ]
template
###lemma \<forall>i\<in> ?N. i < ?n \<Longrightarrow> finite ?N ###symbols Finite_Set.finite :::: 'a set \<Rightarrow> bool ###defs class finite = assumes finite_UNIV: "finite (UNIV :: 'a set)" begin
###output \<forall>y_0\<in>x_1. y_0 < x_2 \<Longrightarrow> ?H1 x_1###end
Quotient
Quotient.QT_all
null
Quot_True (All ?P) \<Longrightarrow> Quot_True ?P
?H1 (All x_1) \<Longrightarrow> ?H1 x_1
[ "Quotient.Quot_True" ]
[ "'a \\<Rightarrow> bool" ]
[ "definition\n Quot_True :: \"'a \\<Rightarrow> bool\"\nwhere\n \"Quot_True x \\<longleftrightarrow> True\"" ]
template
###lemma Quot_True (All ?P) \<Longrightarrow> Quot_True ?P ###symbols Quotient.Quot_True :::: 'a \<Rightarrow> bool ###defs definition Quot_True :: "'a \<Rightarrow> bool" where "Quot_True x \<longleftrightarrow> True"
###output ?H1 (All x_1) \<Longrightarrow> ?H1 x_1###end
Analysis/Complex_Transcendental
Complex_Transcendental.exp_Complex
lemma exp_Complex: "exp(Complex r t) = of_real(exp r) * Complex (cos t) (sin t)"
exp (Complex ?r ?t) = complex_of_real (exp ?r) * Complex (cos ?t) (sin ?t)
?H1 (?H2 x_1 x_2) = ?H3 (?H4 (?H1 x_1)) (?H2 (?H5 x_2) (?H6 x_2))
[ "Transcendental.sin", "Transcendental.cos", "Complex.complex_of_real", "Groups.times_class.times", "Complex.complex.Complex", "Transcendental.exp" ]
[ "'a \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a", "real \\<Rightarrow> complex", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "real \\<Rightarrow> real \\<Rightarrow> complex", "'a \\<Rightarrow> 'a" ]
[ "definition sin :: \"'a \\<Rightarrow> 'a::{real_normed_algebra_1,banach}\"\n where \"sin = (\\<lambda>x. \\<Sum>n. sin_coeff n *\\<^sub>R x^n)\"", "definition cos :: \"'a \\<Rightarrow> 'a::{real_normed_algebra_1,banach}\"\n where \"cos = (\\<lambda>x. \\<Sum>n. cos_coeff n *\\<^sub>R x^n)\"", "abbreviation complex_of_real :: \"real \\<Rightarrow> complex\"\n where \"complex_of_real \\<equiv> of_real\"", "class times =\n fixes times :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"*\" 70)", "codatatype complex = Complex (Re: real) (Im: real)", "definition exp :: \"'a \\<Rightarrow> 'a::{real_normed_algebra_1,banach}\"\n where \"exp = (\\<lambda>x. \\<Sum>n. x^n /\\<^sub>R fact n)\"" ]
template
###lemma exp (Complex ?r ?t) = complex_of_real (exp ?r) * Complex (cos ?t) (sin ?t) ###symbols Transcendental.sin :::: 'a \<Rightarrow> 'a Transcendental.cos :::: 'a \<Rightarrow> 'a Complex.complex_of_real :::: real \<Rightarrow> complex Groups.times_class.times :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Complex.complex.Complex :::: real \<Rightarrow> real \<Rightarrow> complex Transcendental.exp :::: 'a \<Rightarrow> 'a ###defs definition sin :: "'a \<Rightarrow> 'a::{real_normed_algebra_1,banach}" where "sin = (\<lambda>x. \<Sum>n. sin_coeff n *\<^sub>R x^n)" definition cos :: "'a \<Rightarrow> 'a::{real_normed_algebra_1,banach}" where "cos = (\<lambda>x. \<Sum>n. cos_coeff n *\<^sub>R x^n)" abbreviation complex_of_real :: "real \<Rightarrow> complex" where "complex_of_real \<equiv> of_real" class times = fixes times :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "*" 70) codatatype complex = Complex (Re: real) (Im: real) definition exp :: "'a \<Rightarrow> 'a::{real_normed_algebra_1,banach}" where "exp = (\<lambda>x. \<Sum>n. x^n /\<^sub>R fact n)"
###output ?H1 (?H2 x_1 x_2) = ?H3 (?H4 (?H1 x_1)) (?H2 (?H5 x_2) (?H6 x_2))###end
String
String.digit4_ascii_of_iff
lemma digit4_ascii_of_iff [simp]: "digit4 (String.ascii_of c) \<longleftrightarrow> digit4 c"
digit4 (String.ascii_of ?c) = digit4 ?c
?H1 (?H2 x_1) = ?H1 x_1
[ "String.ascii_of", "String.char.digit4" ]
[ "char \\<Rightarrow> char", "char \\<Rightarrow> bool" ]
[ "definition ascii_of :: \"char \\<Rightarrow> char\"\n where \"ascii_of c = Char (digit0 c) (digit1 c) (digit2 c) (digit3 c) (digit4 c) (digit5 c) (digit6 c) False\"", "datatype char =\n Char (digit0: bool) (digit1: bool) (digit2: bool) (digit3: bool)\n (digit4: bool) (digit5: bool) (digit6: bool) (digit7: bool)" ]
template
###lemma digit4 (String.ascii_of ?c) = digit4 ?c ###symbols String.ascii_of :::: char \<Rightarrow> char String.char.digit4 :::: char \<Rightarrow> bool ###defs definition ascii_of :: "char \<Rightarrow> char" where "ascii_of c = Char (digit0 c) (digit1 c) (digit2 c) (digit3 c) (digit4 c) (digit5 c) (digit6 c) False" datatype char = Char (digit0: bool) (digit1: bool) (digit2: bool) (digit3: bool) (digit4: bool) (digit5: bool) (digit6: bool) (digit7: bool)
###output ?H1 (?H2 x_1) = ?H1 x_1###end
Bali/Trans
Transfer.funpow_transfer
null
rel_fun (=) (rel_fun (rel_fun ?A ?A) (rel_fun ?A ?A)) compow compow
?H1 (=) (?H1 (?H1 x_1 x_1) (?H1 x_1 x_1)) ?H2 ?H2
[ "Nat.compow", "BNF_Def.rel_fun" ]
[ "nat \\<Rightarrow> 'a \\<Rightarrow> 'a", "('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> ('c \\<Rightarrow> 'd \\<Rightarrow> bool) \\<Rightarrow> ('a \\<Rightarrow> 'c) \\<Rightarrow> ('b \\<Rightarrow> 'd) \\<Rightarrow> bool" ]
[ "consts compow :: \"nat \\<Rightarrow> 'a \\<Rightarrow> 'a\"", "definition\n rel_fun :: \"('a \\<Rightarrow> 'c \\<Rightarrow> bool) \\<Rightarrow> ('b \\<Rightarrow> 'd \\<Rightarrow> bool) \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> ('c \\<Rightarrow> 'd) \\<Rightarrow> bool\"\nwhere\n \"rel_fun A B = (\\<lambda>f g. \\<forall>x y. A x y \\<longrightarrow> B (f x) (g y))\"" ]
template
###lemma rel_fun (=) (rel_fun (rel_fun ?A ?A) (rel_fun ?A ?A)) compow compow ###symbols Nat.compow :::: nat \<Rightarrow> 'a \<Rightarrow> 'a BNF_Def.rel_fun :::: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('c \<Rightarrow> 'd \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'c) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> bool ###defs consts compow :: "nat \<Rightarrow> 'a \<Rightarrow> 'a" definition rel_fun :: "('a \<Rightarrow> 'c \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'd \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('c \<Rightarrow> 'd) \<Rightarrow> bool" where "rel_fun A B = (\<lambda>f g. \<forall>x y. A x y \<longrightarrow> B (f x) (g y))"
###output ?H1 (=) (?H1 (?H1 x_1 x_1) (?H1 x_1 x_1)) ?H2 ?H2###end
Bali/DeclConcepts
DeclConcepts.dynmethdSomeD
lemma dynmethdSomeD: "\<lbrakk>dynmethd G statC dynC sig = Some dynM; is_class G dynC; ws_prog G\<rbrakk> \<Longrightarrow> G\<turnstile>dynC \<preceq>\<^sub>C statC \<and> (\<exists> statM. methd G statC sig = Some statM)"
dynmethd ?G ?statC ?dynC ?sig = Some ?dynM \<Longrightarrow> is_class ?G ?dynC \<Longrightarrow> ws_prog ?G \<Longrightarrow> ?G\<turnstile> ?dynC\<preceq>\<^sub>C ?statC \<and> (\<exists>statM. methd ?G ?statC ?sig = Some statM)
\<lbrakk> ?H1 x_1 x_2 x_3 x_4 = ?H2 x_5; ?H3 x_1 x_3; ?H4 x_1\<rbrakk> \<Longrightarrow> ?H5 x_1 x_3 x_2 \<and> (\<exists>y_0. ?H6 x_1 x_2 x_4 = ?H2 y_0)
[ "DeclConcepts.methd", "Decl.subclseq_syntax", "Decl.ws_prog", "Decl.is_class", "Option.option.Some", "DeclConcepts.dynmethd" ]
[ "prog \\<Rightarrow> qtname \\<Rightarrow> sig \\<Rightarrow> (qtname \\<times> methd) option", "prog \\<Rightarrow> qtname \\<Rightarrow> qtname \\<Rightarrow> bool", "prog \\<Rightarrow> bool", "prog \\<Rightarrow> qtname \\<Rightarrow> bool", "'a \\<Rightarrow> 'a option", "prog \\<Rightarrow> qtname \\<Rightarrow> qtname \\<Rightarrow> sig \\<Rightarrow> (qtname \\<times> methd) option" ]
[ "definition\n methd :: \"prog \\<Rightarrow> qtname \\<Rightarrow> (sig,qtname \\<times> methd) table\" where\n \"methd G C =\n class_rec G C Map.empty\n (\\<lambda>C c subcls_mthds. \n filter_tab (\\<lambda>sig m. G\\<turnstile>C inherits method sig m)\n subcls_mthds \n ++ \n table_of (map (\\<lambda>(s,m). (s,C,m)) (methods c)))\"", "abbreviation\n subclseq_syntax :: \"prog => [qtname, qtname] => bool\" (\"_\\<turnstile>_\\<preceq>\\<^sub>C _\" [71,71,71] 70) \n where \"G\\<turnstile>C \\<preceq>\\<^sub>C D == (C,D) \\<in>(subcls1 G)\\<^sup>*\"", "definition\n ws_prog :: \"prog \\<Rightarrow> bool\" where\n \"ws_prog G = ((\\<forall>(I,i)\\<in>set (ifaces G). ws_idecl G I (isuperIfs i)) \\<and> \n (\\<forall>(C,c)\\<in>set (classes G). ws_cdecl G C (super c)))\"", "abbreviation\n is_class :: \"prog \\<Rightarrow> qtname \\<Rightarrow> bool\"\n where \"is_class G C == class G C \\<noteq> None\"", "datatype 'a option =\n None\n | Some (the: 'a)", "definition\n dynmethd :: \"prog \\<Rightarrow> qtname \\<Rightarrow> qtname \\<Rightarrow> (sig,qtname \\<times> methd) table\" where\n \"dynmethd G statC dynC =\n (\\<lambda>sig.\n (if G\\<turnstile>dynC \\<preceq>\\<^sub>C statC\n then (case methd G statC sig of\n None \\<Rightarrow> None\n | Some statM \n \\<Rightarrow> (class_rec G dynC Map.empty\n (\\<lambda>C c subcls_mthds. \n subcls_mthds\n ++\n (filter_tab \n (\\<lambda> _ dynM. G,sig\\<turnstile>dynM overrides statM \\<or> dynM=statM)\n (methd G C) ))\n ) sig\n )\n else None))\"" ]
template
###lemma dynmethd ?G ?statC ?dynC ?sig = Some ?dynM \<Longrightarrow> is_class ?G ?dynC \<Longrightarrow> ws_prog ?G \<Longrightarrow> ?G\<turnstile> ?dynC\<preceq>\<^sub>C ?statC \<and> (\<exists>statM. methd ?G ?statC ?sig = Some statM) ###symbols DeclConcepts.methd :::: prog \<Rightarrow> qtname \<Rightarrow> sig \<Rightarrow> (qtname \<times> methd) option Decl.subclseq_syntax :::: prog \<Rightarrow> qtname \<Rightarrow> qtname \<Rightarrow> bool Decl.ws_prog :::: prog \<Rightarrow> bool Decl.is_class :::: prog \<Rightarrow> qtname \<Rightarrow> bool Option.option.Some :::: 'a \<Rightarrow> 'a option DeclConcepts.dynmethd :::: prog \<Rightarrow> qtname \<Rightarrow> qtname \<Rightarrow> sig \<Rightarrow> (qtname \<times> methd) option ###defs definition methd :: "prog \<Rightarrow> qtname \<Rightarrow> (sig,qtname \<times> methd) table" where "methd G C = class_rec G C Map.empty (\<lambda>C c subcls_mthds. filter_tab (\<lambda>sig m. G\<turnstile>C inherits method sig m) subcls_mthds ++ table_of (map (\<lambda>(s,m). (s,C,m)) (methods c)))" abbreviation subclseq_syntax :: "prog => [qtname, qtname] => bool" ("_\<turnstile>_\<preceq>\<^sub>C _" [71,71,71] 70) where "G\<turnstile>C \<preceq>\<^sub>C D == (C,D) \<in>(subcls1 G)\<^sup>*" definition ws_prog :: "prog \<Rightarrow> bool" where "ws_prog G = ((\<forall>(I,i)\<in>set (ifaces G). ws_idecl G I (isuperIfs i)) \<and> (\<forall>(C,c)\<in>set (classes G). ws_cdecl G C (super c)))" abbreviation is_class :: "prog \<Rightarrow> qtname \<Rightarrow> bool" where "is_class G C == class G C \<noteq> None" datatype 'a option = None | Some (the: 'a) definition dynmethd :: "prog \<Rightarrow> qtname \<Rightarrow> qtname \<Rightarrow> (sig,qtname \<times> methd) table" where "dynmethd G statC dynC = (\<lambda>sig. (if G\<turnstile>dynC \<preceq>\<^sub>C statC then (case methd G statC sig of None \<Rightarrow> None | Some statM \<Rightarrow> (class_rec G dynC Map.empty (\<lambda>C c subcls_mthds. subcls_mthds ++ (filter_tab (\<lambda> _ dynM. G,sig\<turnstile>dynM overrides statM \<or> dynM=statM) (methd G C) )) ) sig ) else None))"
###output \<lbrakk> ?H1 x_1 x_2 x_3 x_4 = ?H2 x_5; ?H3 x_1 x_3; ?H4 x_1\<rbrakk> \<Longrightarrow> ?H5 x_1 x_3 x_2 \<and> (\<exists>y_0. ?H6 x_1 x_2 x_4 = ?H2 y_0)###end
Auth/Smartcard/ShoupRubin
ShoupRubin.B_authenticates_A
lemma B_authenticates_A: "\<lbrakk> Gets B (Crypt (pairK(A,B)) (Nonce Nb)) \<in> set evs; B \<noteq> Spy; \<not>illegalUse(Card A); \<not>illegalUse(Card B); evs \<in> sr \<rbrakk> \<Longrightarrow> Outpts (Card A) A \<lbrace>Key (sesK(Nb,pairK(A,B))), Crypt (pairK(A,B)) (Nonce Nb)\<rbrace> \<in> set evs"
Gets ?B (Crypt (pairK (?A, ?B)) (Nonce ?Nb)) \<in> set ?evs \<Longrightarrow> ?B \<noteq> Spy \<Longrightarrow> \<not> illegalUse (Card ?A) \<Longrightarrow> \<not> illegalUse (Card ?B) \<Longrightarrow> ?evs \<in> sr \<Longrightarrow> Outpts (Card ?A) ?A \<lbrace>Key (sesK (?Nb, pairK (?A, ?B))), Crypt (pairK (?A, ?B)) (Nonce ?Nb)\<rbrace> \<in> set ?evs
\<lbrakk> ?H1 x_1 (?H2 (?H3 (x_2, x_1)) (?H4 x_3)) \<in> ?H5 x_4; x_1 \<noteq> ?H6; \<not> ?H7 (?H8 x_2); \<not> ?H7 (?H8 x_1); x_4 \<in> ?H9\<rbrakk> \<Longrightarrow> ?H10 (?H8 x_2) x_2 (?H11 (?H12 (?H13 (x_3, ?H3 (x_2, x_1)))) (?H2 (?H3 (x_2, x_1)) (?H4 x_3))) \<in> ?H5 x_4
[ "ShoupRubin.sesK", "Message.msg.Key", "Message.msg.MPair", "EventSC.event.Outpts", "ShoupRubin.sr", "EventSC.card.Card", "Smartcard.illegalUse", "Message.agent.Spy", "List.list.set", "Message.msg.Nonce", "Smartcard.pairK", "Message.msg.Crypt", "EventSC.event.Gets" ]
[ "nat \\<times> nat \\<Rightarrow> nat", "nat \\<Rightarrow> msg", "msg \\<Rightarrow> msg \\<Rightarrow> msg", "card \\<Rightarrow> agent \\<Rightarrow> msg \\<Rightarrow> event", "event list set", "agent \\<Rightarrow> card", "card \\<Rightarrow> bool", "agent", "'a list \\<Rightarrow> 'a set", "nat \\<Rightarrow> msg", "agent \\<times> agent \\<Rightarrow> nat", "nat \\<Rightarrow> msg \\<Rightarrow> msg", "agent \\<Rightarrow> msg \\<Rightarrow> event" ]
[ "datatype\n msg = Agent agent \\<comment> \\<open>Agent names\\<close>\n | Number nat \\<comment> \\<open>Ordinary integers, timestamps, ...\\<close>\n | Nonce nat \\<comment> \\<open>Unguessable nonces\\<close>\n | Key key \\<comment> \\<open>Crypto keys\\<close>\n | Hash msg \\<comment> \\<open>Hashing\\<close>\n | MPair msg msg \\<comment> \\<open>Compound messages\\<close>\n | Crypt key msg \\<comment> \\<open>Encryption, public- or shared-key\\<close>", "datatype\n msg = Agent agent \\<comment> \\<open>Agent names\\<close>\n | Number nat \\<comment> \\<open>Ordinary integers, timestamps, ...\\<close>\n | Nonce nat \\<comment> \\<open>Unguessable nonces\\<close>\n | Key key \\<comment> \\<open>Crypto keys\\<close>\n | Hash msg \\<comment> \\<open>Hashing\\<close>\n | MPair msg msg \\<comment> \\<open>Compound messages\\<close>\n | Crypt key msg \\<comment> \\<open>Encryption, public- or shared-key\\<close>", "primrec illegalUse :: \"card => bool\" where\n illegalUse_def: \"illegalUse (Card A) = ( (Card A \\<in> stolen \\<and> A \\<in> bad) \\<or> Card A \\<in> cloned )\"", "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "datatype\n msg = Agent agent \\<comment> \\<open>Agent names\\<close>\n | Number nat \\<comment> \\<open>Ordinary integers, timestamps, ...\\<close>\n | Nonce nat \\<comment> \\<open>Unguessable nonces\\<close>\n | Key key \\<comment> \\<open>Crypto keys\\<close>\n | Hash msg \\<comment> \\<open>Hashing\\<close>\n | MPair msg msg \\<comment> \\<open>Compound messages\\<close>\n | Crypt key msg \\<comment> \\<open>Encryption, public- or shared-key\\<close>", "datatype\n msg = Agent agent \\<comment> \\<open>Agent names\\<close>\n | Number nat \\<comment> \\<open>Ordinary integers, timestamps, ...\\<close>\n | Nonce nat \\<comment> \\<open>Unguessable nonces\\<close>\n | Key key \\<comment> \\<open>Crypto keys\\<close>\n | Hash msg \\<comment> \\<open>Hashing\\<close>\n | MPair msg msg \\<comment> \\<open>Compound messages\\<close>\n | Crypt key msg \\<comment> \\<open>Encryption, public- or shared-key\\<close>" ]
template
###lemma Gets ?B (Crypt (pairK (?A, ?B)) (Nonce ?Nb)) \<in> set ?evs \<Longrightarrow> ?B \<noteq> Spy \<Longrightarrow> \<not> illegalUse (Card ?A) \<Longrightarrow> \<not> illegalUse (Card ?B) \<Longrightarrow> ?evs \<in> sr \<Longrightarrow> Outpts (Card ?A) ?A \<lbrace>Key (sesK (?Nb, pairK (?A, ?B))), Crypt (pairK (?A, ?B)) (Nonce ?Nb)\<rbrace> \<in> set ?evs ###symbols ShoupRubin.sesK :::: nat \<times> nat \<Rightarrow> nat Message.msg.Key :::: nat \<Rightarrow> msg Message.msg.MPair :::: msg \<Rightarrow> msg \<Rightarrow> msg EventSC.event.Outpts :::: card \<Rightarrow> agent \<Rightarrow> msg \<Rightarrow> event ShoupRubin.sr :::: event list set EventSC.card.Card :::: agent \<Rightarrow> card Smartcard.illegalUse :::: card \<Rightarrow> bool Message.agent.Spy :::: agent List.list.set :::: 'a list \<Rightarrow> 'a set Message.msg.Nonce :::: nat \<Rightarrow> msg Smartcard.pairK :::: agent \<times> agent \<Rightarrow> nat Message.msg.Crypt :::: nat \<Rightarrow> msg \<Rightarrow> msg EventSC.event.Gets :::: agent \<Rightarrow> msg \<Rightarrow> event ###defs datatype msg = Agent agent \<comment> \<open>Agent names\<close> | Number nat \<comment> \<open>Ordinary integers, timestamps, ...\<close> | Nonce nat \<comment> \<open>Unguessable nonces\<close> | Key key \<comment> \<open>Crypto keys\<close> | Hash msg \<comment> \<open>Hashing\<close> | MPair msg msg \<comment> \<open>Compound messages\<close> | Crypt key msg \<comment> \<open>Encryption, public- or shared-key\<close> datatype msg = Agent agent \<comment> \<open>Agent names\<close> | Number nat \<comment> \<open>Ordinary integers, timestamps, ...\<close> | Nonce nat \<comment> \<open>Unguessable nonces\<close> | Key key \<comment> \<open>Crypto keys\<close> | Hash msg \<comment> \<open>Hashing\<close> | MPair msg msg \<comment> \<open>Compound messages\<close> | Crypt key msg \<comment> \<open>Encryption, public- or shared-key\<close> primrec illegalUse :: "card => bool" where illegalUse_def: "illegalUse (Card A) = ( (Card A \<in> stolen \<and> A \<in> bad) \<or> Card A \<in> cloned )" datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" datatype msg = Agent agent \<comment> \<open>Agent names\<close> | Number nat \<comment> \<open>Ordinary integers, timestamps, ...\<close> | Nonce nat \<comment> \<open>Unguessable nonces\<close> | Key key \<comment> \<open>Crypto keys\<close> | Hash msg \<comment> \<open>Hashing\<close> | MPair msg msg \<comment> \<open>Compound messages\<close> | Crypt key msg \<comment> \<open>Encryption, public- or shared-key\<close> datatype msg = Agent agent \<comment> \<open>Agent names\<close> | Number nat \<comment> \<open>Ordinary integers, timestamps, ...\<close> | Nonce nat \<comment> \<open>Unguessable nonces\<close> | Key key \<comment> \<open>Crypto keys\<close> | Hash msg \<comment> \<open>Hashing\<close> | MPair msg msg \<comment> \<open>Compound messages\<close> | Crypt key msg \<comment> \<open>Encryption, public- or shared-key\<close>
###output \<lbrakk> ?H1 x_1 (?H2 (?H3 (x_2, x_1)) (?H4 x_3)) \<in> ?H5 x_4; x_1 \<noteq> ?H6; \<not> ?H7 (?H8 x_2); \<not> ?H7 (?H8 x_1); x_4 \<in> ?H9\<rbrakk> \<Longrightarrow> ?H10 (?H8 x_2) x_2 (?H11 (?H12 (?H13 (x_3, ?H3 (x_2, x_1)))) (?H2 (?H3 (x_2, x_1)) (?H4 x_3))) \<in> ?H5 x_4###end
UNITY/Simple/Lift
Lifting_Set.strict_subset_transfer
null
bi_unique ?A \<Longrightarrow> rel_fun (rel_set ?A) (rel_fun (rel_set ?A) (=)) (\<subset>) (\<subset>)
?H1 x_1 \<Longrightarrow> ?H2 (?H3 x_1) (?H2 (?H3 x_1) (=)) ?H4 ?H4
[ "Set.subset", "BNF_Def.rel_set", "BNF_Def.rel_fun", "Transfer.bi_unique" ]
[ "'a set \\<Rightarrow> 'a set \\<Rightarrow> bool", "('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> 'a set \\<Rightarrow> 'b set \\<Rightarrow> bool", "('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> ('c \\<Rightarrow> 'd \\<Rightarrow> bool) \\<Rightarrow> ('a \\<Rightarrow> 'c) \\<Rightarrow> ('b \\<Rightarrow> 'd) \\<Rightarrow> bool", "('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> bool" ]
[ "abbreviation subset :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> bool\"\n where \"subset \\<equiv> less\"", "definition rel_set :: \"('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> 'a set \\<Rightarrow> 'b set \\<Rightarrow> bool\"\n where \"rel_set R = (\\<lambda>A B. (\\<forall>x\\<in>A. \\<exists>y\\<in>B. R x y) \\<and> (\\<forall>y\\<in>B. \\<exists>x\\<in>A. R x y))\"", "definition\n rel_fun :: \"('a \\<Rightarrow> 'c \\<Rightarrow> bool) \\<Rightarrow> ('b \\<Rightarrow> 'd \\<Rightarrow> bool) \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> ('c \\<Rightarrow> 'd) \\<Rightarrow> bool\"\nwhere\n \"rel_fun A B = (\\<lambda>f g. \\<forall>x y. A x y \\<longrightarrow> B (f x) (g y))\"", "definition bi_unique :: \"('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> bool\"\n where \"bi_unique R \\<longleftrightarrow>\n (\\<forall>x y z. R x y \\<longrightarrow> R x z \\<longrightarrow> y = z) \\<and>\n (\\<forall>x y z. R x z \\<longrightarrow> R y z \\<longrightarrow> x = y)\"" ]
template
###lemma bi_unique ?A \<Longrightarrow> rel_fun (rel_set ?A) (rel_fun (rel_set ?A) (=)) (\<subset>) (\<subset>) ###symbols Set.subset :::: 'a set \<Rightarrow> 'a set \<Rightarrow> bool BNF_Def.rel_set :::: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> bool BNF_Def.rel_fun :::: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('c \<Rightarrow> 'd \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'c) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> bool Transfer.bi_unique :::: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool ###defs abbreviation subset :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where "subset \<equiv> less" definition rel_set :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> bool" where "rel_set R = (\<lambda>A B. (\<forall>x\<in>A. \<exists>y\<in>B. R x y) \<and> (\<forall>y\<in>B. \<exists>x\<in>A. R x y))" definition rel_fun :: "('a \<Rightarrow> 'c \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'd \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('c \<Rightarrow> 'd) \<Rightarrow> bool" where "rel_fun A B = (\<lambda>f g. \<forall>x y. A x y \<longrightarrow> B (f x) (g y))" definition bi_unique :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool" where "bi_unique R \<longleftrightarrow> (\<forall>x y z. R x y \<longrightarrow> R x z \<longrightarrow> y = z) \<and> (\<forall>x y z. R x z \<longrightarrow> R y z \<longrightarrow> x = y)"
###output ?H1 x_1 \<Longrightarrow> ?H2 (?H3 x_1) (?H2 (?H3 x_1) (=)) ?H4 ?H4###end
List
List.find_dropWhile
lemma find_dropWhile: "List.find P xs = (case dropWhile (Not \<circ> P) xs of [] \<Rightarrow> None | x # _ \<Rightarrow> Some x)"
find ?P ?xs = (case dropWhile (Not \<circ> ?P) ?xs of [] \<Rightarrow> None | x # xa \<Rightarrow> Some x)
?H1 x_1 x_2 = ?H2 ?H3 (\<lambda>y_0 y_1. ?H4 y_0) (?H5 (?H6 Not x_1) x_2)
[ "Fun.comp", "List.dropWhile", "Option.option.Some", "Option.option.None", "List.list.case_list", "List.find" ]
[ "('a \\<Rightarrow> 'b) \\<Rightarrow> ('c \\<Rightarrow> 'a) \\<Rightarrow> 'c \\<Rightarrow> 'b", "('a \\<Rightarrow> bool) \\<Rightarrow> 'a list \\<Rightarrow> 'a list", "'a \\<Rightarrow> 'a option", "'a option", "'a \\<Rightarrow> ('b \\<Rightarrow> 'b list \\<Rightarrow> 'a) \\<Rightarrow> 'b list \\<Rightarrow> 'a", "('a \\<Rightarrow> bool) \\<Rightarrow> 'a list \\<Rightarrow> 'a option" ]
[ "definition comp :: \"('b \\<Rightarrow> 'c) \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> 'a \\<Rightarrow> 'c\" (infixl \"\\<circ>\" 55)\n where \"f \\<circ> g = (\\<lambda>x. f (g x))\"", "primrec dropWhile :: \"('a \\<Rightarrow> bool) \\<Rightarrow> 'a list \\<Rightarrow> 'a list\" where\n\"dropWhile P [] = []\" |\n\"dropWhile P (x # xs) = (if P x then dropWhile P xs else x # xs)\"", "datatype 'a option =\n None\n | Some (the: 'a)", "datatype 'a option =\n None\n | Some (the: 'a)", "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "primrec find :: \"('a \\<Rightarrow> bool) \\<Rightarrow> 'a list \\<Rightarrow> 'a option\" where\n\"find _ [] = None\" |\n\"find P (x#xs) = (if P x then Some x else find P xs)\"" ]
template
###lemma find ?P ?xs = (case dropWhile (Not \<circ> ?P) ?xs of [] \<Rightarrow> None | x # xa \<Rightarrow> Some x) ###symbols Fun.comp :::: ('a \<Rightarrow> 'b) \<Rightarrow> ('c \<Rightarrow> 'a) \<Rightarrow> 'c \<Rightarrow> 'b List.dropWhile :::: ('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'a list Option.option.Some :::: 'a \<Rightarrow> 'a option Option.option.None :::: 'a option List.list.case_list :::: 'a \<Rightarrow> ('b \<Rightarrow> 'b list \<Rightarrow> 'a) \<Rightarrow> 'b list \<Rightarrow> 'a List.find :::: ('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'a option ###defs definition comp :: "('b \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'c" (infixl "\<circ>" 55) where "f \<circ> g = (\<lambda>x. f (g x))" primrec dropWhile :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'a list" where "dropWhile P [] = []" | "dropWhile P (x # xs) = (if P x then dropWhile P xs else x # xs)" datatype 'a option = None | Some (the: 'a) datatype 'a option = None | Some (the: 'a) datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" primrec find :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'a option" where "find _ [] = None" | "find P (x#xs) = (if P x then Some x else find P xs)"
###output ?H1 x_1 x_2 = ?H2 ?H3 (\<lambda>y_0 y_1. ?H4 y_0) (?H5 (?H6 Not x_1) x_2)###end
IMPP/Hoare
Hoare.MGT_alternI
lemma MGT_alternI: "G|-MGT c \<Longrightarrow> G|-{\<lambda>Z s0. \<forall>s1. <c,s0> -c-> s1 \<longrightarrow> Z=s1}. c .{\<lambda>Z s1. Z=s1}"
?G|-{=}. ?c.{->} \<Longrightarrow> ?G|-{\<lambda>Z s0. \<forall>s1. < ?c,s0> -c-> s1 \<longrightarrow> Z = s1}. ?c .{(=)}
?H1 x_1 (?H2 x_2) \<Longrightarrow> ?H1 x_1 (?H3 (\<lambda>y_0 y_1. \<forall>y_2. ?H4 x_2 y_1 y_2 \<longrightarrow> y_0 = y_2) x_2 (=))
[ "Natural.evalc", "Hoare.triple.triple", "Hoare.MGT", "Hoare.hoare_deriv" ]
[ "com \\<Rightarrow> state assn", "'a assn \\<Rightarrow> com \\<Rightarrow> 'a assn \\<Rightarrow> 'a triple", "com \\<Rightarrow> state triple", "'a triple set \\<Rightarrow> 'a triple \\<Rightarrow> bool" ]
[ "inductive\n evalc :: \"[com,state, state] => bool\" (\"<_,_>/ -c-> _\" [0,0, 51] 51)\n where\n Skip: \"<SKIP,s> -c-> s\"\n\n | Assign: \"<X :== a,s> -c-> s[X::=a s]\"\n\n | Local: \"<c, s0[Loc Y::= a s0]> -c-> s1 ==>\n <LOCAL Y := a IN c, s0> -c-> s1[Loc Y::=s0<Y>]\"\n\n | Semi: \"[| <c0,s0> -c-> s1; <c1,s1> -c-> s2 |] ==>\n <c0;; c1, s0> -c-> s2\"\n\n | IfTrue: \"[| b s; <c0,s> -c-> s1 |] ==>\n <IF b THEN c0 ELSE c1, s> -c-> s1\"\n\n | IfFalse: \"[| ~b s; <c1,s> -c-> s1 |] ==>\n <IF b THEN c0 ELSE c1, s> -c-> s1\"\n\n | WhileFalse: \"~b s ==> <WHILE b DO c,s> -c-> s\"\n\n | WhileTrue: \"[| b s0; <c,s0> -c-> s1; <WHILE b DO c, s1> -c-> s2 |] ==>\n <WHILE b DO c, s0> -c-> s2\"\n\n | Body: \"<the (body pn), s0> -c-> s1 ==>\n <BODY pn, s0> -c-> s1\"\n\n | Call: \"<BODY pn, (setlocs s0 newlocs)[Loc Arg::=a s0]> -c-> s1 ==>\n <X:=CALL pn(a), s0> -c-> (setlocs s1 (getlocs s0))\n [X::=s1<Res>]\"", "datatype 'a triple =\n triple \"'a assn\" com \"'a assn\" (\"{(1_)}./ (_)/ .{(1_)}\" [3,60,3] 58)", "definition\n MGT :: \"com => state triple\" (\"{=}._.{->}\" [60] 58) where\n \"{=}.c.{->} = {%Z s0. Z = s0}. c .{%Z s1. <c,Z> -c-> s1}\"" ]
template
###lemma ?G|-{=}. ?c.{->} \<Longrightarrow> ?G|-{\<lambda>Z s0. \<forall>s1. < ?c,s0> -c-> s1 \<longrightarrow> Z = s1}. ?c .{(=)} ###symbols Natural.evalc :::: com \<Rightarrow> state assn Hoare.triple.triple :::: 'a assn \<Rightarrow> com \<Rightarrow> 'a assn \<Rightarrow> 'a triple Hoare.MGT :::: com \<Rightarrow> state triple Hoare.hoare_deriv :::: 'a triple set \<Rightarrow> 'a triple \<Rightarrow> bool ###defs inductive evalc :: "[com,state, state] => bool" ("<_,_>/ -c-> _" [0,0, 51] 51) where Skip: "<SKIP,s> -c-> s" | Assign: "<X :== a,s> -c-> s[X::=a s]" | Local: "<c, s0[Loc Y::= a s0]> -c-> s1 ==> <LOCAL Y := a IN c, s0> -c-> s1[Loc Y::=s0<Y>]" | Semi: "[| <c0,s0> -c-> s1; <c1,s1> -c-> s2 |] ==> <c0;; c1, s0> -c-> s2" | IfTrue: "[| b s; <c0,s> -c-> s1 |] ==> <IF b THEN c0 ELSE c1, s> -c-> s1" | IfFalse: "[| ~b s; <c1,s> -c-> s1 |] ==> <IF b THEN c0 ELSE c1, s> -c-> s1" | WhileFalse: "~b s ==> <WHILE b DO c,s> -c-> s" | WhileTrue: "[| b s0; <c,s0> -c-> s1; <WHILE b DO c, s1> -c-> s2 |] ==> <WHILE b DO c, s0> -c-> s2" | Body: "<the (body pn), s0> -c-> s1 ==> <BODY pn, s0> -c-> s1" | Call: "<BODY pn, (setlocs s0 newlocs)[Loc Arg::=a s0]> -c-> s1 ==> <X:=CALL pn(a), s0> -c-> (setlocs s1 (getlocs s0)) [X::=s1<Res>]" datatype 'a triple = triple "'a assn" com "'a assn" ("{(1_)}./ (_)/ .{(1_)}" [3,60,3] 58) definition MGT :: "com => state triple" ("{=}._.{->}" [60] 58) where "{=}.c.{->} = {%Z s0. Z = s0}. c .{%Z s1. <c,Z> -c-> s1}"
###output ?H1 x_1 (?H2 x_2) \<Longrightarrow> ?H1 x_1 (?H3 (\<lambda>y_0 y_1. \<forall>y_2. ?H4 x_2 y_1 y_2 \<longrightarrow> y_0 = y_2) x_2 (=))###end
Analysis/Elementary_Topology
Elementary_Topology.islimpt_greaterThanLessThan2
lemma islimpt_greaterThanLessThan2: fixes a b::"'a::{linorder_topology, dense_order}" assumes "a < b" shows "b islimpt {a<..<b}"
?a < ?b \<Longrightarrow> ?b islimpt { ?a<..< ?b}
x_1 < x_2 \<Longrightarrow> ?H1 x_2 (?H2 x_1 x_2)
[ "Set_Interval.ord_class.greaterThanLessThan", "Elementary_Topology.topological_space_class.islimpt" ]
[ "'a \\<Rightarrow> 'a \\<Rightarrow> 'a set", "'a \\<Rightarrow> 'a set \\<Rightarrow> bool" ]
[]
template
###lemma ?a < ?b \<Longrightarrow> ?b islimpt { ?a<..< ?b} ###symbols Set_Interval.ord_class.greaterThanLessThan :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a set Elementary_Topology.topological_space_class.islimpt :::: 'a \<Rightarrow> 'a set \<Rightarrow> bool ###defs
###output x_1 < x_2 \<Longrightarrow> ?H1 x_2 (?H2 x_1 x_2)###end
SPARK/Examples/RIPEMD-160/F
Fun.inj_on_imp_bij_betw
null
inj_on ?f ?A \<Longrightarrow> bij_betw ?f ?A (?f ` ?A)
?H1 x_1 x_2 \<Longrightarrow> ?H2 x_1 x_2 (?H3 x_1 x_2)
[ "Set.image", "Fun.bij_betw", "Fun.inj_on" ]
[ "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set \\<Rightarrow> bool", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> bool" ]
[ "definition image :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set\" (infixr \"`\" 90)\n where \"f ` A = {y. \\<exists>x\\<in>A. y = f x}\"", "definition bij_betw :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set \\<Rightarrow> bool\" \\<comment> \\<open>bijective\\<close>\n where \"bij_betw f A B \\<longleftrightarrow> inj_on f A \\<and> f ` A = B\"", "definition inj_on :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> bool\" \\<comment> \\<open>injective\\<close>\n where \"inj_on f A \\<longleftrightarrow> (\\<forall>x\\<in>A. \\<forall>y\\<in>A. f x = f y \\<longrightarrow> x = y)\"" ]
template
###lemma inj_on ?f ?A \<Longrightarrow> bij_betw ?f ?A (?f ` ?A) ###symbols Set.image :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set Fun.bij_betw :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> bool Fun.inj_on :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> bool ###defs definition image :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set" (infixr "`" 90) where "f ` A = {y. \<exists>x\<in>A. y = f x}" definition bij_betw :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> bool" \<comment> \<open>bijective\<close> where "bij_betw f A B \<longleftrightarrow> inj_on f A \<and> f ` A = B" definition inj_on :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> bool" \<comment> \<open>injective\<close> where "inj_on f A \<longleftrightarrow> (\<forall>x\<in>A. \<forall>y\<in>A. f x = f y \<longrightarrow> x = y)"
###output ?H1 x_1 x_2 \<Longrightarrow> ?H2 x_1 x_2 (?H3 x_1 x_2)###end
Nonstandard_Analysis/Star
StarDef.Standard_power
null
?x \<in> Standard \<Longrightarrow> ?x ^ ?n \<in> Standard
x_1 \<in> ?H1 \<Longrightarrow> ?H2 x_1 x_2 \<in> ?H1
[ "Power.power_class.power", "StarDef.Standard" ]
[ "'a \\<Rightarrow> nat \\<Rightarrow> 'a", "'a star set" ]
[ "primrec power :: \"'a \\<Rightarrow> nat \\<Rightarrow> 'a\" (infixr \"^\" 80)\n where\n power_0: \"a ^ 0 = 1\"\n | power_Suc: \"a ^ Suc n = a * a ^ n\"", "definition Standard :: \"'a star set\"\n where \"Standard = range star_of\"" ]
template
###lemma ?x \<in> Standard \<Longrightarrow> ?x ^ ?n \<in> Standard ###symbols Power.power_class.power :::: 'a \<Rightarrow> nat \<Rightarrow> 'a StarDef.Standard :::: 'a star set ###defs primrec power :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infixr "^" 80) where power_0: "a ^ 0 = 1" | power_Suc: "a ^ Suc n = a * a ^ n" definition Standard :: "'a star set" where "Standard = range star_of"
###output x_1 \<in> ?H1 \<Longrightarrow> ?H2 x_1 x_2 \<in> ?H1###end
IMPP/Com
Complete_Lattices.Inter_subset
null
(\<And>X. X \<in> ?A \<Longrightarrow> X \<subseteq> ?B) \<Longrightarrow> ?A \<noteq> {} \<Longrightarrow> \<Inter> ?A \<subseteq> ?B
\<lbrakk>\<And>y_0. y_0 \<in> x_1 \<Longrightarrow> ?H1 y_0 x_2; x_1 \<noteq> ?H2\<rbrakk> \<Longrightarrow> ?H1 (?H3 x_1) x_2
[ "Complete_Lattices.Inter", "Set.empty", "Set.subset_eq" ]
[ "'a set set \\<Rightarrow> 'a set", "'a set", "'a set \\<Rightarrow> 'a set \\<Rightarrow> bool" ]
[ "abbreviation Inter :: \"'a set set \\<Rightarrow> 'a set\" (\"\\<Inter>\")\n where \"\\<Inter>S \\<equiv> \\<Sqinter>S\"", "abbreviation empty :: \"'a set\" (\"{}\")\n where \"{} \\<equiv> bot\"", "abbreviation subset_eq :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> bool\"\n where \"subset_eq \\<equiv> less_eq\"" ]
template
###lemma (\<And>X. X \<in> ?A \<Longrightarrow> X \<subseteq> ?B) \<Longrightarrow> ?A \<noteq> {} \<Longrightarrow> \<Inter> ?A \<subseteq> ?B ###symbols Complete_Lattices.Inter :::: 'a set set \<Rightarrow> 'a set Set.empty :::: 'a set Set.subset_eq :::: 'a set \<Rightarrow> 'a set \<Rightarrow> bool ###defs abbreviation Inter :: "'a set set \<Rightarrow> 'a set" ("\<Inter>") where "\<Inter>S \<equiv> \<Sqinter>S" abbreviation empty :: "'a set" ("{}") where "{} \<equiv> bot" abbreviation subset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where "subset_eq \<equiv> less_eq"
###output \<lbrakk>\<And>y_0. y_0 \<in> x_1 \<Longrightarrow> ?H1 y_0 x_2; x_1 \<noteq> ?H2\<rbrakk> \<Longrightarrow> ?H1 (?H3 x_1) x_2###end
Analysis/Cartesian_Euclidean_Space
Cartesian_Euclidean_Space.component_le_onorm
lemma component_le_onorm: fixes f :: "real^'m \<Rightarrow> real^'n" shows "linear f \<Longrightarrow> \<bar>matrix f $ i $ j\<bar> \<le> onorm f"
linear ?f \<Longrightarrow> \<bar>matrix ?f $ ?i $ ?j\<bar> \<le> onorm ?f
?H1 x_1 \<Longrightarrow> ?H2 (?H3 (?H3 (?H4 x_1) x_2) x_3) \<le> ?H5 x_1
[ "Operator_Norm.onorm", "Finite_Cartesian_Product.matrix", "Finite_Cartesian_Product.vec.vec_nth", "Groups.abs_class.abs", "Real_Vector_Spaces.linear" ]
[ "('a \\<Rightarrow> 'b) \\<Rightarrow> real", "(('a, 'b) vec \\<Rightarrow> ('a, 'c) vec) \\<Rightarrow> (('a, 'b) vec, 'c) vec", "('a, 'b) vec \\<Rightarrow> 'b \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a", "('a \\<Rightarrow> 'b) \\<Rightarrow> bool" ]
[ "definition \"vec x = (\\<chi> i. x)\"", "class abs =\n fixes abs :: \"'a \\<Rightarrow> 'a\" (\"\\<bar>_\\<bar>\")" ]
template
###lemma linear ?f \<Longrightarrow> \<bar>matrix ?f $ ?i $ ?j\<bar> \<le> onorm ?f ###symbols Operator_Norm.onorm :::: ('a \<Rightarrow> 'b) \<Rightarrow> real Finite_Cartesian_Product.matrix :::: (('a, 'b) vec \<Rightarrow> ('a, 'c) vec) \<Rightarrow> (('a, 'b) vec, 'c) vec Finite_Cartesian_Product.vec.vec_nth :::: ('a, 'b) vec \<Rightarrow> 'b \<Rightarrow> 'a Groups.abs_class.abs :::: 'a \<Rightarrow> 'a Real_Vector_Spaces.linear :::: ('a \<Rightarrow> 'b) \<Rightarrow> bool ###defs definition "vec x = (\<chi> i. x)" class abs = fixes abs :: "'a \<Rightarrow> 'a" ("\<bar>_\<bar>")
###output ?H1 x_1 \<Longrightarrow> ?H2 (?H3 (?H3 (?H4 x_1) x_2) x_3) \<le> ?H5 x_1###end
Number_Theory/Residue_Primitive_Roots
Residue_Primitive_Roots.Carmichael_pos
lemma Carmichael_pos [simp, intro]: "Carmichael n > 0"
0 < Carmichael ?n
?H1 < ?H2 x_1
[ "Residue_Primitive_Roots.Carmichael", "Groups.zero_class.zero" ]
[ "nat \\<Rightarrow> nat", "'a" ]
[ "definition Carmichael where\n \"Carmichael n = (LCM a \\<in> totatives n. ord n a)\"", "class zero =\n fixes zero :: 'a (\"0\")" ]
template
###lemma 0 < Carmichael ?n ###symbols Residue_Primitive_Roots.Carmichael :::: nat \<Rightarrow> nat Groups.zero_class.zero :::: 'a ###defs definition Carmichael where "Carmichael n = (LCM a \<in> totatives n. ord n a)" class zero = fixes zero :: 'a ("0")
###output ?H1 < ?H2 x_1###end
Library/FSet
FSet.Compr_fimage_eq
lemma Compr_fimage_eq: "{x. x |\<in>| f |`| A \<and> P x} = f ` {x. x |\<in>| A \<and> P (f x)}"
{x. x |\<in>| ?f |`| ?A \<and> ?P x} = ?f ` {x. x |\<in>| ?A \<and> ?P (?f x)}
?H1 (\<lambda>y_0. ?H2 y_0 (?H3 x_1 x_2) \<and> x_3 y_0) = ?H4 x_1 (?H1 (\<lambda>y_1. ?H2 y_1 x_2 \<and> x_3 (x_1 y_1)))
[ "Set.image", "FSet.fimage", "FSet.fmember", "Set.Collect" ]
[ "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a fset \\<Rightarrow> 'b fset", "'a \\<Rightarrow> 'a fset \\<Rightarrow> bool", "('a \\<Rightarrow> bool) \\<Rightarrow> 'a set" ]
[ "definition image :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set\" (infixr \"`\" 90)\n where \"f ` A = {y. \\<exists>x\\<in>A. y = f x}\"", "abbreviation fmember :: \"'a \\<Rightarrow> 'a fset \\<Rightarrow> bool\" (infix \"|\\<in>|\" 50) where\n \"x |\\<in>| X \\<equiv> x \\<in> fset X\"" ]
template
###lemma {x. x |\<in>| ?f |`| ?A \<and> ?P x} = ?f ` {x. x |\<in>| ?A \<and> ?P (?f x)} ###symbols Set.image :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set FSet.fimage :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a fset \<Rightarrow> 'b fset FSet.fmember :::: 'a \<Rightarrow> 'a fset \<Rightarrow> bool Set.Collect :::: ('a \<Rightarrow> bool) \<Rightarrow> 'a set ###defs definition image :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set" (infixr "`" 90) where "f ` A = {y. \<exists>x\<in>A. y = f x}" abbreviation fmember :: "'a \<Rightarrow> 'a fset \<Rightarrow> bool" (infix "|\<in>|" 50) where "x |\<in>| X \<equiv> x \<in> fset X"
###output ?H1 (\<lambda>y_0. ?H2 y_0 (?H3 x_1 x_2) \<and> x_3 y_0) = ?H4 x_1 (?H1 (\<lambda>y_1. ?H2 y_1 x_2 \<and> x_3 (x_1 y_1)))###end
MicroJava/J/Conform
Conform.conforms_restr
lemma conforms_restr: "\<lbrakk>lT vn = None; s ::\<preceq> (G, lT(vn\<mapsto>T)) \<rbrakk> \<Longrightarrow> s ::\<preceq> (G, lT)"
?lT ?vn = None \<Longrightarrow> ?s ::\<preceq> (?G, ?lT(?vn \<mapsto> ?T)) \<Longrightarrow> ?s ::\<preceq> (?G, ?lT)
\<lbrakk>x_1 x_2 = ?H1; ?H2 x_3 (x_4, ?H3 x_1 x_2 (?H4 x_5))\<rbrakk> \<Longrightarrow> ?H2 x_3 (x_4, x_1)
[ "Option.option.Some", "Fun.fun_upd", "Conform.conforms", "Option.option.None" ]
[ "'a \\<Rightarrow> 'a option", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a \\<Rightarrow> 'b \\<Rightarrow> 'a \\<Rightarrow> 'b", "val option \\<times> (loc \\<Rightarrow> (cname \\<times> (vname \\<times> cname \\<Rightarrow> val option)) option) \\<times> (vname \\<Rightarrow> val option) \\<Rightarrow> (vname list \\<times> fdecl list \\<times> stmt \\<times> expr) prog \\<times> (vname \\<Rightarrow> ty option) \\<Rightarrow> bool", "'a option" ]
[ "datatype 'a option =\n None\n | Some (the: 'a)", "definition fun_upd :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'a \\<Rightarrow> 'b \\<Rightarrow> ('a \\<Rightarrow> 'b)\"\n where \"fun_upd f a b = (\\<lambda>x. if x = a then b else f x)\"", "definition\n conforms :: \"state \\<Rightarrow> env' \\<Rightarrow> bool\" (\"_\\<Colon>\\<preceq>_\" [71,71] 70) where\n \"xs\\<Colon>\\<preceq>E =\n (let (G, L) = E; s = snd xs; l = locals s in\n (\\<forall>r. \\<forall>obj\\<in>globs s r: G,s\\<turnstile>obj \\<Colon>\\<preceq>\\<surd>r) \\<and> G,s\\<turnstile>l [\\<sim>\\<Colon>\\<preceq>]L \\<and>\n (\\<forall>a. fst xs=Some(Xcpt (Loc a)) \\<longrightarrow> G,s\\<turnstile>Addr a\\<Colon>\\<preceq> Class (SXcpt Throwable)) \\<and>\n (fst xs=Some(Jump Ret) \\<longrightarrow> l Result \\<noteq> None))\"", "datatype 'a option =\n None\n | Some (the: 'a)" ]
template
###lemma ?lT ?vn = None \<Longrightarrow> ?s ::\<preceq> (?G, ?lT(?vn \<mapsto> ?T)) \<Longrightarrow> ?s ::\<preceq> (?G, ?lT) ###symbols Option.option.Some :::: 'a \<Rightarrow> 'a option Fun.fun_upd :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> 'b Conform.conforms :::: val option \<times> (loc \<Rightarrow> (cname \<times> (vname \<times> cname \<Rightarrow> val option)) option) \<times> (vname \<Rightarrow> val option) \<Rightarrow> (vname list \<times> fdecl list \<times> stmt \<times> expr) prog \<times> (vname \<Rightarrow> ty option) \<Rightarrow> bool Option.option.None :::: 'a option ###defs datatype 'a option = None | Some (the: 'a) definition fun_upd :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a \<Rightarrow> 'b)" where "fun_upd f a b = (\<lambda>x. if x = a then b else f x)" definition conforms :: "state \<Rightarrow> env' \<Rightarrow> bool" ("_\<Colon>\<preceq>_" [71,71] 70) where "xs\<Colon>\<preceq>E = (let (G, L) = E; s = snd xs; l = locals s in (\<forall>r. \<forall>obj\<in>globs s r: G,s\<turnstile>obj \<Colon>\<preceq>\<surd>r) \<and> G,s\<turnstile>l [\<sim>\<Colon>\<preceq>]L \<and> (\<forall>a. fst xs=Some(Xcpt (Loc a)) \<longrightarrow> G,s\<turnstile>Addr a\<Colon>\<preceq> Class (SXcpt Throwable)) \<and> (fst xs=Some(Jump Ret) \<longrightarrow> l Result \<noteq> None))" datatype 'a option = None | Some (the: 'a)
###output \<lbrakk>x_1 x_2 = ?H1; ?H2 x_3 (x_4, ?H3 x_1 x_2 (?H4 x_5))\<rbrakk> \<Longrightarrow> ?H2 x_3 (x_4, x_1)###end
Number_Theory/Prime_Powers
Prime_Powers.mangoldt_sum
lemma mangoldt_sum: assumes "n \<noteq> 0" shows "(\<Sum>d | d dvd n. mangoldt d :: 'a :: real_algebra_1) = of_real (ln (real n))"
?n \<noteq> 0 \<Longrightarrow> (\<Sum>d | d dvd ?n. mangoldt d) = of_real (ln (real ?n))
x_1 \<noteq> ?H1 \<Longrightarrow> ?H2 ?H3 (?H4 (\<lambda>y_1. ?H5 y_1 x_1)) = ?H6 (?H7 (?H8 x_1))
[ "Real.real", "Transcendental.ln_class.ln", "Real_Vector_Spaces.of_real", "Rings.dvd_class.dvd", "Set.Collect", "Prime_Powers.mangoldt", "Groups_Big.comm_monoid_add_class.sum", "Groups.zero_class.zero" ]
[ "nat \\<Rightarrow> real", "'a \\<Rightarrow> 'a", "real \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a \\<Rightarrow> bool", "('a \\<Rightarrow> bool) \\<Rightarrow> 'a set", "nat \\<Rightarrow> 'a", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b", "'a" ]
[ "abbreviation real :: \"nat \\<Rightarrow> real\"\n where \"real \\<equiv> of_nat\"", "class ln = real_normed_algebra_1 + banach +\n fixes ln :: \"'a \\<Rightarrow> 'a\"\n assumes ln_one [simp]: \"ln 1 = 0\"", "definition of_real :: \"real \\<Rightarrow> 'a::real_algebra_1\"\n where \"of_real r = scaleR r 1\"", "definition dvd :: \"'a \\<Rightarrow> 'a \\<Rightarrow> bool\" (infix \"dvd\" 50)\n where \"b dvd a \\<longleftrightarrow> (\\<exists>k. a = b * k)\"", "definition mangoldt :: \"nat \\<Rightarrow> 'a :: real_algebra_1\" where\n \"mangoldt n = (if primepow n then of_real (ln (real (aprimedivisor n))) else 0)\"", "class zero =\n fixes zero :: 'a (\"0\")" ]
template
###lemma ?n \<noteq> 0 \<Longrightarrow> (\<Sum>d | d dvd ?n. mangoldt d) = of_real (ln (real ?n)) ###symbols Real.real :::: nat \<Rightarrow> real Transcendental.ln_class.ln :::: 'a \<Rightarrow> 'a Real_Vector_Spaces.of_real :::: real \<Rightarrow> 'a Rings.dvd_class.dvd :::: 'a \<Rightarrow> 'a \<Rightarrow> bool Set.Collect :::: ('a \<Rightarrow> bool) \<Rightarrow> 'a set Prime_Powers.mangoldt :::: nat \<Rightarrow> 'a Groups_Big.comm_monoid_add_class.sum :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b Groups.zero_class.zero :::: 'a ###defs abbreviation real :: "nat \<Rightarrow> real" where "real \<equiv> of_nat" class ln = real_normed_algebra_1 + banach + fixes ln :: "'a \<Rightarrow> 'a" assumes ln_one [simp]: "ln 1 = 0" definition of_real :: "real \<Rightarrow> 'a::real_algebra_1" where "of_real r = scaleR r 1" definition dvd :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "dvd" 50) where "b dvd a \<longleftrightarrow> (\<exists>k. a = b * k)" definition mangoldt :: "nat \<Rightarrow> 'a :: real_algebra_1" where "mangoldt n = (if primepow n then of_real (ln (real (aprimedivisor n))) else 0)" class zero = fixes zero :: 'a ("0")
###output x_1 \<noteq> ?H1 \<Longrightarrow> ?H2 ?H3 (?H4 (\<lambda>y_1. ?H5 y_1 x_1)) = ?H6 (?H7 (?H8 x_1))###end
Probability/Probability_Mass_Function
Probability_Mass_Function.measure_prob_cong_0
lemma measure_prob_cong_0: assumes "\<And>x. x \<in> A - B \<Longrightarrow> pmf p x = 0" assumes "\<And>x. x \<in> B - A \<Longrightarrow> pmf p x = 0" shows "measure (measure_pmf p) A = measure (measure_pmf p) B"
(\<And>x. x \<in> ?A - ?B \<Longrightarrow> pmf ?p x = 0) \<Longrightarrow> (\<And>x. x \<in> ?B - ?A \<Longrightarrow> pmf ?p x = 0) \<Longrightarrow> measure_pmf.prob ?p ?A = measure_pmf.prob ?p ?B
\<lbrakk>\<And>y_0. y_0 \<in> ?H1 x_1 x_2 \<Longrightarrow> ?H2 x_3 y_0 = ?H3; \<And>y_1. y_1 \<in> ?H1 x_2 x_1 \<Longrightarrow> ?H2 x_3 y_1 = ?H3\<rbrakk> \<Longrightarrow> ?H4 x_3 x_1 = ?H4 x_3 x_2
[ "Probability_Mass_Function.measure_pmf.prob", "Groups.zero_class.zero", "Probability_Mass_Function.pmf", "Groups.minus_class.minus" ]
[ "'a pmf \\<Rightarrow> 'a set \\<Rightarrow> real", "'a", "'a pmf \\<Rightarrow> 'a \\<Rightarrow> real", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a" ]
[ "class zero =\n fixes zero :: 'a (\"0\")", "class minus =\n fixes minus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"-\" 65)" ]
template
###lemma (\<And>x. x \<in> ?A - ?B \<Longrightarrow> pmf ?p x = 0) \<Longrightarrow> (\<And>x. x \<in> ?B - ?A \<Longrightarrow> pmf ?p x = 0) \<Longrightarrow> measure_pmf.prob ?p ?A = measure_pmf.prob ?p ?B ###symbols Probability_Mass_Function.measure_pmf.prob :::: 'a pmf \<Rightarrow> 'a set \<Rightarrow> real Groups.zero_class.zero :::: 'a Probability_Mass_Function.pmf :::: 'a pmf \<Rightarrow> 'a \<Rightarrow> real Groups.minus_class.minus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a ###defs class zero = fixes zero :: 'a ("0") class minus = fixes minus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "-" 65)
###output \<lbrakk>\<And>y_0. y_0 \<in> ?H1 x_1 x_2 \<Longrightarrow> ?H2 x_3 y_0 = ?H3; \<And>y_1. y_1 \<in> ?H1 x_2 x_1 \<Longrightarrow> ?H2 x_3 y_1 = ?H3\<rbrakk> \<Longrightarrow> ?H4 x_3 x_1 = ?H4 x_3 x_2###end
Set
Set.disjnt_self_iff_empty
lemma disjnt_self_iff_empty [simp]: "disjnt S S \<longleftrightarrow> S = {}"
disjnt ?S ?S = (?S = {})
?H1 x_1 x_1 = (x_1 = ?H2)
[ "Set.empty", "Set.disjnt" ]
[ "'a set", "'a set \\<Rightarrow> 'a set \\<Rightarrow> bool" ]
[ "abbreviation empty :: \"'a set\" (\"{}\")\n where \"{} \\<equiv> bot\"", "definition disjnt :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> bool\"\n where \"disjnt A B \\<longleftrightarrow> A \\<inter> B = {}\"" ]
template
###lemma disjnt ?S ?S = (?S = {}) ###symbols Set.empty :::: 'a set Set.disjnt :::: 'a set \<Rightarrow> 'a set \<Rightarrow> bool ###defs abbreviation empty :: "'a set" ("{}") where "{} \<equiv> bot" definition disjnt :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where "disjnt A B \<longleftrightarrow> A \<inter> B = {}"
###output ?H1 x_1 x_1 = (x_1 = ?H2)###end
Bit_Operations
Bit_Operations.and_less_eq
lemma and_less_eq: \<open>k AND l \<le> k\<close> if \<open>l < 0\<close> for k l :: int
?l < 0 \<Longrightarrow> and ?k ?l \<le> ?k
x_1 < ?H1 \<Longrightarrow> ?H2 x_2 x_1 \<le> x_2
[ "Bit_Operations.semiring_bit_operations_class.and", "Groups.zero_class.zero" ]
[ "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a" ]
[ "class semiring_bit_operations = semiring_bits +\n fixes \"and\" :: \\<open>'a \\<Rightarrow> 'a \\<Rightarrow> 'a\\<close> (infixr \\<open>AND\\<close> 64)\n and or :: \\<open>'a \\<Rightarrow> 'a \\<Rightarrow> 'a\\<close> (infixr \\<open>OR\\<close> 59)\n and xor :: \\<open>'a \\<Rightarrow> 'a \\<Rightarrow> 'a\\<close> (infixr \\<open>XOR\\<close> 59)\n and mask :: \\<open>nat \\<Rightarrow> 'a\\<close>\n and set_bit :: \\<open>nat \\<Rightarrow> 'a \\<Rightarrow> 'a\\<close>\n and unset_bit :: \\<open>nat \\<Rightarrow> 'a \\<Rightarrow> 'a\\<close>\n and flip_bit :: \\<open>nat \\<Rightarrow> 'a \\<Rightarrow> 'a\\<close>\n and push_bit :: \\<open>nat \\<Rightarrow> 'a \\<Rightarrow> 'a\\<close>\n and drop_bit :: \\<open>nat \\<Rightarrow> 'a \\<Rightarrow> 'a\\<close>\n and take_bit :: \\<open>nat \\<Rightarrow> 'a \\<Rightarrow> 'a\\<close>\n assumes and_rec: \\<open>a AND b = of_bool (odd a \\<and> odd b) + 2 * ((a div 2) AND (b div 2))\\<close>\n and or_rec: \\<open>a OR b = of_bool (odd a \\<or> odd b) + 2 * ((a div 2) OR (b div 2))\\<close>\n and xor_rec: \\<open>a XOR b = of_bool (odd a \\<noteq> odd b) + 2 * ((a div 2) XOR (b div 2))\\<close>\n and mask_eq_exp_minus_1: \\<open>mask n = 2 ^ n - 1\\<close>\n and set_bit_eq_or: \\<open>set_bit n a = a OR push_bit n 1\\<close>\n and unset_bit_eq_or_xor: \\<open>unset_bit n a = (a OR push_bit n 1) XOR push_bit n 1\\<close>\n and flip_bit_eq_xor: \\<open>flip_bit n a = a XOR push_bit n 1\\<close>\n and push_bit_eq_mult: \\<open>push_bit n a = a * 2 ^ n\\<close>\n and drop_bit_eq_div: \\<open>drop_bit n a = a div 2 ^ n\\<close>\n and take_bit_eq_mod: \\<open>take_bit n a = a mod 2 ^ n\\<close>\nbegin", "class zero =\n fixes zero :: 'a (\"0\")" ]
template
###lemma ?l < 0 \<Longrightarrow> and ?k ?l \<le> ?k ###symbols Bit_Operations.semiring_bit_operations_class.and :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Groups.zero_class.zero :::: 'a ###defs class semiring_bit_operations = semiring_bits + fixes "and" :: \<open>'a \<Rightarrow> 'a \<Rightarrow> 'a\<close> (infixr \<open>AND\<close> 64) and or :: \<open>'a \<Rightarrow> 'a \<Rightarrow> 'a\<close> (infixr \<open>OR\<close> 59) and xor :: \<open>'a \<Rightarrow> 'a \<Rightarrow> 'a\<close> (infixr \<open>XOR\<close> 59) and mask :: \<open>nat \<Rightarrow> 'a\<close> and set_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close> and unset_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close> and flip_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close> and push_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close> and drop_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close> and take_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close> assumes and_rec: \<open>a AND b = of_bool (odd a \<and> odd b) + 2 * ((a div 2) AND (b div 2))\<close> and or_rec: \<open>a OR b = of_bool (odd a \<or> odd b) + 2 * ((a div 2) OR (b div 2))\<close> and xor_rec: \<open>a XOR b = of_bool (odd a \<noteq> odd b) + 2 * ((a div 2) XOR (b div 2))\<close> and mask_eq_exp_minus_1: \<open>mask n = 2 ^ n - 1\<close> and set_bit_eq_or: \<open>set_bit n a = a OR push_bit n 1\<close> and unset_bit_eq_or_xor: \<open>unset_bit n a = (a OR push_bit n 1) XOR push_bit n 1\<close> and flip_bit_eq_xor: \<open>flip_bit n a = a XOR push_bit n 1\<close> and push_bit_eq_mult: \<open>push_bit n a = a * 2 ^ n\<close> and drop_bit_eq_div: \<open>drop_bit n a = a div 2 ^ n\<close> and take_bit_eq_mod: \<open>take_bit n a = a mod 2 ^ n\<close> begin class zero = fixes zero :: 'a ("0")
###output x_1 < ?H1 \<Longrightarrow> ?H2 x_2 x_1 \<le> x_2###end
Library/Complemented_Lattices
Complemented_Lattices.image_of_maximum
lemma image_of_maximum: fixes f::"'a::order \<Rightarrow> 'b::conditionally_complete_lattice" assumes "mono f" and "\<And>x. x:M \<Longrightarrow> x\<le>m" and "m:M" shows "(SUP x\<in>M. f x) = f m"
mono ?f \<Longrightarrow> (\<And>x. x \<in> ?M \<Longrightarrow> x \<le> ?m) \<Longrightarrow> ?m \<in> ?M \<Longrightarrow> Sup (?f ` ?M) = ?f ?m
\<lbrakk> ?H1 x_1; \<And>y_0. y_0 \<in> x_2 \<Longrightarrow> y_0 \<le> x_3; x_3 \<in> x_2\<rbrakk> \<Longrightarrow> ?H2 (?H3 x_1 x_2) = x_1 x_3
[ "Set.image", "Complete_Lattices.Sup_class.Sup", "Fun.order_class.mono" ]
[ "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set", "'a set \\<Rightarrow> 'a", "('a \\<Rightarrow> 'b) \\<Rightarrow> bool" ]
[ "definition image :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set\" (infixr \"`\" 90)\n where \"f ` A = {y. \\<exists>x\\<in>A. y = f x}\"", "class Sup =\n fixes Sup :: \"'a set \\<Rightarrow> 'a\" (\"\\<Squnion> _\" [900] 900)" ]
template
###lemma mono ?f \<Longrightarrow> (\<And>x. x \<in> ?M \<Longrightarrow> x \<le> ?m) \<Longrightarrow> ?m \<in> ?M \<Longrightarrow> Sup (?f ` ?M) = ?f ?m ###symbols Set.image :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set Complete_Lattices.Sup_class.Sup :::: 'a set \<Rightarrow> 'a Fun.order_class.mono :::: ('a \<Rightarrow> 'b) \<Rightarrow> bool ###defs definition image :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set" (infixr "`" 90) where "f ` A = {y. \<exists>x\<in>A. y = f x}" class Sup = fixes Sup :: "'a set \<Rightarrow> 'a" ("\<Squnion> _" [900] 900)
###output \<lbrakk> ?H1 x_1; \<And>y_0. y_0 \<in> x_2 \<Longrightarrow> y_0 \<le> x_3; x_3 \<in> x_2\<rbrakk> \<Longrightarrow> ?H2 (?H3 x_1 x_2) = x_1 x_3###end
Analysis/Cartesian_Euclidean_Space
Cartesian_Euclidean_Space.convex_box_cart
lemma convex_box_cart: assumes "\<And>i. convex {x. P i x}" shows "convex {x. \<forall>i. P i (x$i)}"
(\<And>i. convex {x. ?P i x}) \<Longrightarrow> convex {x. \<forall>i. ?P i (x $ i)}
(\<And>y_0. ?H1 (?H2 (x_1 y_0))) \<Longrightarrow> ?H1 (?H2 (\<lambda>y_2. \<forall>y_3. x_1 y_3 (?H3 y_2 y_3)))
[ "Finite_Cartesian_Product.vec.vec_nth", "Set.Collect", "Convex.convex" ]
[ "('a, 'b) vec \\<Rightarrow> 'b \\<Rightarrow> 'a", "('a \\<Rightarrow> bool) \\<Rightarrow> 'a set", "'a set \\<Rightarrow> bool" ]
[ "definition \"vec x = (\\<chi> i. x)\"" ]
template
###lemma (\<And>i. convex {x. ?P i x}) \<Longrightarrow> convex {x. \<forall>i. ?P i (x $ i)} ###symbols Finite_Cartesian_Product.vec.vec_nth :::: ('a, 'b) vec \<Rightarrow> 'b \<Rightarrow> 'a Set.Collect :::: ('a \<Rightarrow> bool) \<Rightarrow> 'a set Convex.convex :::: 'a set \<Rightarrow> bool ###defs definition "vec x = (\<chi> i. x)"
###output (\<And>y_0. ?H1 (?H2 (x_1 y_0))) \<Longrightarrow> ?H1 (?H2 (\<lambda>y_2. \<forall>y_3. x_1 y_3 (?H3 y_2 y_3)))###end
Transfer
Transfer.right_unique_parametric
lemma right_unique_parametric [transfer_rule]: assumes [transfer_rule]: "bi_total A" "bi_unique B" "bi_total B" shows "((A ===> B ===> (=)) ===> (=)) right_unique right_unique"
bi_total ?A \<Longrightarrow> bi_unique ?B \<Longrightarrow> bi_total ?B \<Longrightarrow> rel_fun (rel_fun ?A (rel_fun ?B (=))) (=) right_unique right_unique
\<lbrakk> ?H1 x_1; ?H2 x_2; ?H1 x_2\<rbrakk> \<Longrightarrow> ?H3 (?H3 x_1 (?H3 x_2 (=))) (=) ?H4 ?H4
[ "Transfer.right_unique", "BNF_Def.rel_fun", "Transfer.bi_unique", "Transfer.bi_total" ]
[ "('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> bool", "('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> ('c \\<Rightarrow> 'd \\<Rightarrow> bool) \\<Rightarrow> ('a \\<Rightarrow> 'c) \\<Rightarrow> ('b \\<Rightarrow> 'd) \\<Rightarrow> bool", "('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> bool", "('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> bool" ]
[ "definition right_unique :: \"('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> bool\"\n where \"right_unique R \\<longleftrightarrow> (\\<forall>x y z. R x y \\<longrightarrow> R x z \\<longrightarrow> y = z)\"", "definition\n rel_fun :: \"('a \\<Rightarrow> 'c \\<Rightarrow> bool) \\<Rightarrow> ('b \\<Rightarrow> 'd \\<Rightarrow> bool) \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> ('c \\<Rightarrow> 'd) \\<Rightarrow> bool\"\nwhere\n \"rel_fun A B = (\\<lambda>f g. \\<forall>x y. A x y \\<longrightarrow> B (f x) (g y))\"", "definition bi_unique :: \"('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> bool\"\n where \"bi_unique R \\<longleftrightarrow>\n (\\<forall>x y z. R x y \\<longrightarrow> R x z \\<longrightarrow> y = z) \\<and>\n (\\<forall>x y z. R x z \\<longrightarrow> R y z \\<longrightarrow> x = y)\"", "definition bi_total :: \"('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> bool\"\n where \"bi_total R \\<longleftrightarrow> (\\<forall>x. \\<exists>y. R x y) \\<and> (\\<forall>y. \\<exists>x. R x y)\"" ]
template
###lemma bi_total ?A \<Longrightarrow> bi_unique ?B \<Longrightarrow> bi_total ?B \<Longrightarrow> rel_fun (rel_fun ?A (rel_fun ?B (=))) (=) right_unique right_unique ###symbols Transfer.right_unique :::: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool BNF_Def.rel_fun :::: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('c \<Rightarrow> 'd \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'c) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> bool Transfer.bi_unique :::: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool Transfer.bi_total :::: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool ###defs definition right_unique :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool" where "right_unique R \<longleftrightarrow> (\<forall>x y z. R x y \<longrightarrow> R x z \<longrightarrow> y = z)" definition rel_fun :: "('a \<Rightarrow> 'c \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'd \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('c \<Rightarrow> 'd) \<Rightarrow> bool" where "rel_fun A B = (\<lambda>f g. \<forall>x y. A x y \<longrightarrow> B (f x) (g y))" definition bi_unique :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool" where "bi_unique R \<longleftrightarrow> (\<forall>x y z. R x y \<longrightarrow> R x z \<longrightarrow> y = z) \<and> (\<forall>x y z. R x z \<longrightarrow> R y z \<longrightarrow> x = y)" definition bi_total :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool" where "bi_total R \<longleftrightarrow> (\<forall>x. \<exists>y. R x y) \<and> (\<forall>y. \<exists>x. R x y)"
###output \<lbrakk> ?H1 x_1; ?H2 x_2; ?H1 x_2\<rbrakk> \<Longrightarrow> ?H3 (?H3 x_1 (?H3 x_2 (=))) (=) ?H4 ?H4###end
Nominal/Examples/Crary
Crary.logical_symmetry
lemma logical_symmetry: assumes a: "\<Gamma> \<turnstile> s is t : T" shows "\<Gamma> \<turnstile> t is s : T"
?\<Gamma> \<turnstile> ?s is ?t : ?T \<Longrightarrow> ?\<Gamma> \<turnstile> ?t is ?s : ?T
?H1 x_1 x_2 x_3 x_4 \<Longrightarrow> ?H1 x_1 x_3 x_2 x_4
[ "Crary.log_equiv" ]
[ "(name \\<times> ty) list \\<Rightarrow> trm \\<Rightarrow> trm \\<Rightarrow> ty \\<Rightarrow> bool" ]
[]
template
###lemma ?\<Gamma> \<turnstile> ?s is ?t : ?T \<Longrightarrow> ?\<Gamma> \<turnstile> ?t is ?s : ?T ###symbols Crary.log_equiv :::: (name \<times> ty) list \<Rightarrow> trm \<Rightarrow> trm \<Rightarrow> ty \<Rightarrow> bool ###defs
###output ?H1 x_1 x_2 x_3 x_4 \<Longrightarrow> ?H1 x_1 x_3 x_2 x_4###end
Analysis/Norm_Arith
Norm_Arith.arithmetic_simps(22)
null
neg_numeral_class.sub (num.Bit0 ?k) (num.Bit1 ?l) = neg_numeral_class.dbl_dec (neg_numeral_class.sub ?k ?l)
?H1 (?H2 x_1) (?H3 x_2) = ?H4 (?H1 x_1 x_2)
[ "Num.neg_numeral_class.dbl_dec", "Num.num.Bit1", "Num.num.Bit0", "Num.neg_numeral_class.sub" ]
[ "'a \\<Rightarrow> 'a", "num \\<Rightarrow> num", "num \\<Rightarrow> num", "num \\<Rightarrow> num \\<Rightarrow> 'a" ]
[ "class neg_numeral = numeral + group_add\nbegin", "datatype num = One | Bit0 num | Bit1 num", "datatype num = One | Bit0 num | Bit1 num", "class neg_numeral = numeral + group_add\nbegin" ]
template
###lemma neg_numeral_class.sub (num.Bit0 ?k) (num.Bit1 ?l) = neg_numeral_class.dbl_dec (neg_numeral_class.sub ?k ?l) ###symbols Num.neg_numeral_class.dbl_dec :::: 'a \<Rightarrow> 'a Num.num.Bit1 :::: num \<Rightarrow> num Num.num.Bit0 :::: num \<Rightarrow> num Num.neg_numeral_class.sub :::: num \<Rightarrow> num \<Rightarrow> 'a ###defs class neg_numeral = numeral + group_add begin datatype num = One | Bit0 num | Bit1 num datatype num = One | Bit0 num | Bit1 num class neg_numeral = numeral + group_add begin
###output ?H1 (?H2 x_1) (?H3 x_2) = ?H4 (?H1 x_1 x_2)###end
IMP/Abs_Int1
Abs_Int1.top_on_post
lemma top_on_post: "top_on_acom C X \<Longrightarrow> top_on_opt (post C) X"
top_on\<^sub>c ?C ?X \<Longrightarrow> top_on\<^sub>o (post ?C) ?X
?H1 x_1 x_2 \<Longrightarrow> ?H2 (?H3 x_1) x_2
[ "ACom.post", "Abs_Int1.top_on_opt", "Abs_Int1.top_on_acom" ]
[ "'a acom \\<Rightarrow> 'a", "'a st option \\<Rightarrow> char list set \\<Rightarrow> bool", "'a st option acom \\<Rightarrow> char list set \\<Rightarrow> bool" ]
[ "definition post :: \"'a acom \\<Rightarrow>'a\" where\n\"post C = last(annos C)\"", "fun top_on_opt :: \"'a::order_top st option \\<Rightarrow> vname set \\<Rightarrow> bool\" (\"top'_on\\<^sub>o\") where\n\"top_on_opt (Some S) X = top_on_st S X\" |\n\"top_on_opt None X = True\"", "definition top_on_acom :: \"'a::order_top st option acom \\<Rightarrow> vname set \\<Rightarrow> bool\" (\"top'_on\\<^sub>c\") where\n\"top_on_acom C X = (\\<forall>a \\<in> set(annos C). top_on_opt a X)\"" ]
template
###lemma top_on\<^sub>c ?C ?X \<Longrightarrow> top_on\<^sub>o (post ?C) ?X ###symbols ACom.post :::: 'a acom \<Rightarrow> 'a Abs_Int1.top_on_opt :::: 'a st option \<Rightarrow> char list set \<Rightarrow> bool Abs_Int1.top_on_acom :::: 'a st option acom \<Rightarrow> char list set \<Rightarrow> bool ###defs definition post :: "'a acom \<Rightarrow>'a" where "post C = last(annos C)" fun top_on_opt :: "'a::order_top st option \<Rightarrow> vname set \<Rightarrow> bool" ("top'_on\<^sub>o") where "top_on_opt (Some S) X = top_on_st S X" | "top_on_opt None X = True" definition top_on_acom :: "'a::order_top st option acom \<Rightarrow> vname set \<Rightarrow> bool" ("top'_on\<^sub>c") where "top_on_acom C X = (\<forall>a \<in> set(annos C). top_on_opt a X)"
###output ?H1 x_1 x_2 \<Longrightarrow> ?H2 (?H3 x_1) x_2###end
Analysis/Abstract_Metric_Spaces
Abstract_Metric_Spaces.metrizable_imp_t1_space
lemma metrizable_imp_t1_space: "metrizable_space X \<Longrightarrow> t1_space X"
metrizable_space ?X \<Longrightarrow> t1_space ?X
?H1 x_1 \<Longrightarrow> ?H2 x_1
[ "T1_Spaces.t1_space", "Abstract_Metric_Spaces.metrizable_space" ]
[ "'a topology \\<Rightarrow> bool", "'a topology \\<Rightarrow> bool" ]
[ "definition t1_space where\n \"t1_space X \\<equiv> \\<forall>x \\<in> topspace X. \\<forall>y \\<in> topspace X. x\\<noteq>y \\<longrightarrow> (\\<exists>U. openin X U \\<and> x \\<in> U \\<and> y \\<notin> U)\"", "definition metrizable_space where\n \"metrizable_space X \\<equiv> \\<exists>M d. Metric_space M d \\<and> X = Metric_space.mtopology M d\"" ]
template
###lemma metrizable_space ?X \<Longrightarrow> t1_space ?X ###symbols T1_Spaces.t1_space :::: 'a topology \<Rightarrow> bool Abstract_Metric_Spaces.metrizable_space :::: 'a topology \<Rightarrow> bool ###defs definition t1_space where "t1_space X \<equiv> \<forall>x \<in> topspace X. \<forall>y \<in> topspace X. x\<noteq>y \<longrightarrow> (\<exists>U. openin X U \<and> x \<in> U \<and> y \<notin> U)" definition metrizable_space where "metrizable_space X \<equiv> \<exists>M d. Metric_space M d \<and> X = Metric_space.mtopology M d"
###output ?H1 x_1 \<Longrightarrow> ?H2 x_1###end
Analysis/Convex_Euclidean_Space
Convex_Euclidean_Space.affine_hull_sing
lemma affine_hull_sing [simp]: "affine hull {a :: 'n::euclidean_space} = {a}"
affine hull { ?a} = { ?a}
?H1 ?H2 (?H3 x_1 ?H4) = ?H3 x_1 ?H4
[ "Set.empty", "Set.insert", "Affine.affine", "Hull.hull" ]
[ "'a set", "'a \\<Rightarrow> 'a set \\<Rightarrow> 'a set", "'a set \\<Rightarrow> bool", "('a set \\<Rightarrow> bool) \\<Rightarrow> 'a set \\<Rightarrow> 'a set" ]
[ "abbreviation empty :: \"'a set\" (\"{}\")\n where \"{} \\<equiv> bot\"", "definition insert :: \"'a \\<Rightarrow> 'a set \\<Rightarrow> 'a set\"\n where insert_compr: \"insert a B = {x. x = a \\<or> x \\<in> B}\"", "definition hull :: \"('a set \\<Rightarrow> bool) \\<Rightarrow> 'a set \\<Rightarrow> 'a set\" (infixl \"hull\" 75)\n where \"S hull s = \\<Inter>{t. S t \\<and> s \\<subseteq> t}\"" ]
template
###lemma affine hull { ?a} = { ?a} ###symbols Set.empty :::: 'a set Set.insert :::: 'a \<Rightarrow> 'a set \<Rightarrow> 'a set Affine.affine :::: 'a set \<Rightarrow> bool Hull.hull :::: ('a set \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> 'a set ###defs abbreviation empty :: "'a set" ("{}") where "{} \<equiv> bot" definition insert :: "'a \<Rightarrow> 'a set \<Rightarrow> 'a set" where insert_compr: "insert a B = {x. x = a \<or> x \<in> B}" definition hull :: "('a set \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "hull" 75) where "S hull s = \<Inter>{t. S t \<and> s \<subseteq> t}"
###output ?H1 ?H2 (?H3 x_1 ?H4) = ?H3 x_1 ?H4###end
Algebra/Chinese_Remainder
Chinese_Remainder.RDirProd_hom2(2)
lemma RDirProd_hom2: assumes "f \<in> ring_hom S T" shows "(\<lambda>(x, y). (x, f y)) \<in> ring_hom (RDirProd R S) (RDirProd R T)" and "(\<lambda>(x, y). (f x, y)) \<in> ring_hom (RDirProd S R) (RDirProd T R)"
?f \<in> ring_hom ?S ?T \<Longrightarrow> (\<lambda>(x, y). (?f x, y)) \<in> ring_hom (RDirProd ?S ?R) (RDirProd ?T ?R)
x_1 \<in> ?H1 x_2 x_3 \<Longrightarrow> ?H2 (\<lambda>y_0. Pair (x_1 y_0)) \<in> ?H1 (?H3 x_2 x_4) (?H3 x_3 x_4)
[ "Chinese_Remainder.RDirProd", "Product_Type.prod.case_prod", "Ring.ring_hom" ]
[ "('a, 'b) ring_scheme \\<Rightarrow> ('c, 'd) ring_scheme \\<Rightarrow> ('a \\<times> 'c) ring", "('a \\<Rightarrow> 'b \\<Rightarrow> 'c) \\<Rightarrow> 'a \\<times> 'b \\<Rightarrow> 'c", "('a, 'b) ring_scheme \\<Rightarrow> ('c, 'd) ring_scheme \\<Rightarrow> ('a \\<Rightarrow> 'c) set" ]
[ "definition RDirProd :: \"('a, 'n) ring_scheme \\<Rightarrow> ('b, 'm) ring_scheme \\<Rightarrow> ('a \\<times> 'b) ring\"\n where \"RDirProd R S = monoid.extend (R \\<times>\\<times> S)\n \\<lparr> zero = one ((add_monoid R) \\<times>\\<times> (add_monoid S)),\n add = mult ((add_monoid R) \\<times>\\<times> (add_monoid S)) \\<rparr> \"", "definition \"prod = {f. \\<exists>a b. f = Pair_Rep (a::'a) (b::'b)}\"", "definition\n ring_hom :: \"[('a, 'm) ring_scheme, ('b, 'n) ring_scheme] => ('a => 'b) set\"\n where \"ring_hom R S =\n {h. h \\<in> carrier R \\<rightarrow> carrier S \\<and>\n (\\<forall>x y. x \\<in> carrier R \\<and> y \\<in> carrier R \\<longrightarrow>\n h (x \\<otimes>\\<^bsub>R\\<^esub> y) = h x \\<otimes>\\<^bsub>S\\<^esub> h y \\<and> h (x \\<oplus>\\<^bsub>R\\<^esub> y) = h x \\<oplus>\\<^bsub>S\\<^esub> h y) \\<and>\n h \\<one>\\<^bsub>R\\<^esub> = \\<one>\\<^bsub>S\\<^esub>}\"" ]
template
###lemma ?f \<in> ring_hom ?S ?T \<Longrightarrow> (\<lambda>(x, y). (?f x, y)) \<in> ring_hom (RDirProd ?S ?R) (RDirProd ?T ?R) ###symbols Chinese_Remainder.RDirProd :::: ('a, 'b) ring_scheme \<Rightarrow> ('c, 'd) ring_scheme \<Rightarrow> ('a \<times> 'c) ring Product_Type.prod.case_prod :::: ('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c Ring.ring_hom :::: ('a, 'b) ring_scheme \<Rightarrow> ('c, 'd) ring_scheme \<Rightarrow> ('a \<Rightarrow> 'c) set ###defs definition RDirProd :: "('a, 'n) ring_scheme \<Rightarrow> ('b, 'm) ring_scheme \<Rightarrow> ('a \<times> 'b) ring" where "RDirProd R S = monoid.extend (R \<times>\<times> S) \<lparr> zero = one ((add_monoid R) \<times>\<times> (add_monoid S)), add = mult ((add_monoid R) \<times>\<times> (add_monoid S)) \<rparr> " definition "prod = {f. \<exists>a b. f = Pair_Rep (a::'a) (b::'b)}" definition ring_hom :: "[('a, 'm) ring_scheme, ('b, 'n) ring_scheme] => ('a => 'b) set" where "ring_hom R S = {h. h \<in> carrier R \<rightarrow> carrier S \<and> (\<forall>x y. x \<in> carrier R \<and> y \<in> carrier R \<longrightarrow> h (x \<otimes>\<^bsub>R\<^esub> y) = h x \<otimes>\<^bsub>S\<^esub> h y \<and> h (x \<oplus>\<^bsub>R\<^esub> y) = h x \<oplus>\<^bsub>S\<^esub> h y) \<and> h \<one>\<^bsub>R\<^esub> = \<one>\<^bsub>S\<^esub>}"
###output x_1 \<in> ?H1 x_2 x_3 \<Longrightarrow> ?H2 (\<lambda>y_0. Pair (x_1 y_0)) \<in> ?H1 (?H3 x_2 x_4) (?H3 x_3 x_4)###end
Computational_Algebra/Polynomial
Polynomial.degree_sum_less
lemma degree_sum_less: assumes "\<And>x. x \<in> A \<Longrightarrow> degree (f x) < n" "n > 0" shows "degree (sum f A) < n"
(\<And>x. x \<in> ?A \<Longrightarrow> degree (?f x) < ?n) \<Longrightarrow> 0 < ?n \<Longrightarrow> degree (sum ?f ?A) < ?n
\<lbrakk>\<And>y_0. y_0 \<in> x_1 \<Longrightarrow> ?H1 (x_2 y_0) < x_3; ?H2 < x_3\<rbrakk> \<Longrightarrow> ?H1 (?H3 x_2 x_1) < x_3
[ "Groups_Big.comm_monoid_add_class.sum", "Groups.zero_class.zero", "Polynomial.degree" ]
[ "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b", "'a", "'a poly \\<Rightarrow> nat" ]
[ "class zero =\n fixes zero :: 'a (\"0\")", "definition degree :: \"'a::zero poly \\<Rightarrow> nat\"\n where \"degree p = (LEAST n. \\<forall>i>n. coeff p i = 0)\"" ]
template
###lemma (\<And>x. x \<in> ?A \<Longrightarrow> degree (?f x) < ?n) \<Longrightarrow> 0 < ?n \<Longrightarrow> degree (sum ?f ?A) < ?n ###symbols Groups_Big.comm_monoid_add_class.sum :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b Groups.zero_class.zero :::: 'a Polynomial.degree :::: 'a poly \<Rightarrow> nat ###defs class zero = fixes zero :: 'a ("0") definition degree :: "'a::zero poly \<Rightarrow> nat" where "degree p = (LEAST n. \<forall>i>n. coeff p i = 0)"
###output \<lbrakk>\<And>y_0. y_0 \<in> x_1 \<Longrightarrow> ?H1 (x_2 y_0) < x_3; ?H2 < x_3\<rbrakk> \<Longrightarrow> ?H1 (?H3 x_2 x_1) < x_3###end
IMP/Complete_Lattice
Complete_Lattices.UN_simps(4)
null
(\<Union>x\<in> ?C. ?A x \<inter> ?B) = \<Union> (?A ` ?C) \<inter> ?B
?H1 (?H2 (\<lambda>y_0. ?H3 (x_1 y_0) x_2) x_3) = ?H3 (?H1 (?H2 x_1 x_3)) x_2
[ "Set.inter", "Set.image", "Complete_Lattices.Union" ]
[ "'a set \\<Rightarrow> 'a set \\<Rightarrow> 'a set", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set", "'a set set \\<Rightarrow> 'a set" ]
[ "abbreviation inter :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> 'a set\" (infixl \"\\<inter>\" 70)\n where \"(\\<inter>) \\<equiv> inf\"", "definition image :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set\" (infixr \"`\" 90)\n where \"f ` A = {y. \\<exists>x\\<in>A. y = f x}\"", "abbreviation Union :: \"'a set set \\<Rightarrow> 'a set\" (\"\\<Union>\")\n where \"\\<Union>S \\<equiv> \\<Squnion>S\"" ]
template
###lemma (\<Union>x\<in> ?C. ?A x \<inter> ?B) = \<Union> (?A ` ?C) \<inter> ?B ###symbols Set.inter :::: 'a set \<Rightarrow> 'a set \<Rightarrow> 'a set Set.image :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set Complete_Lattices.Union :::: 'a set set \<Rightarrow> 'a set ###defs abbreviation inter :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "\<inter>" 70) where "(\<inter>) \<equiv> inf" definition image :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set" (infixr "`" 90) where "f ` A = {y. \<exists>x\<in>A. y = f x}" abbreviation Union :: "'a set set \<Rightarrow> 'a set" ("\<Union>") where "\<Union>S \<equiv> \<Squnion>S"
###output ?H1 (?H2 (\<lambda>y_0. ?H3 (x_1 y_0) x_2) x_3) = ?H3 (?H1 (?H2 x_1 x_3)) x_2###end
Analysis/Equivalence_Lebesgue_Henstock_Integration
Equivalence_Lebesgue_Henstock_Integration.integrable_on_all_intervals_integrable_bound
lemma integrable_on_all_intervals_integrable_bound: fixes f :: "'a::euclidean_space \<Rightarrow> 'b::banach" assumes intf: "\<And>a b. (\<lambda>x. if x \<in> S then f x else 0) integrable_on cbox a b" and normf: "\<And>x. x \<in> S \<Longrightarrow> norm(f x) \<le> g x" and g: "g integrable_on S" shows "f integrable_on S"
(\<And>a b. (\<lambda>x. if x \<in> ?S then ?f x else (0:: ?'b)) integrable_on cbox a b) \<Longrightarrow> (\<And>x. x \<in> ?S \<Longrightarrow> norm (?f x) \<le> ?g x) \<Longrightarrow> ?g integrable_on ?S \<Longrightarrow> ?f integrable_on ?S
\<lbrakk>\<And>y_0 y_1. ?H1 (\<lambda>y_2. if y_2 \<in> x_1 then x_2 y_2 else ?H2) (?H3 y_0 y_1); \<And>y_3. y_3 \<in> x_1 \<Longrightarrow> ?H4 (x_2 y_3) \<le> x_3 y_3; ?H1 x_3 x_1\<rbrakk> \<Longrightarrow> ?H1 x_2 x_1
[ "Real_Vector_Spaces.norm_class.norm", "Topology_Euclidean_Space.cbox", "Groups.zero_class.zero", "Henstock_Kurzweil_Integration.integrable_on" ]
[ "'a \\<Rightarrow> real", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a set", "'a", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> bool" ]
[ "class norm =\n fixes norm :: \"'a \\<Rightarrow> real\"", "class zero =\n fixes zero :: 'a (\"0\")", "definition integrable_on (infixr \"integrable'_on\" 46)\n where \"f integrable_on i \\<longleftrightarrow> (\\<exists>y. (f has_integral y) i)\"" ]
template
###lemma (\<And>a b. (\<lambda>x. if x \<in> ?S then ?f x else (0:: ?'b)) integrable_on cbox a b) \<Longrightarrow> (\<And>x. x \<in> ?S \<Longrightarrow> norm (?f x) \<le> ?g x) \<Longrightarrow> ?g integrable_on ?S \<Longrightarrow> ?f integrable_on ?S ###symbols Real_Vector_Spaces.norm_class.norm :::: 'a \<Rightarrow> real Topology_Euclidean_Space.cbox :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a set Groups.zero_class.zero :::: 'a Henstock_Kurzweil_Integration.integrable_on :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> bool ###defs class norm = fixes norm :: "'a \<Rightarrow> real" class zero = fixes zero :: 'a ("0") definition integrable_on (infixr "integrable'_on" 46) where "f integrable_on i \<longleftrightarrow> (\<exists>y. (f has_integral y) i)"
###output \<lbrakk>\<And>y_0 y_1. ?H1 (\<lambda>y_2. if y_2 \<in> x_1 then x_2 y_2 else ?H2) (?H3 y_0 y_1); \<And>y_3. y_3 \<in> x_1 \<Longrightarrow> ?H4 (x_2 y_3) \<le> x_3 y_3; ?H1 x_3 x_1\<rbrakk> \<Longrightarrow> ?H1 x_2 x_1###end
Analysis/Tagged_Division
Tagged_Division.division_ofD(6)
lemma division_ofD[dest]: assumes "s division_of i" shows "finite s" and "\<And>K. K \<in> s \<Longrightarrow> K \<subseteq> i" and "\<And>K. K \<in> s \<Longrightarrow> K \<noteq> {}" and "\<And>K. K \<in> s \<Longrightarrow> \<exists>a b. K = cbox a b" and "\<And>K1 K2. K1 \<in> s \<Longrightarrow> K2 \<in> s \<Longrightarrow> K1 \<noteq> K2 \<Longrightarrow> interior(K1) \<inter> interior(K2) = {}" and "\<Union>s = i"
?s division_of ?i \<Longrightarrow> \<Union> ?s = ?i
?H1 x_1 x_2 \<Longrightarrow> ?H2 x_1 = x_2
[ "Complete_Lattices.Union", "Tagged_Division.division_of" ]
[ "'a set set \\<Rightarrow> 'a set", "'a set set \\<Rightarrow> 'a set \\<Rightarrow> bool" ]
[ "abbreviation Union :: \"'a set set \\<Rightarrow> 'a set\" (\"\\<Union>\")\n where \"\\<Union>S \\<equiv> \\<Squnion>S\"" ]
template
###lemma ?s division_of ?i \<Longrightarrow> \<Union> ?s = ?i ###symbols Complete_Lattices.Union :::: 'a set set \<Rightarrow> 'a set Tagged_Division.division_of :::: 'a set set \<Rightarrow> 'a set \<Rightarrow> bool ###defs abbreviation Union :: "'a set set \<Rightarrow> 'a set" ("\<Union>") where "\<Union>S \<equiv> \<Squnion>S"
###output ?H1 x_1 x_2 \<Longrightarrow> ?H2 x_1 = x_2###end
Nominal/Examples/Class1
Class1.ax_do_not_a_reduce
lemma ax_do_not_a_reduce: shows "Ax x a \<longrightarrow>\<^sub>a M \<Longrightarrow> False"
Ax ?x ?a \<longrightarrow>\<^sub>a ?M \<Longrightarrow> False
?H1 (?H2 x_1 x_2) x_3 \<Longrightarrow> False
[ "Class1.trm.Ax", "Class1.a_redu" ]
[ "name \\<Rightarrow> coname \\<Rightarrow> trm", "trm \\<Rightarrow> trm \\<Rightarrow> bool" ]
[]
template
###lemma Ax ?x ?a \<longrightarrow>\<^sub>a ?M \<Longrightarrow> False ###symbols Class1.trm.Ax :::: name \<Rightarrow> coname \<Rightarrow> trm Class1.a_redu :::: trm \<Rightarrow> trm \<Rightarrow> bool ###defs
###output ?H1 (?H2 x_1 x_2) x_3 \<Longrightarrow> False###end
Groups_Big
Groups_Big.sum_abs
lemma sum_abs[iff]: "\<bar>sum f A\<bar> \<le> sum (\<lambda>i. \<bar>f i\<bar>) A" for f :: "'a \<Rightarrow> 'b::ordered_ab_group_add_abs"
\<bar>sum ?f ?A\<bar> \<le> (\<Sum>i\<in> ?A. \<bar> ?f i\<bar>)
?H1 (?H2 x_1 x_2) \<le> ?H2 (\<lambda>y_0. ?H1 (x_1 y_0)) x_2
[ "Groups_Big.comm_monoid_add_class.sum", "Groups.abs_class.abs" ]
[ "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b", "'a \\<Rightarrow> 'a" ]
[ "class abs =\n fixes abs :: \"'a \\<Rightarrow> 'a\" (\"\\<bar>_\\<bar>\")" ]
template
###lemma \<bar>sum ?f ?A\<bar> \<le> (\<Sum>i\<in> ?A. \<bar> ?f i\<bar>) ###symbols Groups_Big.comm_monoid_add_class.sum :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b Groups.abs_class.abs :::: 'a \<Rightarrow> 'a ###defs class abs = fixes abs :: "'a \<Rightarrow> 'a" ("\<bar>_\<bar>")
###output ?H1 (?H2 x_1 x_2) \<le> ?H2 (\<lambda>y_0. ?H1 (x_1 y_0)) x_2###end
Num
Num.nat_of_num_mult
lemma nat_of_num_mult: "nat_of_num (x * y) = nat_of_num x * nat_of_num y"
nat_of_num (?x * ?y) = nat_of_num ?x * nat_of_num ?y
?H1 (?H2 x_1 x_2) = ?H2 (?H1 x_1) (?H1 x_2)
[ "Groups.times_class.times", "Num.nat_of_num" ]
[ "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "num \\<Rightarrow> nat" ]
[ "class times =\n fixes times :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"*\" 70)", "primrec nat_of_num :: \"num \\<Rightarrow> nat\"\n where\n \"nat_of_num One = Suc 0\"\n | \"nat_of_num (Bit0 x) = nat_of_num x + nat_of_num x\"\n | \"nat_of_num (Bit1 x) = Suc (nat_of_num x + nat_of_num x)\"" ]
template
###lemma nat_of_num (?x * ?y) = nat_of_num ?x * nat_of_num ?y ###symbols Groups.times_class.times :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Num.nat_of_num :::: num \<Rightarrow> nat ###defs class times = fixes times :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "*" 70) primrec nat_of_num :: "num \<Rightarrow> nat" where "nat_of_num One = Suc 0" | "nat_of_num (Bit0 x) = nat_of_num x + nat_of_num x" | "nat_of_num (Bit1 x) = Suc (nat_of_num x + nat_of_num x)"
###output ?H1 (?H2 x_1 x_2) = ?H2 (?H1 x_1) (?H1 x_2)###end
Probability/Weak_Convergence
Weak_Convergence.continuity_set_conv_imp_weak_conv
theorem continuity_set_conv_imp_weak_conv: fixes f :: "real \<Rightarrow> real" assumes *: "\<And>A. A \<in> sets borel \<Longrightarrow> M (frontier A) = 0 \<Longrightarrow> (\<lambda> n. (measure (M_seq n) A)) \<longlonglongrightarrow> measure M A" shows "weak_conv_m M_seq M"
(\<And>n. real_distribution (?M_seq n)) \<Longrightarrow> real_distribution ?M \<Longrightarrow> (\<And>A. A \<in> sets borel \<Longrightarrow> emeasure ?M (frontier A) = 0 \<Longrightarrow> (\<lambda>n. Sigma_Algebra.measure (?M_seq n) A) \<longlonglongrightarrow> Sigma_Algebra.measure ?M A) \<Longrightarrow> weak_conv_m ?M_seq ?M
\<lbrakk>\<And>y_0. ?H1 (x_1 y_0); ?H1 x_2; \<And>y_1. \<lbrakk>y_1 \<in> ?H2 ?H3; ?H4 x_2 (?H5 y_1) = ?H6\<rbrakk> \<Longrightarrow> ?H7 (\<lambda>y_2. ?H8 (x_1 y_2) y_1) (?H8 x_2 y_1)\<rbrakk> \<Longrightarrow> ?H9 x_1 x_2
[ "Weak_Convergence.weak_conv_m", "Sigma_Algebra.measure", "Topological_Spaces.topological_space_class.LIMSEQ", "Groups.zero_class.zero", "Elementary_Topology.frontier", "Sigma_Algebra.emeasure", "Borel_Space.topological_space_class.borel", "Sigma_Algebra.sets", "Distribution_Functions.real_distribution" ]
[ "(nat \\<Rightarrow> real measure) \\<Rightarrow> real measure \\<Rightarrow> bool", "'a measure \\<Rightarrow> 'a set \\<Rightarrow> real", "(nat \\<Rightarrow> 'a) \\<Rightarrow> 'a \\<Rightarrow> bool", "'a", "'a set \\<Rightarrow> 'a set", "'a measure \\<Rightarrow> 'a set \\<Rightarrow> ennreal", "'a measure", "'a measure \\<Rightarrow> 'a set set", "real measure \\<Rightarrow> bool" ]
[ "definition\n weak_conv_m :: \"(nat \\<Rightarrow> real measure) \\<Rightarrow> real measure \\<Rightarrow> bool\"\nwhere\n \"weak_conv_m M_seq M \\<equiv> weak_conv (\\<lambda>n. cdf (M_seq n)) (cdf M)\"", "class topological_space = \"open\" +\n assumes open_UNIV [simp, intro]: \"open UNIV\"\n assumes open_Int [intro]: \"open S \\<Longrightarrow> open T \\<Longrightarrow> open (S \\<inter> T)\"\n assumes open_Union [intro]: \"\\<forall>S\\<in>K. open S \\<Longrightarrow> open (\\<Union>K)\"\nbegin", "class zero =\n fixes zero :: 'a (\"0\")" ]
template
###lemma (\<And>n. real_distribution (?M_seq n)) \<Longrightarrow> real_distribution ?M \<Longrightarrow> (\<And>A. A \<in> sets borel \<Longrightarrow> emeasure ?M (frontier A) = 0 \<Longrightarrow> (\<lambda>n. Sigma_Algebra.measure (?M_seq n) A) \<longlonglongrightarrow> Sigma_Algebra.measure ?M A) \<Longrightarrow> weak_conv_m ?M_seq ?M ###symbols Weak_Convergence.weak_conv_m :::: (nat \<Rightarrow> real measure) \<Rightarrow> real measure \<Rightarrow> bool Sigma_Algebra.measure :::: 'a measure \<Rightarrow> 'a set \<Rightarrow> real Topological_Spaces.topological_space_class.LIMSEQ :::: (nat \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> bool Groups.zero_class.zero :::: 'a Elementary_Topology.frontier :::: 'a set \<Rightarrow> 'a set Sigma_Algebra.emeasure :::: 'a measure \<Rightarrow> 'a set \<Rightarrow> ennreal Borel_Space.topological_space_class.borel :::: 'a measure Sigma_Algebra.sets :::: 'a measure \<Rightarrow> 'a set set Distribution_Functions.real_distribution :::: real measure \<Rightarrow> bool ###defs definition weak_conv_m :: "(nat \<Rightarrow> real measure) \<Rightarrow> real measure \<Rightarrow> bool" where "weak_conv_m M_seq M \<equiv> weak_conv (\<lambda>n. cdf (M_seq n)) (cdf M)" class topological_space = "open" + assumes open_UNIV [simp, intro]: "open UNIV" assumes open_Int [intro]: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<inter> T)" assumes open_Union [intro]: "\<forall>S\<in>K. open S \<Longrightarrow> open (\<Union>K)" begin class zero = fixes zero :: 'a ("0")
###output \<lbrakk>\<And>y_0. ?H1 (x_1 y_0); ?H1 x_2; \<And>y_1. \<lbrakk>y_1 \<in> ?H2 ?H3; ?H4 x_2 (?H5 y_1) = ?H6\<rbrakk> \<Longrightarrow> ?H7 (\<lambda>y_2. ?H8 (x_1 y_2) y_1) (?H8 x_2 y_1)\<rbrakk> \<Longrightarrow> ?H9 x_1 x_2###end
Bali/Trans
Transitive_Closure.rtranclp_into_tranclp2
null
?r ?a ?b \<Longrightarrow> ?r\<^sup>*\<^sup>* ?b ?c \<Longrightarrow> ?r\<^sup>+\<^sup>+ ?a ?c
\<lbrakk>x_1 x_2 x_3; ?H1 x_1 x_3 x_4\<rbrakk> \<Longrightarrow> ?H2 x_1 x_2 x_4
[ "Transitive_Closure.tranclp", "Transitive_Closure.rtranclp" ]
[ "('a \\<Rightarrow> 'a \\<Rightarrow> bool) \\<Rightarrow> 'a \\<Rightarrow> 'a \\<Rightarrow> bool", "('a \\<Rightarrow> 'a \\<Rightarrow> bool) \\<Rightarrow> 'a \\<Rightarrow> 'a \\<Rightarrow> bool" ]
[]
template
###lemma ?r ?a ?b \<Longrightarrow> ?r\<^sup>*\<^sup>* ?b ?c \<Longrightarrow> ?r\<^sup>+\<^sup>+ ?a ?c ###symbols Transitive_Closure.tranclp :::: ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool Transitive_Closure.rtranclp :::: ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool ###defs
###output \<lbrakk>x_1 x_2 x_3; ?H1 x_1 x_3 x_4\<rbrakk> \<Longrightarrow> ?H2 x_1 x_2 x_4###end
Library/Multiset
Multiset.count_gt_imp_in_mset
lemma count_gt_imp_in_mset: "count M x > n \<Longrightarrow> x \<in># M"
?n < count ?M ?x \<Longrightarrow> ?x \<in># ?M
x_1 < ?H1 x_2 x_3 \<Longrightarrow> ?H2 x_3 x_2
[ "Multiset.member_mset", "Multiset.multiset.count" ]
[ "'a \\<Rightarrow> 'a multiset \\<Rightarrow> bool", "'a multiset \\<Rightarrow> 'a \\<Rightarrow> nat" ]
[ "abbreviation member_mset :: \\<open>'a \\<Rightarrow> 'a multiset \\<Rightarrow> bool\\<close>\n where \\<open>member_mset a M \\<equiv> a \\<in> set_mset M\\<close>" ]
template
###lemma ?n < count ?M ?x \<Longrightarrow> ?x \<in># ?M ###symbols Multiset.member_mset :::: 'a \<Rightarrow> 'a multiset \<Rightarrow> bool Multiset.multiset.count :::: 'a multiset \<Rightarrow> 'a \<Rightarrow> nat ###defs abbreviation member_mset :: \<open>'a \<Rightarrow> 'a multiset \<Rightarrow> bool\<close> where \<open>member_mset a M \<equiv> a \<in> set_mset M\<close>
###output x_1 < ?H1 x_2 x_3 \<Longrightarrow> ?H2 x_3 x_2###end
HOLCF/ex/Hoare
Hoare.hoare_lemma3
lemma hoare_lemma3: "(\<forall>k. b1\<cdot>(iterate k\<cdot>g\<cdot>x) = TT) \<or> (\<exists>k. b1\<cdot>(iterate k\<cdot>g\<cdot>x) \<noteq> TT)"
(\<forall>k. b1\<cdot>(iterate k\<cdot>g\<cdot> ?x) = TT) \<or> (\<exists>k. b1\<cdot>(iterate k\<cdot>g\<cdot> ?x) \<noteq> TT)
(\<forall>y_0. ?H1 ?H2 (?H1 (?H1 (?H3 y_0) ?H4) x_1) = ?H5) \<or> (\<exists>y_1. ?H1 ?H2 (?H1 (?H1 (?H3 y_1) ?H4) x_1) \<noteq> ?H5)
[ "Tr.TT", "Hoare.g", "Fix.iterate", "Hoare.b1", "Cfun.cfun.Rep_cfun" ]
[ "tr", "'a \\<rightarrow> 'a", "nat \\<Rightarrow> ('a \\<rightarrow> 'a) \\<rightarrow> 'a \\<rightarrow> 'a", "'a \\<rightarrow> tr", "('a \\<rightarrow> 'b) \\<Rightarrow> 'a \\<Rightarrow> 'b" ]
[ "definition TT :: \"tr\"\n where \"TT = Def True\"", "primrec iterate :: \"nat \\<Rightarrow> ('a::cpo \\<rightarrow> 'a) \\<rightarrow> ('a \\<rightarrow> 'a)\"\n where\n \"iterate 0 = (\\<Lambda> F x. x)\"\n | \"iterate (Suc n) = (\\<Lambda> F x. F\\<cdot>(iterate n\\<cdot>F\\<cdot>x))\"" ]
template
###lemma (\<forall>k. b1\<cdot>(iterate k\<cdot>g\<cdot> ?x) = TT) \<or> (\<exists>k. b1\<cdot>(iterate k\<cdot>g\<cdot> ?x) \<noteq> TT) ###symbols Tr.TT :::: tr Hoare.g :::: 'a \<rightarrow> 'a Fix.iterate :::: nat \<Rightarrow> ('a \<rightarrow> 'a) \<rightarrow> 'a \<rightarrow> 'a Hoare.b1 :::: 'a \<rightarrow> tr Cfun.cfun.Rep_cfun :::: ('a \<rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b ###defs definition TT :: "tr" where "TT = Def True" primrec iterate :: "nat \<Rightarrow> ('a::cpo \<rightarrow> 'a) \<rightarrow> ('a \<rightarrow> 'a)" where "iterate 0 = (\<Lambda> F x. x)" | "iterate (Suc n) = (\<Lambda> F x. F\<cdot>(iterate n\<cdot>F\<cdot>x))"
###output (\<forall>y_0. ?H1 ?H2 (?H1 (?H1 (?H3 y_0) ?H4) x_1) = ?H5) \<or> (\<exists>y_1. ?H1 ?H2 (?H1 (?H1 (?H3 y_1) ?H4) x_1) \<noteq> ?H5)###end
Nonstandard_Analysis/NSA
NSA.st_HFinite
lemma st_HFinite: "x \<in> HFinite \<Longrightarrow> st x \<in> HFinite"
?x \<in> HFinite \<Longrightarrow> st ?x \<in> HFinite
x_1 \<in> ?H1 \<Longrightarrow> ?H2 x_1 \<in> ?H1
[ "NSA.st", "NSA.HFinite" ]
[ "real star \\<Rightarrow> real star", "'a star set" ]
[ "definition st :: \"hypreal \\<Rightarrow> hypreal\"\n where \"st = (\\<lambda>x. SOME r. x \\<in> HFinite \\<and> r \\<in> \\<real> \\<and> r \\<approx> x)\"\n \\<comment> \\<open>the standard part of a hyperreal\\<close>", "definition HFinite :: \"('a::real_normed_vector) star set\"\n where \"HFinite = {x. \\<exists>r \\<in> Reals. hnorm x < r}\"" ]
template
###lemma ?x \<in> HFinite \<Longrightarrow> st ?x \<in> HFinite ###symbols NSA.st :::: real star \<Rightarrow> real star NSA.HFinite :::: 'a star set ###defs definition st :: "hypreal \<Rightarrow> hypreal" where "st = (\<lambda>x. SOME r. x \<in> HFinite \<and> r \<in> \<real> \<and> r \<approx> x)" \<comment> \<open>the standard part of a hyperreal\<close> definition HFinite :: "('a::real_normed_vector) star set" where "HFinite = {x. \<exists>r \<in> Reals. hnorm x < r}"
###output x_1 \<in> ?H1 \<Longrightarrow> ?H2 x_1 \<in> ?H1###end
Nominal/Examples/Lambda_mu
Lambda_mu.perm_app(1)
null
?pi \<bullet> ?f ?x = (?pi \<bullet> ?f) (?pi \<bullet> ?x)
?H1 x_1 (x_2 x_3) = ?H1 x_1 x_2 (?H1 x_1 x_3)
[ "Nominal.perm" ]
[ "('a \\<times> 'a) list \\<Rightarrow> 'b \\<Rightarrow> 'b" ]
[ "consts \n perm :: \"'x prm \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixr \\<open>\\<bullet>\\<close> 80)\n swap :: \"('x \\<times> 'x) \\<Rightarrow> 'x \\<Rightarrow> 'x\"" ]
template
###lemma ?pi \<bullet> ?f ?x = (?pi \<bullet> ?f) (?pi \<bullet> ?x) ###symbols Nominal.perm :::: ('a \<times> 'a) list \<Rightarrow> 'b \<Rightarrow> 'b ###defs consts perm :: "'x prm \<Rightarrow> 'a \<Rightarrow> 'a" (infixr \<open>\<bullet>\<close> 80) swap :: "('x \<times> 'x) \<Rightarrow> 'x \<Rightarrow> 'x"
###output ?H1 x_1 (x_2 x_3) = ?H1 x_1 x_2 (?H1 x_1 x_3)###end
Library/Extended_Real
Extended_Real.ereal_of_enat_le_iff
lemma ereal_of_enat_le_iff[simp]: "ereal_of_enat m \<le> ereal_of_enat n \<longleftrightarrow> m \<le> n"
(ereal_of_enat ?m \<le> ereal_of_enat ?n) = (?m \<le> ?n)
(?H1 x_1 \<le> ?H1 x_2) = (x_1 \<le> x_2)
[ "Extended_Real.ereal_of_enat" ]
[ "enat \\<Rightarrow> ereal" ]
[ "definition \"ereal_of_enat n = (case n of enat n \\<Rightarrow> ereal (real n) | \\<infinity> \\<Rightarrow> \\<infinity>)\"" ]
template
###lemma (ereal_of_enat ?m \<le> ereal_of_enat ?n) = (?m \<le> ?n) ###symbols Extended_Real.ereal_of_enat :::: enat \<Rightarrow> ereal ###defs definition "ereal_of_enat n = (case n of enat n \<Rightarrow> ereal (real n) | \<infinity> \<Rightarrow> \<infinity>)"
###output (?H1 x_1 \<le> ?H1 x_2) = (x_1 \<le> x_2)###end
Data_Structures/Binomial_Heap
Binomial_Heap.merge_simp2
lemma merge_simp2[simp]: "merge [] ts\<^sub>2 = ts\<^sub>2"
merge [] ?ts\<^sub>2 = ?ts\<^sub>2
?H1 ?H2 x_1 = x_1
[ "List.list.Nil", "Binomial_Heap.merge" ]
[ "'a list", "'a tree list \\<Rightarrow> 'a tree list \\<Rightarrow> 'a tree list" ]
[ "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "fun merge :: \"'a::linorder trees \\<Rightarrow> 'a trees \\<Rightarrow> 'a trees\" where\n \"merge ts\\<^sub>1 [] = ts\\<^sub>1\"\n| \"merge [] ts\\<^sub>2 = ts\\<^sub>2\"\n| \"merge (t\\<^sub>1#ts\\<^sub>1 =: h\\<^sub>1) (t\\<^sub>2#ts\\<^sub>2 =: h\\<^sub>2) = (\n if rank t\\<^sub>1 < rank t\\<^sub>2 then t\\<^sub>1 # merge ts\\<^sub>1 h\\<^sub>2 else\n if rank t\\<^sub>2 < rank t\\<^sub>1 then t\\<^sub>2 # merge h\\<^sub>1 ts\\<^sub>2\n else ins_tree (link t\\<^sub>1 t\\<^sub>2) (merge ts\\<^sub>1 ts\\<^sub>2)\n )\"" ]
template
###lemma merge [] ?ts\<^sub>2 = ?ts\<^sub>2 ###symbols List.list.Nil :::: 'a list Binomial_Heap.merge :::: 'a tree list \<Rightarrow> 'a tree list \<Rightarrow> 'a tree list ###defs datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" fun merge :: "'a::linorder trees \<Rightarrow> 'a trees \<Rightarrow> 'a trees" where "merge ts\<^sub>1 [] = ts\<^sub>1" | "merge [] ts\<^sub>2 = ts\<^sub>2" | "merge (t\<^sub>1#ts\<^sub>1 =: h\<^sub>1) (t\<^sub>2#ts\<^sub>2 =: h\<^sub>2) = ( if rank t\<^sub>1 < rank t\<^sub>2 then t\<^sub>1 # merge ts\<^sub>1 h\<^sub>2 else if rank t\<^sub>2 < rank t\<^sub>1 then t\<^sub>2 # merge h\<^sub>1 ts\<^sub>2 else ins_tree (link t\<^sub>1 t\<^sub>2) (merge ts\<^sub>1 ts\<^sub>2) )"
###output ?H1 ?H2 x_1 = x_1###end