theory_file
stringclasses
970 values
lemma_name
stringlengths
6
108
lemma_command
stringlengths
15
14.6k
lemma_object
stringlengths
6
17.2k
template
stringlengths
7
16.1k
symbols
listlengths
0
101
types
listlengths
0
101
defs
listlengths
0
83
output_key
stringclasses
1 value
input
stringlengths
37
79.6k
output
stringlengths
24
16.1k
Combinatorics/Orbits
Orbits.cyclic_on_inI
lemma cyclic_on_inI: assumes "cyclic_on f S" "s \<in> S" shows "f s \<in> S"
cyclic_on ?f ?S \<Longrightarrow> ?s \<in> ?S \<Longrightarrow> ?f ?s \<in> ?S
\<lbrakk> ?H1 x_1 x_2; x_3 \<in> x_2\<rbrakk> \<Longrightarrow> x_1 x_3 \<in> x_2
[ "Orbits.cyclic_on" ]
[ "('a \\<Rightarrow> 'a) \\<Rightarrow> 'a set \\<Rightarrow> bool" ]
[ "definition cyclic_on :: \"('a \\<Rightarrow> 'a) \\<Rightarrow> 'a set \\<Rightarrow> bool\" where\n \"cyclic_on f S \\<longleftrightarrow> (\\<exists>s\\<in>S. S = orbit f s)\"" ]
template
###lemma cyclic_on ?f ?S \<Longrightarrow> ?s \<in> ?S \<Longrightarrow> ?f ?s \<in> ?S ###symbols Orbits.cyclic_on :::: ('a \<Rightarrow> 'a) \<Rightarrow> 'a set \<Rightarrow> bool ###defs definition cyclic_on :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a set \<Rightarrow> bool" where "cyclic_on f S \<longleftrightarrow> (\<exists>s\<in>S. S = orbit f s)"
###output \<lbrakk> ?H1 x_1 x_2; x_3 \<in> x_2\<rbrakk> \<Longrightarrow> x_1 x_3 \<in> x_2###end
Library/FuncSet
FuncSet.Pi_cong
lemma Pi_cong: "(\<And>w. w \<in> A \<Longrightarrow> f w = g w) \<Longrightarrow> f \<in> Pi A B \<longleftrightarrow> g \<in> Pi A B"
(\<And>w. w \<in> ?A \<Longrightarrow> ?f w = ?g w) \<Longrightarrow> (?f \<in> Pi ?A ?B) = (?g \<in> Pi ?A ?B)
(\<And>y_0. y_0 \<in> x_1 \<Longrightarrow> x_2 y_0 = x_3 y_0) \<Longrightarrow> (x_2 \<in> ?H1 x_1 x_4) = (x_3 \<in> ?H1 x_1 x_4)
[ "FuncSet.Pi" ]
[ "'a set \\<Rightarrow> ('a \\<Rightarrow> 'b set) \\<Rightarrow> ('a \\<Rightarrow> 'b) set" ]
[ "definition Pi :: \"'a set \\<Rightarrow> ('a \\<Rightarrow> 'b set) \\<Rightarrow> ('a \\<Rightarrow> 'b) set\"\n where \"Pi A B = {f. \\<forall>x. x \\<in> A \\<longrightarrow> f x \\<in> B x}\"" ]
template
###lemma (\<And>w. w \<in> ?A \<Longrightarrow> ?f w = ?g w) \<Longrightarrow> (?f \<in> Pi ?A ?B) = (?g \<in> Pi ?A ?B) ###symbols FuncSet.Pi :::: 'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> ('a \<Rightarrow> 'b) set ###defs definition Pi :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> ('a \<Rightarrow> 'b) set" where "Pi A B = {f. \<forall>x. x \<in> A \<longrightarrow> f x \<in> B x}"
###output (\<And>y_0. y_0 \<in> x_1 \<Longrightarrow> x_2 y_0 = x_3 y_0) \<Longrightarrow> (x_2 \<in> ?H1 x_1 x_4) = (x_3 \<in> ?H1 x_1 x_4)###end
Computational_Algebra/Formal_Power_Series
Formal_Power_Series.fps_lr_inverse_mult_divring(1)
lemma fps_lr_inverse_mult_divring: fixes f g :: "'a::division_ring fps" shows "fps_left_inverse (f * g) (inverse ((f*g)$0)) = fps_left_inverse g (inverse (g$0)) * fps_left_inverse f (inverse (f$0))" and "fps_right_inverse (f * g) (inverse ((f*g)$0)) = fps_right_inverse g (inverse (g$0)) * fps_right_inverse f (inverse (f$0))"
fps_left_inverse (?f * ?g) (inverse (fps_nth (?f * ?g) 0)) = fps_left_inverse ?g (inverse (fps_nth ?g 0)) * fps_left_inverse ?f (inverse (fps_nth ?f 0))
?H1 (?H2 x_1 x_2) (?H3 (?H4 (?H2 x_1 x_2) ?H5)) = ?H2 (?H1 x_2 (?H3 (?H4 x_2 ?H5))) (?H1 x_1 (?H3 (?H4 x_1 ?H5)))
[ "Groups.zero_class.zero", "Formal_Power_Series.fps.fps_nth", "Fields.inverse_class.inverse", "Groups.times_class.times", "Formal_Power_Series.fps_left_inverse" ]
[ "'a", "'a fps \\<Rightarrow> nat \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a fps \\<Rightarrow> 'a \\<Rightarrow> 'a fps" ]
[ "class zero =\n fixes zero :: 'a (\"0\")", "class inverse = divide +\n fixes inverse :: \"'a \\<Rightarrow> 'a\"\nbegin", "class times =\n fixes times :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"*\" 70)", "abbreviation \"fps_left_inverse \\<equiv> (\\<lambda>f x. Abs_fps (fps_left_inverse_constructor f x))\"" ]
template
###lemma fps_left_inverse (?f * ?g) (inverse (fps_nth (?f * ?g) 0)) = fps_left_inverse ?g (inverse (fps_nth ?g 0)) * fps_left_inverse ?f (inverse (fps_nth ?f 0)) ###symbols Groups.zero_class.zero :::: 'a Formal_Power_Series.fps.fps_nth :::: 'a fps \<Rightarrow> nat \<Rightarrow> 'a Fields.inverse_class.inverse :::: 'a \<Rightarrow> 'a Groups.times_class.times :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Formal_Power_Series.fps_left_inverse :::: 'a fps \<Rightarrow> 'a \<Rightarrow> 'a fps ###defs class zero = fixes zero :: 'a ("0") class inverse = divide + fixes inverse :: "'a \<Rightarrow> 'a" begin class times = fixes times :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "*" 70) abbreviation "fps_left_inverse \<equiv> (\<lambda>f x. Abs_fps (fps_left_inverse_constructor f x))"
###output ?H1 (?H2 x_1 x_2) (?H3 (?H4 (?H2 x_1 x_2) ?H5)) = ?H2 (?H1 x_2 (?H3 (?H4 x_2 ?H5))) (?H1 x_1 (?H3 (?H4 x_1 ?H5)))###end
Analysis/Abstract_Topology
Abstract_Topology.closed_map_into_subtopology
lemma closed_map_into_subtopology: "\<lbrakk>closed_map X X' f; f \<in> topspace X \<rightarrow> S\<rbrakk> \<Longrightarrow> closed_map X (subtopology X' S) f"
closed_map ?X ?X' ?f \<Longrightarrow> ?f \<in> topspace ?X \<rightarrow> ?S \<Longrightarrow> closed_map ?X (subtopology ?X' ?S) ?f
\<lbrakk> ?H1 x_1 x_2 x_3; x_3 \<in> ?H2 (?H3 x_1) x_4\<rbrakk> \<Longrightarrow> ?H1 x_1 (?H4 x_2 x_4) x_3
[ "Abstract_Topology.subtopology", "Abstract_Topology.topspace", "FuncSet.funcset", "Abstract_Topology.closed_map" ]
[ "'a topology \\<Rightarrow> 'a set \\<Rightarrow> 'a topology", "'a topology \\<Rightarrow> 'a set", "'a set \\<Rightarrow> 'b set \\<Rightarrow> ('a \\<Rightarrow> 'b) set", "'a topology \\<Rightarrow> 'b topology \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> bool" ]
[ "definition \"topspace T = \\<Union>{S. openin T S}\"", "abbreviation funcset :: \"'a set \\<Rightarrow> 'b set \\<Rightarrow> ('a \\<Rightarrow> 'b) set\" (infixr \"\\<rightarrow>\" 60)\n where \"A \\<rightarrow> B \\<equiv> Pi A (\\<lambda>_. B)\"", "definition closed_map :: \"'a topology \\<Rightarrow> 'b topology \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> bool\"\n where \"closed_map X1 X2 f \\<equiv> \\<forall>U. closedin X1 U \\<longrightarrow> closedin X2 (f ` U)\"" ]
template
###lemma closed_map ?X ?X' ?f \<Longrightarrow> ?f \<in> topspace ?X \<rightarrow> ?S \<Longrightarrow> closed_map ?X (subtopology ?X' ?S) ?f ###symbols Abstract_Topology.subtopology :::: 'a topology \<Rightarrow> 'a set \<Rightarrow> 'a topology Abstract_Topology.topspace :::: 'a topology \<Rightarrow> 'a set FuncSet.funcset :::: 'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> 'b) set Abstract_Topology.closed_map :::: 'a topology \<Rightarrow> 'b topology \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool ###defs definition "topspace T = \<Union>{S. openin T S}" abbreviation funcset :: "'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> 'b) set" (infixr "\<rightarrow>" 60) where "A \<rightarrow> B \<equiv> Pi A (\<lambda>_. B)" definition closed_map :: "'a topology \<Rightarrow> 'b topology \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool" where "closed_map X1 X2 f \<equiv> \<forall>U. closedin X1 U \<longrightarrow> closedin X2 (f ` U)"
###output \<lbrakk> ?H1 x_1 x_2 x_3; x_3 \<in> ?H2 (?H3 x_1) x_4\<rbrakk> \<Longrightarrow> ?H1 x_1 (?H4 x_2 x_4) x_3###end
Analysis/Derivative
Derivative.vector_diff_chain_within
lemma vector_diff_chain_within: assumes "(f has_vector_derivative f') (at x within s)" and "(g has_vector_derivative g') (at (f x) within f ` s)" shows "((g \<circ> f) has_vector_derivative (f' *\<^sub>R g')) (at x within s)"
(?f has_vector_derivative ?f') (at ?x within ?s) \<Longrightarrow> (?g has_vector_derivative ?g') (at (?f ?x) within ?f ` ?s) \<Longrightarrow> (?g \<circ> ?f has_vector_derivative ?f' *\<^sub>R ?g') (at ?x within ?s)
\<lbrakk> ?H1 x_1 x_2 (?H2 x_3 x_4); ?H1 x_5 x_6 (?H2 (x_1 x_3) (?H3 x_1 x_4))\<rbrakk> \<Longrightarrow> ?H1 (?H4 x_5 x_1) (?H5 x_2 x_6) (?H2 x_3 x_4)
[ "Real_Vector_Spaces.scaleR_class.scaleR", "Fun.comp", "Set.image", "Topological_Spaces.topological_space_class.at_within", "Deriv.has_vector_derivative" ]
[ "real \\<Rightarrow> 'a \\<Rightarrow> 'a", "('a \\<Rightarrow> 'b) \\<Rightarrow> ('c \\<Rightarrow> 'a) \\<Rightarrow> 'c \\<Rightarrow> 'b", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set", "'a \\<Rightarrow> 'a set \\<Rightarrow> 'a filter", "(real \\<Rightarrow> 'a) \\<Rightarrow> 'a \\<Rightarrow> real filter \\<Rightarrow> bool" ]
[ "class scaleR =\n fixes scaleR :: \"real \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixr \"*\\<^sub>R\" 75)\nbegin", "definition comp :: \"('b \\<Rightarrow> 'c) \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> 'a \\<Rightarrow> 'c\" (infixl \"\\<circ>\" 55)\n where \"f \\<circ> g = (\\<lambda>x. f (g x))\"", "definition image :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set\" (infixr \"`\" 90)\n where \"f ` A = {y. \\<exists>x\\<in>A. y = f x}\"", "class topological_space = \"open\" +\n assumes open_UNIV [simp, intro]: \"open UNIV\"\n assumes open_Int [intro]: \"open S \\<Longrightarrow> open T \\<Longrightarrow> open (S \\<inter> T)\"\n assumes open_Union [intro]: \"\\<forall>S\\<in>K. open S \\<Longrightarrow> open (\\<Union>K)\"\nbegin", "definition has_vector_derivative :: \"(real \\<Rightarrow> 'b::real_normed_vector) \\<Rightarrow> 'b \\<Rightarrow> real filter \\<Rightarrow> bool\"\n (infix \"has'_vector'_derivative\" 50)\n where \"(f has_vector_derivative f') net \\<longleftrightarrow> (f has_derivative (\\<lambda>x. x *\\<^sub>R f')) net\"" ]
template
###lemma (?f has_vector_derivative ?f') (at ?x within ?s) \<Longrightarrow> (?g has_vector_derivative ?g') (at (?f ?x) within ?f ` ?s) \<Longrightarrow> (?g \<circ> ?f has_vector_derivative ?f' *\<^sub>R ?g') (at ?x within ?s) ###symbols Real_Vector_Spaces.scaleR_class.scaleR :::: real \<Rightarrow> 'a \<Rightarrow> 'a Fun.comp :::: ('a \<Rightarrow> 'b) \<Rightarrow> ('c \<Rightarrow> 'a) \<Rightarrow> 'c \<Rightarrow> 'b Set.image :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set Topological_Spaces.topological_space_class.at_within :::: 'a \<Rightarrow> 'a set \<Rightarrow> 'a filter Deriv.has_vector_derivative :::: (real \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> real filter \<Rightarrow> bool ###defs class scaleR = fixes scaleR :: "real \<Rightarrow> 'a \<Rightarrow> 'a" (infixr "*\<^sub>R" 75) begin definition comp :: "('b \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'c" (infixl "\<circ>" 55) where "f \<circ> g = (\<lambda>x. f (g x))" definition image :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set" (infixr "`" 90) where "f ` A = {y. \<exists>x\<in>A. y = f x}" class topological_space = "open" + assumes open_UNIV [simp, intro]: "open UNIV" assumes open_Int [intro]: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<inter> T)" assumes open_Union [intro]: "\<forall>S\<in>K. open S \<Longrightarrow> open (\<Union>K)" begin definition has_vector_derivative :: "(real \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> 'b \<Rightarrow> real filter \<Rightarrow> bool" (infix "has'_vector'_derivative" 50) where "(f has_vector_derivative f') net \<longleftrightarrow> (f has_derivative (\<lambda>x. x *\<^sub>R f')) net"
###output \<lbrakk> ?H1 x_1 x_2 (?H2 x_3 x_4); ?H1 x_5 x_6 (?H2 (x_1 x_3) (?H3 x_1 x_4))\<rbrakk> \<Longrightarrow> ?H1 (?H4 x_5 x_1) (?H5 x_2 x_6) (?H2 x_3 x_4)###end
Algebra/IntRing
IntRing.UNIV(1)
lemma UNIV: "x \<in> UNIV \<longleftrightarrow> True" "A \<subseteq> UNIV \<longleftrightarrow> True" "(\<forall>x \<in> UNIV. P x) \<longleftrightarrow> (\<forall>x. P x)" "(\<exists>x \<in> UNIV. P x) \<longleftrightarrow> (\<exists>x. P x)" "(True \<longrightarrow> Q) \<longleftrightarrow> Q" "(True \<Longrightarrow> PROP R) \<equiv> PROP R"
(?x \<in> UNIV) = True
(x_1 \<in> ?H1) = True
[ "Set.UNIV" ]
[ "'a set" ]
[ "abbreviation UNIV :: \"'a set\"\n where \"UNIV \\<equiv> top\"" ]
template
###lemma (?x \<in> UNIV) = True ###symbols Set.UNIV :::: 'a set ###defs abbreviation UNIV :: "'a set" where "UNIV \<equiv> top"
###output (x_1 \<in> ?H1) = True###end
Algebra/IntRing
IntRing.dvds_eq_Idl
lemma dvds_eq_Idl: "l dvd k \<and> k dvd l \<longleftrightarrow> Idl\<^bsub>\<Z>\<^esub> {k} = Idl\<^bsub>\<Z>\<^esub> {l}"
(?l dvd ?k \<and> ?k dvd ?l) = (Idl\<^bsub>\<Z>\<^esub> { ?k} = Idl\<^bsub>\<Z>\<^esub> { ?l})
(?H1 x_1 x_2 \<and> ?H1 x_2 x_1) = (?H2 ?H3 (?H4 x_2 ?H5) = ?H2 ?H3 (?H4 x_1 ?H5))
[ "Set.empty", "Set.insert", "IntRing.int_ring", "Ideal.genideal", "Rings.dvd_class.dvd" ]
[ "'a set", "'a \\<Rightarrow> 'a set \\<Rightarrow> 'a set", "int ring", "('a, 'b) ring_scheme \\<Rightarrow> 'a set \\<Rightarrow> 'a set", "'a \\<Rightarrow> 'a \\<Rightarrow> bool" ]
[ "abbreviation empty :: \"'a set\" (\"{}\")\n where \"{} \\<equiv> bot\"", "definition insert :: \"'a \\<Rightarrow> 'a set \\<Rightarrow> 'a set\"\n where insert_compr: \"insert a B = {x. x = a \\<or> x \\<in> B}\"", "abbreviation int_ring :: \"int ring\" (\"\\<Z>\")\n where \"int_ring \\<equiv> \\<lparr>carrier = UNIV, mult = (*), one = 1, zero = 0, add = (+)\\<rparr>\"", "definition genideal :: \"_ \\<Rightarrow> 'a set \\<Rightarrow> 'a set\" (\"Idl\\<index> _\" [80] 79)\n where \"genideal R S = \\<Inter>{I. ideal I R \\<and> S \\<subseteq> I}\"", "definition dvd :: \"'a \\<Rightarrow> 'a \\<Rightarrow> bool\" (infix \"dvd\" 50)\n where \"b dvd a \\<longleftrightarrow> (\\<exists>k. a = b * k)\"" ]
template
###lemma (?l dvd ?k \<and> ?k dvd ?l) = (Idl\<^bsub>\<Z>\<^esub> { ?k} = Idl\<^bsub>\<Z>\<^esub> { ?l}) ###symbols Set.empty :::: 'a set Set.insert :::: 'a \<Rightarrow> 'a set \<Rightarrow> 'a set IntRing.int_ring :::: int ring Ideal.genideal :::: ('a, 'b) ring_scheme \<Rightarrow> 'a set \<Rightarrow> 'a set Rings.dvd_class.dvd :::: 'a \<Rightarrow> 'a \<Rightarrow> bool ###defs abbreviation empty :: "'a set" ("{}") where "{} \<equiv> bot" definition insert :: "'a \<Rightarrow> 'a set \<Rightarrow> 'a set" where insert_compr: "insert a B = {x. x = a \<or> x \<in> B}" abbreviation int_ring :: "int ring" ("\<Z>") where "int_ring \<equiv> \<lparr>carrier = UNIV, mult = (*), one = 1, zero = 0, add = (+)\<rparr>" definition genideal :: "_ \<Rightarrow> 'a set \<Rightarrow> 'a set" ("Idl\<index> _" [80] 79) where "genideal R S = \<Inter>{I. ideal I R \<and> S \<subseteq> I}" definition dvd :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "dvd" 50) where "b dvd a \<longleftrightarrow> (\<exists>k. a = b * k)"
###output (?H1 x_1 x_2 \<and> ?H1 x_2 x_1) = (?H2 ?H3 (?H4 x_2 ?H5) = ?H2 ?H3 (?H4 x_1 ?H5))###end
List
List.distinct_swap
lemma distinct_swap[simp]: "\<lbrakk> i < size xs; j < size xs\<rbrakk> \<Longrightarrow> distinct(xs[i := xs!j, j := xs!i]) = distinct xs"
?i < length ?xs \<Longrightarrow> ?j < length ?xs \<Longrightarrow> distinct (?xs[ ?i := ?xs ! ?j, ?j := ?xs ! ?i]) = distinct ?xs
\<lbrakk>x_1 < ?H1 x_2; x_3 < ?H1 x_2\<rbrakk> \<Longrightarrow> ?H2 (?H3 (?H3 x_2 x_1 (?H4 x_2 x_3)) x_3 (?H4 x_2 x_1)) = ?H2 x_2
[ "List.nth", "List.list_update", "List.distinct", "List.length" ]
[ "'a list \\<Rightarrow> nat \\<Rightarrow> 'a", "'a list \\<Rightarrow> nat \\<Rightarrow> 'a \\<Rightarrow> 'a list", "'a list \\<Rightarrow> bool", "'a list \\<Rightarrow> nat" ]
[ "primrec (nonexhaustive) nth :: \"'a list => nat => 'a\" (infixl \"!\" 100) where\nnth_Cons: \"(x # xs) ! n = (case n of 0 \\<Rightarrow> x | Suc k \\<Rightarrow> xs ! k)\"\n \\<comment> \\<open>Warning: simpset does not contain this definition, but separate\n theorems for \\<open>n = 0\\<close> and \\<open>n = Suc k\\<close>\\<close>", "primrec list_update :: \"'a list \\<Rightarrow> nat \\<Rightarrow> 'a \\<Rightarrow> 'a list\" where\n\"list_update [] i v = []\" |\n\"list_update (x # xs) i v =\n (case i of 0 \\<Rightarrow> v # xs | Suc j \\<Rightarrow> x # list_update xs j v)\"", "primrec distinct :: \"'a list \\<Rightarrow> bool\" where\n\"distinct [] \\<longleftrightarrow> True\" |\n\"distinct (x # xs) \\<longleftrightarrow> x \\<notin> set xs \\<and> distinct xs\"", "abbreviation length :: \"'a list \\<Rightarrow> nat\" where\n\"length \\<equiv> size\"" ]
template
###lemma ?i < length ?xs \<Longrightarrow> ?j < length ?xs \<Longrightarrow> distinct (?xs[ ?i := ?xs ! ?j, ?j := ?xs ! ?i]) = distinct ?xs ###symbols List.nth :::: 'a list \<Rightarrow> nat \<Rightarrow> 'a List.list_update :::: 'a list \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a list List.distinct :::: 'a list \<Rightarrow> bool List.length :::: 'a list \<Rightarrow> nat ###defs primrec (nonexhaustive) nth :: "'a list => nat => 'a" (infixl "!" 100) where nth_Cons: "(x # xs) ! n = (case n of 0 \<Rightarrow> x | Suc k \<Rightarrow> xs ! k)" \<comment> \<open>Warning: simpset does not contain this definition, but separate theorems for \<open>n = 0\<close> and \<open>n = Suc k\<close>\<close> primrec list_update :: "'a list \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a list" where "list_update [] i v = []" | "list_update (x # xs) i v = (case i of 0 \<Rightarrow> v # xs | Suc j \<Rightarrow> x # list_update xs j v)" primrec distinct :: "'a list \<Rightarrow> bool" where "distinct [] \<longleftrightarrow> True" | "distinct (x # xs) \<longleftrightarrow> x \<notin> set xs \<and> distinct xs" abbreviation length :: "'a list \<Rightarrow> nat" where "length \<equiv> size"
###output \<lbrakk>x_1 < ?H1 x_2; x_3 < ?H1 x_2\<rbrakk> \<Longrightarrow> ?H2 (?H3 (?H3 x_2 x_1 (?H4 x_2 x_3)) x_3 (?H4 x_2 x_1)) = ?H2 x_2###end
Computational_Algebra/Formal_Power_Series
Formal_Power_Series.fps_integral0_deriv
lemma fps_integral0_deriv: fixes a :: "'a::{division_ring,ring_char_0} fps" shows "fps_integral0 (fps_deriv a) = a - fps_const (a$0)"
fps_integral0 (fps_deriv ?a) = ?a - fps_const (fps_nth ?a 0)
?H1 (?H2 x_1) = ?H3 x_1 (?H4 (?H5 x_1 ?H6))
[ "Groups.zero_class.zero", "Formal_Power_Series.fps.fps_nth", "Formal_Power_Series.fps_const", "Groups.minus_class.minus", "Formal_Power_Series.fps_deriv", "Formal_Power_Series.fps_integral0" ]
[ "'a", "'a fps \\<Rightarrow> nat \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a fps", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a fps \\<Rightarrow> 'a fps", "'a fps \\<Rightarrow> 'a fps" ]
[ "class zero =\n fixes zero :: 'a (\"0\")", "definition \"fps_const c = Abs_fps (\\<lambda>n. if n = 0 then c else 0)\"", "class minus =\n fixes minus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"-\" 65)", "definition \"fps_deriv f = Abs_fps (\\<lambda>n. of_nat (n + 1) * f $ (n + 1))\"", "abbreviation \"fps_integral0 a \\<equiv> fps_integral a 0\"" ]
template
###lemma fps_integral0 (fps_deriv ?a) = ?a - fps_const (fps_nth ?a 0) ###symbols Groups.zero_class.zero :::: 'a Formal_Power_Series.fps.fps_nth :::: 'a fps \<Rightarrow> nat \<Rightarrow> 'a Formal_Power_Series.fps_const :::: 'a \<Rightarrow> 'a fps Groups.minus_class.minus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Formal_Power_Series.fps_deriv :::: 'a fps \<Rightarrow> 'a fps Formal_Power_Series.fps_integral0 :::: 'a fps \<Rightarrow> 'a fps ###defs class zero = fixes zero :: 'a ("0") definition "fps_const c = Abs_fps (\<lambda>n. if n = 0 then c else 0)" class minus = fixes minus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "-" 65) definition "fps_deriv f = Abs_fps (\<lambda>n. of_nat (n + 1) * f $ (n + 1))" abbreviation "fps_integral0 a \<equiv> fps_integral a 0"
###output ?H1 (?H2 x_1) = ?H3 x_1 (?H4 (?H5 x_1 ?H6))###end
Quotient_Examples/Quotient_Message
Quotient_Message.msgrel_imp_eqv_freeright_aux
lemma msgrel_imp_eqv_freeright_aux: shows "freeright U \<sim> freeright U"
freeright ?U \<sim> freeright ?U
?H1 (?H2 x_1) (?H2 x_1)
[ "Quotient_Message.freeright", "Quotient_Message.msgrel" ]
[ "freemsg \\<Rightarrow> freemsg", "freemsg \\<Rightarrow> freemsg \\<Rightarrow> bool" ]
[ "primrec\n freeright :: \"freemsg \\<Rightarrow> freemsg\"\nwhere\n \"freeright (NONCE N) = NONCE N\"\n| \"freeright (MPAIR X Y) = Y\"\n| \"freeright (CRYPT K X) = freeright X\"\n| \"freeright (DECRYPT K X) = freeright X\"", "inductive\n msgrel::\"freemsg \\<Rightarrow> freemsg \\<Rightarrow> bool\" (infixl \"\\<sim>\" 50)\nwhere\n CD: \"CRYPT K (DECRYPT K X) \\<sim> X\"\n| DC: \"DECRYPT K (CRYPT K X) \\<sim> X\"\n| NONCE: \"NONCE N \\<sim> NONCE N\"\n| MPAIR: \"\\<lbrakk>X \\<sim> X'; Y \\<sim> Y'\\<rbrakk> \\<Longrightarrow> MPAIR X Y \\<sim> MPAIR X' Y'\"\n| CRYPT: \"X \\<sim> X' \\<Longrightarrow> CRYPT K X \\<sim> CRYPT K X'\"\n| DECRYPT: \"X \\<sim> X' \\<Longrightarrow> DECRYPT K X \\<sim> DECRYPT K X'\"\n| SYM: \"X \\<sim> Y \\<Longrightarrow> Y \\<sim> X\"\n| TRANS: \"\\<lbrakk>X \\<sim> Y; Y \\<sim> Z\\<rbrakk> \\<Longrightarrow> X \\<sim> Z\"" ]
template
###lemma freeright ?U \<sim> freeright ?U ###symbols Quotient_Message.freeright :::: freemsg \<Rightarrow> freemsg Quotient_Message.msgrel :::: freemsg \<Rightarrow> freemsg \<Rightarrow> bool ###defs primrec freeright :: "freemsg \<Rightarrow> freemsg" where "freeright (NONCE N) = NONCE N" | "freeright (MPAIR X Y) = Y" | "freeright (CRYPT K X) = freeright X" | "freeright (DECRYPT K X) = freeright X" inductive msgrel::"freemsg \<Rightarrow> freemsg \<Rightarrow> bool" (infixl "\<sim>" 50) where CD: "CRYPT K (DECRYPT K X) \<sim> X" | DC: "DECRYPT K (CRYPT K X) \<sim> X" | NONCE: "NONCE N \<sim> NONCE N" | MPAIR: "\<lbrakk>X \<sim> X'; Y \<sim> Y'\<rbrakk> \<Longrightarrow> MPAIR X Y \<sim> MPAIR X' Y'" | CRYPT: "X \<sim> X' \<Longrightarrow> CRYPT K X \<sim> CRYPT K X'" | DECRYPT: "X \<sim> X' \<Longrightarrow> DECRYPT K X \<sim> DECRYPT K X'" | SYM: "X \<sim> Y \<Longrightarrow> Y \<sim> X" | TRANS: "\<lbrakk>X \<sim> Y; Y \<sim> Z\<rbrakk> \<Longrightarrow> X \<sim> Z"
###output ?H1 (?H2 x_1) (?H2 x_1)###end
UNITY/Comp
Complete_Lattices.Sup2_I
null
?r \<in> ?A \<Longrightarrow> ?r ?a ?b \<Longrightarrow> Sup ?A ?a ?b
\<lbrakk>x_1 \<in> x_2; x_1 x_3 x_4\<rbrakk> \<Longrightarrow> ?H1 x_2 x_3 x_4
[ "Complete_Lattices.Sup_class.Sup" ]
[ "'a set \\<Rightarrow> 'a" ]
[ "class Sup =\n fixes Sup :: \"'a set \\<Rightarrow> 'a\" (\"\\<Squnion> _\" [900] 900)" ]
template
###lemma ?r \<in> ?A \<Longrightarrow> ?r ?a ?b \<Longrightarrow> Sup ?A ?a ?b ###symbols Complete_Lattices.Sup_class.Sup :::: 'a set \<Rightarrow> 'a ###defs class Sup = fixes Sup :: "'a set \<Rightarrow> 'a" ("\<Squnion> _" [900] 900)
###output \<lbrakk>x_1 \<in> x_2; x_1 x_3 x_4\<rbrakk> \<Longrightarrow> ?H1 x_2 x_3 x_4###end
HOL
HOL.no_atp(122)
null
?lx * ?ly * ?rx = ?lx * ?rx * ?ly
?H1 (?H1 x_1 x_2) x_3 = ?H1 (?H1 x_1 x_3) x_2
[ "Groups.times_class.times" ]
[ "'a \\<Rightarrow> 'a \\<Rightarrow> 'a" ]
[ "class times =\n fixes times :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"*\" 70)" ]
template
###lemma ?lx * ?ly * ?rx = ?lx * ?rx * ?ly ###symbols Groups.times_class.times :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a ###defs class times = fixes times :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "*" 70)
###output ?H1 (?H1 x_1 x_2) x_3 = ?H1 (?H1 x_1 x_3) x_2###end
Analysis/Borel_Space
Borel_Space.borel_measurable_eq
null
?f \<in> borel_measurable ?M \<Longrightarrow> ?g \<in> borel_measurable ?M \<Longrightarrow> {w \<in> space ?M. ?f w = ?g w} \<in> sets ?M
\<lbrakk>x_1 \<in> ?H1 x_2; x_3 \<in> ?H1 x_2\<rbrakk> \<Longrightarrow> ?H2 (\<lambda>y_0. y_0 \<in> ?H3 x_2 \<and> x_1 y_0 = x_3 y_0) \<in> ?H4 x_2
[ "Sigma_Algebra.sets", "Sigma_Algebra.space", "Set.Collect", "Borel_Space.borel_measurable" ]
[ "'a measure \\<Rightarrow> 'a set set", "'a measure \\<Rightarrow> 'a set", "('a \\<Rightarrow> bool) \\<Rightarrow> 'a set", "'a measure \\<Rightarrow> ('a \\<Rightarrow> 'b) set" ]
[ "abbreviation \"borel_measurable M \\<equiv> measurable M borel\"" ]
template
###lemma ?f \<in> borel_measurable ?M \<Longrightarrow> ?g \<in> borel_measurable ?M \<Longrightarrow> {w \<in> space ?M. ?f w = ?g w} \<in> sets ?M ###symbols Sigma_Algebra.sets :::: 'a measure \<Rightarrow> 'a set set Sigma_Algebra.space :::: 'a measure \<Rightarrow> 'a set Set.Collect :::: ('a \<Rightarrow> bool) \<Rightarrow> 'a set Borel_Space.borel_measurable :::: 'a measure \<Rightarrow> ('a \<Rightarrow> 'b) set ###defs abbreviation "borel_measurable M \<equiv> measurable M borel"
###output \<lbrakk>x_1 \<in> ?H1 x_2; x_3 \<in> ?H1 x_2\<rbrakk> \<Longrightarrow> ?H2 (\<lambda>y_0. y_0 \<in> ?H3 x_2 \<and> x_1 y_0 = x_3 y_0) \<in> ?H4 x_2###end
Complex_Analysis/Complex_Analysis
Complex_Analysis_Basics.analytic_intros(33)
null
?f analytic_on ?S \<Longrightarrow> (deriv ^^ ?n) ?f analytic_on ?S
?H1 x_1 x_2 \<Longrightarrow> ?H1 (?H2 ?H3 x_3 x_1) x_2
[ "Derivative.deriv", "Nat.compower", "Complex_Analysis_Basics.analytic_on" ]
[ "('a \\<Rightarrow> 'a) \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a \\<Rightarrow> nat \\<Rightarrow> 'a", "(complex \\<Rightarrow> complex) \\<Rightarrow> complex set \\<Rightarrow> bool" ]
[ "abbreviation compower :: \"'a \\<Rightarrow> nat \\<Rightarrow> 'a\" (infixr \"^^\" 80)\n where \"f ^^ n \\<equiv> compow n f\"" ]
template
###lemma ?f analytic_on ?S \<Longrightarrow> (deriv ^^ ?n) ?f analytic_on ?S ###symbols Derivative.deriv :::: ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a Nat.compower :::: 'a \<Rightarrow> nat \<Rightarrow> 'a Complex_Analysis_Basics.analytic_on :::: (complex \<Rightarrow> complex) \<Rightarrow> complex set \<Rightarrow> bool ###defs abbreviation compower :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infixr "^^" 80) where "f ^^ n \<equiv> compow n f"
###output ?H1 x_1 x_2 \<Longrightarrow> ?H1 (?H2 ?H3 x_3 x_1) x_2###end
Analysis/Set_Integral
Set_Integral.set_borel_measurable_subset
null
set_borel_measurable ?M ?A ?f \<Longrightarrow> ?B \<in> sets ?M \<Longrightarrow> ?B \<subseteq> ?A \<Longrightarrow> set_borel_measurable ?M ?B ?f
\<lbrakk> ?H1 x_1 x_2 x_3; x_4 \<in> ?H2 x_1; ?H3 x_4 x_2\<rbrakk> \<Longrightarrow> ?H1 x_1 x_4 x_3
[ "Set.subset_eq", "Sigma_Algebra.sets", "Set_Integral.set_borel_measurable" ]
[ "'a set \\<Rightarrow> 'a set \\<Rightarrow> bool", "'a measure \\<Rightarrow> 'a set set", "'a measure \\<Rightarrow> 'a set \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> bool" ]
[ "abbreviation subset_eq :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> bool\"\n where \"subset_eq \\<equiv> less_eq\"" ]
template
###lemma set_borel_measurable ?M ?A ?f \<Longrightarrow> ?B \<in> sets ?M \<Longrightarrow> ?B \<subseteq> ?A \<Longrightarrow> set_borel_measurable ?M ?B ?f ###symbols Set.subset_eq :::: 'a set \<Rightarrow> 'a set \<Rightarrow> bool Sigma_Algebra.sets :::: 'a measure \<Rightarrow> 'a set set Set_Integral.set_borel_measurable :::: 'a measure \<Rightarrow> 'a set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool ###defs abbreviation subset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where "subset_eq \<equiv> less_eq"
###output \<lbrakk> ?H1 x_1 x_2 x_3; x_4 \<in> ?H2 x_1; ?H3 x_4 x_2\<rbrakk> \<Longrightarrow> ?H1 x_1 x_4 x_3###end
HOLCF/Domain
Domain_Aux.lub_ID_finite
null
chain ?d \<Longrightarrow> (\<Squnion>n. ?d n) = ID \<Longrightarrow> (\<And>n. decisive (?d n)) \<Longrightarrow> \<exists>n. ?d n\<cdot> ?x = ?x
\<lbrakk> ?H1 x_1; ?H2 x_1 = ?H3; \<And>y_1. ?H4 (x_1 y_1)\<rbrakk> \<Longrightarrow> \<exists>y_2. ?H5 (x_1 y_2) x_2 = x_2
[ "Cfun.cfun.Rep_cfun", "Domain_Aux.decisive", "Cfun.ID", "Porder.po_class.Lub", "Porder.po_class.chain" ]
[ "('a \\<rightarrow> 'b) \\<Rightarrow> 'a \\<Rightarrow> 'b", "('a \\<rightarrow> 'a) \\<Rightarrow> bool", "'a \\<rightarrow> 'a", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'b", "(nat \\<Rightarrow> 'a) \\<Rightarrow> bool" ]
[ "definition\n decisive :: \"('a::pcpo \\<rightarrow> 'a) \\<Rightarrow> bool\"\nwhere\n \"decisive d \\<longleftrightarrow> (\\<forall>x. d\\<cdot>x = x \\<or> d\\<cdot>x = \\<bottom>)\"", "definition ID :: \"'a \\<rightarrow> 'a\"\n where \"ID = (\\<Lambda> x. x)\"", "class po = below +\n assumes below_refl [iff]: \"x \\<sqsubseteq> x\"\n assumes below_trans: \"x \\<sqsubseteq> y \\<Longrightarrow> y \\<sqsubseteq> z \\<Longrightarrow> x \\<sqsubseteq> z\"\n assumes below_antisym: \"x \\<sqsubseteq> y \\<Longrightarrow> y \\<sqsubseteq> x \\<Longrightarrow> x = y\"\nbegin", "class po = below +\n assumes below_refl [iff]: \"x \\<sqsubseteq> x\"\n assumes below_trans: \"x \\<sqsubseteq> y \\<Longrightarrow> y \\<sqsubseteq> z \\<Longrightarrow> x \\<sqsubseteq> z\"\n assumes below_antisym: \"x \\<sqsubseteq> y \\<Longrightarrow> y \\<sqsubseteq> x \\<Longrightarrow> x = y\"\nbegin" ]
template
###lemma chain ?d \<Longrightarrow> (\<Squnion>n. ?d n) = ID \<Longrightarrow> (\<And>n. decisive (?d n)) \<Longrightarrow> \<exists>n. ?d n\<cdot> ?x = ?x ###symbols Cfun.cfun.Rep_cfun :::: ('a \<rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b Domain_Aux.decisive :::: ('a \<rightarrow> 'a) \<Rightarrow> bool Cfun.ID :::: 'a \<rightarrow> 'a Porder.po_class.Lub :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'b Porder.po_class.chain :::: (nat \<Rightarrow> 'a) \<Rightarrow> bool ###defs definition decisive :: "('a::pcpo \<rightarrow> 'a) \<Rightarrow> bool" where "decisive d \<longleftrightarrow> (\<forall>x. d\<cdot>x = x \<or> d\<cdot>x = \<bottom>)" definition ID :: "'a \<rightarrow> 'a" where "ID = (\<Lambda> x. x)" class po = below + assumes below_refl [iff]: "x \<sqsubseteq> x" assumes below_trans: "x \<sqsubseteq> y \<Longrightarrow> y \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> z" assumes below_antisym: "x \<sqsubseteq> y \<Longrightarrow> y \<sqsubseteq> x \<Longrightarrow> x = y" begin class po = below + assumes below_refl [iff]: "x \<sqsubseteq> x" assumes below_trans: "x \<sqsubseteq> y \<Longrightarrow> y \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> z" assumes below_antisym: "x \<sqsubseteq> y \<Longrightarrow> y \<sqsubseteq> x \<Longrightarrow> x = y" begin
###output \<lbrakk> ?H1 x_1; ?H2 x_1 = ?H3; \<And>y_1. ?H4 (x_1 y_1)\<rbrakk> \<Longrightarrow> \<exists>y_2. ?H5 (x_1 y_2) x_2 = x_2###end
UNITY/Comp/Alloc
Alloc.fst_lift_map_eq_fst
lemma fst_lift_map_eq_fst [simp]: "fst (lift_map i x) i = fst x"
fst (lift_map ?i ?x) ?i = fst ?x
?H1 (?H2 x_1 x_2) x_1 = ?H1 x_2
[ "Lift_prog.lift_map", "Product_Type.prod.fst" ]
[ "nat \\<Rightarrow> 'a \\<times> (nat \\<Rightarrow> 'a) \\<times> 'b \\<Rightarrow> (nat \\<Rightarrow> 'a) \\<times> 'b", "'a \\<times> 'b \\<Rightarrow> 'a" ]
[ "definition lift_map :: \"[nat, 'b * ((nat=>'b) * 'c)] => (nat=>'b) * 'c\" where\n \"lift_map i == %(s,(f,uu)). (insert_map i s f, uu)\"", "definition \"prod = {f. \\<exists>a b. f = Pair_Rep (a::'a) (b::'b)}\"" ]
template
###lemma fst (lift_map ?i ?x) ?i = fst ?x ###symbols Lift_prog.lift_map :::: nat \<Rightarrow> 'a \<times> (nat \<Rightarrow> 'a) \<times> 'b \<Rightarrow> (nat \<Rightarrow> 'a) \<times> 'b Product_Type.prod.fst :::: 'a \<times> 'b \<Rightarrow> 'a ###defs definition lift_map :: "[nat, 'b * ((nat=>'b) * 'c)] => (nat=>'b) * 'c" where "lift_map i == %(s,(f,uu)). (insert_map i s f, uu)" definition "prod = {f. \<exists>a b. f = Pair_Rep (a::'a) (b::'b)}"
###output ?H1 (?H2 x_1 x_2) x_1 = ?H1 x_2###end
Analysis/Set_Integral
Set_Integral.set_integrable_mult_right_iff
lemma set_integrable_mult_right_iff [simp]: fixes a :: "'a::{real_normed_field, second_countable_topology}" assumes "a \<noteq> 0" shows "set_integrable M A (\<lambda>t. a * f t) \<longleftrightarrow> set_integrable M A f"
?a \<noteq> (0:: ?'a) \<Longrightarrow> set_integrable ?M ?A (\<lambda>t. ?a * ?f t) = set_integrable ?M ?A ?f
x_1 \<noteq> ?H1 \<Longrightarrow> ?H2 x_2 x_3 (\<lambda>y_0. ?H3 x_1 (x_4 y_0)) = ?H2 x_2 x_3 x_4
[ "Groups.times_class.times", "Set_Integral.set_integrable", "Groups.zero_class.zero" ]
[ "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a measure \\<Rightarrow> 'a set \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> bool", "'a" ]
[ "class times =\n fixes times :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"*\" 70)", "class zero =\n fixes zero :: 'a (\"0\")" ]
template
###lemma ?a \<noteq> (0:: ?'a) \<Longrightarrow> set_integrable ?M ?A (\<lambda>t. ?a * ?f t) = set_integrable ?M ?A ?f ###symbols Groups.times_class.times :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Set_Integral.set_integrable :::: 'a measure \<Rightarrow> 'a set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool Groups.zero_class.zero :::: 'a ###defs class times = fixes times :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "*" 70) class zero = fixes zero :: 'a ("0")
###output x_1 \<noteq> ?H1 \<Longrightarrow> ?H2 x_2 x_3 (\<lambda>y_0. ?H3 x_1 (x_4 y_0)) = ?H2 x_2 x_3 x_4###end
Library/Countable_Set_Type
Countable_Set_Type.rel_cset_csingle_iff
lemma rel_cset_csingle_iff [simp]: "rel_cset R (csingle x) (csingle y) \<longleftrightarrow> R x y"
rel_cset ?R (csingle ?x) (csingle ?y) = ?R ?x ?y
?H1 x_1 (?H2 x_2) (?H2 x_3) = x_1 x_2 x_3
[ "Countable_Set_Type.csingle", "Countable_Set_Type.rel_cset" ]
[ "'a \\<Rightarrow> 'a cset", "('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> 'a cset \\<Rightarrow> 'b cset \\<Rightarrow> bool" ]
[ "abbreviation csingle :: \"'a \\<Rightarrow> 'a cset\" where \"csingle x \\<equiv> cinsert x cempty\"" ]
template
###lemma rel_cset ?R (csingle ?x) (csingle ?y) = ?R ?x ?y ###symbols Countable_Set_Type.csingle :::: 'a \<Rightarrow> 'a cset Countable_Set_Type.rel_cset :::: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a cset \<Rightarrow> 'b cset \<Rightarrow> bool ###defs abbreviation csingle :: "'a \<Rightarrow> 'a cset" where "csingle x \<equiv> cinsert x cempty"
###output ?H1 x_1 (?H2 x_2) (?H2 x_3) = x_1 x_2 x_3###end
Nonstandard_Analysis/NSComplex
NSComplex.hIm_add
lemma hIm_add: "\<And>x y. hIm (x + y) = hIm x + hIm y"
hIm (?x + ?y) = hIm ?x + hIm ?y
?H1 (?H2 x_1 x_2) = ?H2 (?H1 x_1) (?H1 x_2)
[ "Groups.plus_class.plus", "NSComplex.hIm" ]
[ "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "complex star \\<Rightarrow> real star" ]
[ "class plus =\n fixes plus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"+\" 65)", "definition hIm :: \"hcomplex \\<Rightarrow> hypreal\"\n where \"hIm = *f* Im\"" ]
template
###lemma hIm (?x + ?y) = hIm ?x + hIm ?y ###symbols Groups.plus_class.plus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a NSComplex.hIm :::: complex star \<Rightarrow> real star ###defs class plus = fixes plus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "+" 65) definition hIm :: "hcomplex \<Rightarrow> hypreal" where "hIm = *f* Im"
###output ?H1 (?H2 x_1 x_2) = ?H2 (?H1 x_1) (?H1 x_2)###end
Analysis/Line_Segment
Line_Segment.component_complement_connected
null
connected ?S \<Longrightarrow> ?C \<in> components (- ?S) \<Longrightarrow> connected (- ?C)
\<lbrakk> ?H1 x_1; x_2 \<in> ?H2 (?H3 x_1)\<rbrakk> \<Longrightarrow> ?H1 (?H3 x_2)
[ "Groups.uminus_class.uminus", "Connected.components", "Topological_Spaces.topological_space_class.connected" ]
[ "'a \\<Rightarrow> 'a", "'a set \\<Rightarrow> 'a set set", "'a set \\<Rightarrow> bool" ]
[ "class uminus =\n fixes uminus :: \"'a \\<Rightarrow> 'a\" (\"- _\" [81] 80)", "class topological_space = \"open\" +\n assumes open_UNIV [simp, intro]: \"open UNIV\"\n assumes open_Int [intro]: \"open S \\<Longrightarrow> open T \\<Longrightarrow> open (S \\<inter> T)\"\n assumes open_Union [intro]: \"\\<forall>S\\<in>K. open S \\<Longrightarrow> open (\\<Union>K)\"\nbegin" ]
template
###lemma connected ?S \<Longrightarrow> ?C \<in> components (- ?S) \<Longrightarrow> connected (- ?C) ###symbols Groups.uminus_class.uminus :::: 'a \<Rightarrow> 'a Connected.components :::: 'a set \<Rightarrow> 'a set set Topological_Spaces.topological_space_class.connected :::: 'a set \<Rightarrow> bool ###defs class uminus = fixes uminus :: "'a \<Rightarrow> 'a" ("- _" [81] 80) class topological_space = "open" + assumes open_UNIV [simp, intro]: "open UNIV" assumes open_Int [intro]: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<inter> T)" assumes open_Union [intro]: "\<forall>S\<in>K. open S \<Longrightarrow> open (\<Union>K)" begin
###output \<lbrakk> ?H1 x_1; x_2 \<in> ?H2 (?H3 x_1)\<rbrakk> \<Longrightarrow> ?H1 (?H3 x_2)###end
Nonstandard_Analysis/HSeries
HSeries.sumhr_minus_one_realpow_zero
lemma sumhr_minus_one_realpow_zero [simp]: "\<And>N. sumhr (0, N + N, \<lambda>i. (-1) ^ (i + 1)) = 0"
sumhr (0, ?N + ?N, \<lambda>i. (- 1) ^ (i + 1)) = 0
?H1 (?H2, ?H3 x_1 x_1, \<lambda>y_0. ?H4 (?H5 ?H6) (?H3 y_0 ?H6)) = ?H2
[ "Groups.one_class.one", "Groups.uminus_class.uminus", "Power.power_class.power", "Groups.plus_class.plus", "Groups.zero_class.zero", "HSeries.sumhr" ]
[ "'a", "'a \\<Rightarrow> 'a", "'a \\<Rightarrow> nat \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a", "nat star \\<times> nat star \\<times> (nat \\<Rightarrow> real) \\<Rightarrow> real star" ]
[ "class one =\n fixes one :: 'a (\"1\")", "class uminus =\n fixes uminus :: \"'a \\<Rightarrow> 'a\" (\"- _\" [81] 80)", "primrec power :: \"'a \\<Rightarrow> nat \\<Rightarrow> 'a\" (infixr \"^\" 80)\n where\n power_0: \"a ^ 0 = 1\"\n | power_Suc: \"a ^ Suc n = a * a ^ n\"", "class plus =\n fixes plus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"+\" 65)", "class zero =\n fixes zero :: 'a (\"0\")", "definition sumhr :: \"hypnat \\<times> hypnat \\<times> (nat \\<Rightarrow> real) \\<Rightarrow> hypreal\"\n where \"sumhr = (\\<lambda>(M,N,f). starfun2 (\\<lambda>m n. sum f {m..<n}) M N)\"" ]
template
###lemma sumhr (0, ?N + ?N, \<lambda>i. (- 1) ^ (i + 1)) = 0 ###symbols Groups.one_class.one :::: 'a Groups.uminus_class.uminus :::: 'a \<Rightarrow> 'a Power.power_class.power :::: 'a \<Rightarrow> nat \<Rightarrow> 'a Groups.plus_class.plus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Groups.zero_class.zero :::: 'a HSeries.sumhr :::: nat star \<times> nat star \<times> (nat \<Rightarrow> real) \<Rightarrow> real star ###defs class one = fixes one :: 'a ("1") class uminus = fixes uminus :: "'a \<Rightarrow> 'a" ("- _" [81] 80) primrec power :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infixr "^" 80) where power_0: "a ^ 0 = 1" | power_Suc: "a ^ Suc n = a * a ^ n" class plus = fixes plus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "+" 65) class zero = fixes zero :: 'a ("0") definition sumhr :: "hypnat \<times> hypnat \<times> (nat \<Rightarrow> real) \<Rightarrow> hypreal" where "sumhr = (\<lambda>(M,N,f). starfun2 (\<lambda>m n. sum f {m..<n}) M N)"
###output ?H1 (?H2, ?H3 x_1 x_1, \<lambda>y_0. ?H4 (?H5 ?H6) (?H3 y_0 ?H6)) = ?H2###end
Decision_Procs/Approximation_Bounds
Approximation_Bounds.get_odd_ex
lemma get_odd_ex: "\<exists> k. Suc k = get_odd n \<and> odd (Suc k)"
\<exists>k. Suc k = get_odd ?n \<and> odd (Suc k)
\<exists>y_0. ?H1 y_0 = ?H2 x_1 \<and> ?H3 (?H1 y_0)
[ "Parity.semiring_parity_class.odd", "Approximation_Bounds.get_odd", "Nat.Suc" ]
[ "'a \\<Rightarrow> bool", "nat \\<Rightarrow> nat", "nat \\<Rightarrow> nat" ]
[ "class semiring_parity = comm_semiring_1 + semiring_modulo +\n assumes mod_2_eq_odd: \\<open>a mod 2 = of_bool (\\<not> 2 dvd a)\\<close>\n and odd_one [simp]: \\<open>\\<not> 2 dvd 1\\<close>\n and even_half_succ_eq [simp]: \\<open>2 dvd a \\<Longrightarrow> (1 + a) div 2 = a div 2\\<close>\nbegin", "definition get_odd :: \"nat \\<Rightarrow> nat\" where\n \"get_odd n = (if odd n then n else (Suc n))\"", "definition Suc :: \"nat \\<Rightarrow> nat\"\n where \"Suc n = Abs_Nat (Suc_Rep (Rep_Nat n))\"" ]
template
###lemma \<exists>k. Suc k = get_odd ?n \<and> odd (Suc k) ###symbols Parity.semiring_parity_class.odd :::: 'a \<Rightarrow> bool Approximation_Bounds.get_odd :::: nat \<Rightarrow> nat Nat.Suc :::: nat \<Rightarrow> nat ###defs class semiring_parity = comm_semiring_1 + semiring_modulo + assumes mod_2_eq_odd: \<open>a mod 2 = of_bool (\<not> 2 dvd a)\<close> and odd_one [simp]: \<open>\<not> 2 dvd 1\<close> and even_half_succ_eq [simp]: \<open>2 dvd a \<Longrightarrow> (1 + a) div 2 = a div 2\<close> begin definition get_odd :: "nat \<Rightarrow> nat" where "get_odd n = (if odd n then n else (Suc n))" definition Suc :: "nat \<Rightarrow> nat" where "Suc n = Abs_Nat (Suc_Rep (Rep_Nat n))"
###output \<exists>y_0. ?H1 y_0 = ?H2 x_1 \<and> ?H3 (?H1 y_0)###end
Decision_Procs/Parametric_Ferrante_Rackoff
Parametric_Ferrante_Rackoff.tmmul
lemma tmmul[simp]: "Itm vs bs (tmmul t i) = Itm vs bs (Mul i t)"
Itm ?vs ?bs (tmmul ?t ?i) = Itm ?vs ?bs (tm.Mul ?i ?t)
?H1 x_1 x_2 (?H2 x_3 x_4) = ?H1 x_1 x_2 (?H3 x_4 x_3)
[ "Parametric_Ferrante_Rackoff.tm.Mul", "Parametric_Ferrante_Rackoff.tmmul", "Parametric_Ferrante_Rackoff.Itm" ]
[ "poly \\<Rightarrow> tm \\<Rightarrow> tm", "tm \\<Rightarrow> poly \\<Rightarrow> tm", "'a list \\<Rightarrow> 'a list \\<Rightarrow> tm \\<Rightarrow> 'a" ]
[ "datatype (plugins del: size) tm = CP poly | Bound nat | Add tm tm | Mul poly tm\n | Neg tm | Sub tm tm | CNP nat poly tm", "fun tmmul:: \"tm \\<Rightarrow> poly \\<Rightarrow> tm\"\n where\n \"tmmul (CP j) = (\\<lambda>i. CP (i *\\<^sub>p j))\"\n | \"tmmul (CNP n c a) = (\\<lambda>i. CNP n (i *\\<^sub>p c) (tmmul a i))\"\n | \"tmmul t = (\\<lambda>i. Mul i t)\"", "primrec Itm :: \"'a::field_char_0 list \\<Rightarrow> 'a list \\<Rightarrow> tm \\<Rightarrow> 'a\"\n where\n \"Itm vs bs (CP c) = (Ipoly vs c)\"\n | \"Itm vs bs (Bound n) = bs!n\"\n | \"Itm vs bs (Neg a) = -(Itm vs bs a)\"\n | \"Itm vs bs (Add a b) = Itm vs bs a + Itm vs bs b\"\n | \"Itm vs bs (Sub a b) = Itm vs bs a - Itm vs bs b\"\n | \"Itm vs bs (Mul c a) = (Ipoly vs c) * Itm vs bs a\"\n | \"Itm vs bs (CNP n c t) = (Ipoly vs c)*(bs!n) + Itm vs bs t\"" ]
template
###lemma Itm ?vs ?bs (tmmul ?t ?i) = Itm ?vs ?bs (tm.Mul ?i ?t) ###symbols Parametric_Ferrante_Rackoff.tm.Mul :::: poly \<Rightarrow> tm \<Rightarrow> tm Parametric_Ferrante_Rackoff.tmmul :::: tm \<Rightarrow> poly \<Rightarrow> tm Parametric_Ferrante_Rackoff.Itm :::: 'a list \<Rightarrow> 'a list \<Rightarrow> tm \<Rightarrow> 'a ###defs datatype (plugins del: size) tm = CP poly | Bound nat | Add tm tm | Mul poly tm | Neg tm | Sub tm tm | CNP nat poly tm fun tmmul:: "tm \<Rightarrow> poly \<Rightarrow> tm" where "tmmul (CP j) = (\<lambda>i. CP (i *\<^sub>p j))" | "tmmul (CNP n c a) = (\<lambda>i. CNP n (i *\<^sub>p c) (tmmul a i))" | "tmmul t = (\<lambda>i. Mul i t)" primrec Itm :: "'a::field_char_0 list \<Rightarrow> 'a list \<Rightarrow> tm \<Rightarrow> 'a" where "Itm vs bs (CP c) = (Ipoly vs c)" | "Itm vs bs (Bound n) = bs!n" | "Itm vs bs (Neg a) = -(Itm vs bs a)" | "Itm vs bs (Add a b) = Itm vs bs a + Itm vs bs b" | "Itm vs bs (Sub a b) = Itm vs bs a - Itm vs bs b" | "Itm vs bs (Mul c a) = (Ipoly vs c) * Itm vs bs a" | "Itm vs bs (CNP n c t) = (Ipoly vs c)*(bs!n) + Itm vs bs t"
###output ?H1 x_1 x_2 (?H2 x_3 x_4) = ?H1 x_1 x_2 (?H3 x_4 x_3)###end
Analysis/Cross3
Cross3.cross3_simps(45)
null
(?a + ?b) *s ?x = ?a *s ?x + ?b *s ?x
?H1 (?H2 x_1 x_2) x_3 = ?H2 (?H1 x_1 x_3) (?H1 x_2 x_3)
[ "Groups.plus_class.plus", "Finite_Cartesian_Product.vector_scalar_mult" ]
[ "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a \\<Rightarrow> ('a, 'b) vec \\<Rightarrow> ('a, 'b) vec" ]
[ "class plus =\n fixes plus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"+\" 65)", "definition vector_scalar_mult:: \"'a::times \\<Rightarrow> 'a ^ 'n \\<Rightarrow> 'a ^ 'n\" (infixl \"*s\" 70)\n where \"c *s x = (\\<chi> i. c * (x$i))\"" ]
template
###lemma (?a + ?b) *s ?x = ?a *s ?x + ?b *s ?x ###symbols Groups.plus_class.plus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Finite_Cartesian_Product.vector_scalar_mult :::: 'a \<Rightarrow> ('a, 'b) vec \<Rightarrow> ('a, 'b) vec ###defs class plus = fixes plus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "+" 65) definition vector_scalar_mult:: "'a::times \<Rightarrow> 'a ^ 'n \<Rightarrow> 'a ^ 'n" (infixl "*s" 70) where "c *s x = (\<chi> i. c * (x$i))"
###output ?H1 (?H2 x_1 x_2) x_3 = ?H2 (?H1 x_1 x_3) (?H1 x_2 x_3)###end
Library/Multiset_Order
Multiset_Order.multp\<^sub>H\<^sub>O_iff_set_mset_less\<^sub>H\<^sub>O_set_mset
null
multp\<^sub>H\<^sub>O ?R ?M1.0 ?M2.0 = (set_mset (?M1.0 - ?M2.0) \<noteq> set_mset (?M2.0 - ?M1.0) \<and> (\<forall>y\<in># ?M1.0 - ?M2.0. \<exists>x\<in># ?M2.0 - ?M1.0. ?R y x))
?H1 x_1 x_2 x_3 = (?H2 (?H3 x_2 x_3) \<noteq> ?H2 (?H3 x_3 x_2) \<and> ?H4 (?H3 x_2 x_3) (\<lambda>y_0. ?H5 (?H3 x_3 x_2) (x_1 y_0)))
[ "Multiset.Bex", "Multiset.Ball", "Groups.minus_class.minus", "Multiset.set_mset", "Multiset_Order.multp\\<^sub>H\\<^sub>O" ]
[ "'a multiset \\<Rightarrow> ('a \\<Rightarrow> bool) \\<Rightarrow> bool", "'a multiset \\<Rightarrow> ('a \\<Rightarrow> bool) \\<Rightarrow> bool", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a multiset \\<Rightarrow> 'a set", "('a \\<Rightarrow> 'a \\<Rightarrow> bool) \\<Rightarrow> 'a multiset \\<Rightarrow> 'a multiset \\<Rightarrow> bool" ]
[ "abbreviation Bex :: \"'a multiset \\<Rightarrow> ('a \\<Rightarrow> bool) \\<Rightarrow> bool\"\n where \"Bex M \\<equiv> Set.Bex (set_mset M)\"", "abbreviation Ball :: \"'a multiset \\<Rightarrow> ('a \\<Rightarrow> bool) \\<Rightarrow> bool\"\n where \"Ball M \\<equiv> Set.Ball (set_mset M)\"", "class minus =\n fixes minus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"-\" 65)", "definition set_mset :: \\<open>'a multiset \\<Rightarrow> 'a set\\<close>\n where \\<open>set_mset M = {x. count M x > 0}\\<close>", "definition multp\\<^sub>H\\<^sub>O where\n \"multp\\<^sub>H\\<^sub>O r M N \\<longleftrightarrow> M \\<noteq> N \\<and> (\\<forall>y. count N y < count M y \\<longrightarrow> (\\<exists>x. r y x \\<and> count M x < count N x))\"" ]
template
###lemma multp\<^sub>H\<^sub>O ?R ?M1.0 ?M2.0 = (set_mset (?M1.0 - ?M2.0) \<noteq> set_mset (?M2.0 - ?M1.0) \<and> (\<forall>y\<in># ?M1.0 - ?M2.0. \<exists>x\<in># ?M2.0 - ?M1.0. ?R y x)) ###symbols Multiset.Bex :::: 'a multiset \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool Multiset.Ball :::: 'a multiset \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool Groups.minus_class.minus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Multiset.set_mset :::: 'a multiset \<Rightarrow> 'a set Multiset_Order.multp\<^sub>H\<^sub>O :::: ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a multiset \<Rightarrow> 'a multiset \<Rightarrow> bool ###defs abbreviation Bex :: "'a multiset \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool" where "Bex M \<equiv> Set.Bex (set_mset M)" abbreviation Ball :: "'a multiset \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool" where "Ball M \<equiv> Set.Ball (set_mset M)" class minus = fixes minus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "-" 65) definition set_mset :: \<open>'a multiset \<Rightarrow> 'a set\<close> where \<open>set_mset M = {x. count M x > 0}\<close> definition multp\<^sub>H\<^sub>O where "multp\<^sub>H\<^sub>O r M N \<longleftrightarrow> M \<noteq> N \<and> (\<forall>y. count N y < count M y \<longrightarrow> (\<exists>x. r y x \<and> count M x < count N x))"
###output ?H1 x_1 x_2 x_3 = (?H2 (?H3 x_2 x_3) \<noteq> ?H2 (?H3 x_3 x_2) \<and> ?H4 (?H3 x_2 x_3) (\<lambda>y_0. ?H5 (?H3 x_3 x_2) (x_1 y_0)))###end
Analysis/Derivative
Derivative.field_differentiable_add
lemma field_differentiable_add [derivative_intros]: assumes "f field_differentiable F" "g field_differentiable F" shows "(\<lambda>z. f z + g z) field_differentiable F"
?f field_differentiable ?F \<Longrightarrow> ?g field_differentiable ?F \<Longrightarrow> (\<lambda>z. ?f z + ?g z) field_differentiable ?F
\<lbrakk> ?H1 x_1 x_2; ?H1 x_3 x_2\<rbrakk> \<Longrightarrow> ?H1 (\<lambda>y_0. ?H2 (x_1 y_0) (x_3 y_0)) x_2
[ "Groups.plus_class.plus", "Derivative.field_differentiable" ]
[ "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "('a \\<Rightarrow> 'a) \\<Rightarrow> 'a filter \\<Rightarrow> bool" ]
[ "class plus =\n fixes plus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"+\" 65)" ]
template
###lemma ?f field_differentiable ?F \<Longrightarrow> ?g field_differentiable ?F \<Longrightarrow> (\<lambda>z. ?f z + ?g z) field_differentiable ?F ###symbols Groups.plus_class.plus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Derivative.field_differentiable :::: ('a \<Rightarrow> 'a) \<Rightarrow> 'a filter \<Rightarrow> bool ###defs class plus = fixes plus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "+" 65)
###output \<lbrakk> ?H1 x_1 x_2; ?H1 x_3 x_2\<rbrakk> \<Longrightarrow> ?H1 (\<lambda>y_0. ?H2 (x_1 y_0) (x_3 y_0)) x_2###end
Bali/State
State.globs_upd_gobj_new
lemma globs_upd_gobj_new [rule_format (no_asm), simp]: "globs s r = None \<longrightarrow> globs (upd_gobj r n v s) = globs s"
globs ?s ?r = None \<Longrightarrow> globs (upd_gobj ?r ?n ?v ?s) = globs ?s
?H1 x_1 x_2 = ?H2 \<Longrightarrow> ?H1 (?H3 x_2 x_3 x_4 x_1) = ?H1 x_1
[ "State.upd_gobj", "Option.option.None", "State.globs" ]
[ "oref \\<Rightarrow> vn \\<Rightarrow> val \\<Rightarrow> st \\<Rightarrow> st", "'a option", "st \\<Rightarrow> oref \\<Rightarrow> obj option" ]
[ "definition\n upd_gobj :: \"oref \\<Rightarrow> vn \\<Rightarrow> val \\<Rightarrow> st \\<Rightarrow> st\"\n where \"upd_gobj r n v = case_st (\\<lambda>g l. st (chg_map (upd_obj n v) r g) l)\"", "datatype 'a option =\n None\n | Some (the: 'a)", "definition\n globs :: \"st \\<Rightarrow> globs\"\n where \"globs = case_st (\\<lambda>g l. g)\"" ]
template
###lemma globs ?s ?r = None \<Longrightarrow> globs (upd_gobj ?r ?n ?v ?s) = globs ?s ###symbols State.upd_gobj :::: oref \<Rightarrow> vn \<Rightarrow> val \<Rightarrow> st \<Rightarrow> st Option.option.None :::: 'a option State.globs :::: st \<Rightarrow> oref \<Rightarrow> obj option ###defs definition upd_gobj :: "oref \<Rightarrow> vn \<Rightarrow> val \<Rightarrow> st \<Rightarrow> st" where "upd_gobj r n v = case_st (\<lambda>g l. st (chg_map (upd_obj n v) r g) l)" datatype 'a option = None | Some (the: 'a) definition globs :: "st \<Rightarrow> globs" where "globs = case_st (\<lambda>g l. g)"
###output ?H1 x_1 x_2 = ?H2 \<Longrightarrow> ?H1 (?H3 x_2 x_3 x_4 x_1) = ?H1 x_1###end
Computational_Algebra/Formal_Laurent_Series
Formal_Laurent_Series.fls_base_factor_mult_fls_X_intpow(2)
lemma fls_base_factor_mult_fls_X_intpow: fixes f :: "'a::semiring_1 fls" shows "fls_base_factor (fls_X_intpow i * f) = fls_base_factor f" and "fls_base_factor (f * fls_X_intpow i) = fls_base_factor f"
fls_base_factor (?f * fls_X_intpow ?i) = fls_base_factor ?f
?H1 (?H2 x_1 (?H3 x_2)) = ?H1 x_1
[ "Formal_Laurent_Series.fls_X_intpow", "Groups.times_class.times", "Formal_Laurent_Series.fls_base_factor" ]
[ "int \\<Rightarrow> 'a fls", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a fls \\<Rightarrow> 'a fls" ]
[ "abbreviation \"fls_X_intpow \\<equiv> (\\<lambda>i. fls_shift (-i) 1)\"\n\\<comment> \\<open>\n Unifies @{term fls_X} and @{term fls_X_inv} so that @{term \"fls_X_intpow\"} returns the equivalent\n of the implied variable raised to the supplied integer argument of @{term \"fls_X_intpow\"}, whether\n positive or negative.\n\\<close>", "class times =\n fixes times :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"*\" 70)", "definition fls_base_factor :: \"('a::zero) fls \\<Rightarrow> 'a fls\"\n where fls_base_factor_def[simp]: \"fls_base_factor f = fls_shift (fls_subdegree f) f\"" ]
template
###lemma fls_base_factor (?f * fls_X_intpow ?i) = fls_base_factor ?f ###symbols Formal_Laurent_Series.fls_X_intpow :::: int \<Rightarrow> 'a fls Groups.times_class.times :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Formal_Laurent_Series.fls_base_factor :::: 'a fls \<Rightarrow> 'a fls ###defs abbreviation "fls_X_intpow \<equiv> (\<lambda>i. fls_shift (-i) 1)" \<comment> \<open> Unifies @{term fls_X} and @{term fls_X_inv} so that @{term "fls_X_intpow"} returns the equivalent of the implied variable raised to the supplied integer argument of @{term "fls_X_intpow"}, whether positive or negative. \<close> class times = fixes times :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "*" 70) definition fls_base_factor :: "('a::zero) fls \<Rightarrow> 'a fls" where fls_base_factor_def[simp]: "fls_base_factor f = fls_shift (fls_subdegree f) f"
###output ?H1 (?H2 x_1 (?H3 x_2)) = ?H1 x_1###end
Nominal/Examples/LocalWeakening
LocalWeakening.perm_pi_simp(1)
null
?pi \<bullet> rev ?pi \<bullet> ?x = ?x
?H1 x_1 (?H1 (?H2 x_1) x_2) = x_2
[ "List.rev", "Nominal.perm" ]
[ "'a list \\<Rightarrow> 'a list", "('a \\<times> 'a) list \\<Rightarrow> 'b \\<Rightarrow> 'b" ]
[ "primrec rev :: \"'a list \\<Rightarrow> 'a list\" where\n\"rev [] = []\" |\n\"rev (x # xs) = rev xs @ [x]\"", "consts \n perm :: \"'x prm \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixr \\<open>\\<bullet>\\<close> 80)\n swap :: \"('x \\<times> 'x) \\<Rightarrow> 'x \\<Rightarrow> 'x\"" ]
template
###lemma ?pi \<bullet> rev ?pi \<bullet> ?x = ?x ###symbols List.rev :::: 'a list \<Rightarrow> 'a list Nominal.perm :::: ('a \<times> 'a) list \<Rightarrow> 'b \<Rightarrow> 'b ###defs primrec rev :: "'a list \<Rightarrow> 'a list" where "rev [] = []" | "rev (x # xs) = rev xs @ [x]" consts perm :: "'x prm \<Rightarrow> 'a \<Rightarrow> 'a" (infixr \<open>\<bullet>\<close> 80) swap :: "('x \<times> 'x) \<Rightarrow> 'x \<Rightarrow> 'x"
###output ?H1 x_1 (?H1 (?H2 x_1) x_2) = x_2###end
Data_Structures/AVL_Set
AVL_Set.height_balR2
lemma height_balR2: "\<lbrakk> avl l; avl r; height r \<noteq> height l + 2 \<rbrakk> \<Longrightarrow> height (balR l a r) = 1 + max (height l) (height r)"
avl ?l \<Longrightarrow> avl ?r \<Longrightarrow> height ?r \<noteq> height ?l + 2 \<Longrightarrow> height (balR ?l ?a ?r) = 1 + max (height ?l) (height ?r)
\<lbrakk> ?H1 x_1; ?H1 x_2; ?H2 x_2 \<noteq> ?H3 (?H2 x_1) (?H4 (?H5 ?H6))\<rbrakk> \<Longrightarrow> ?H2 (?H7 x_1 x_3 x_2) = ?H3 ?H8 (?H9 (?H2 x_1) (?H2 x_2))
[ "Orderings.ord_class.max", "Groups.one_class.one", "AVL_Set_Code.balR", "Num.num.One", "Num.num.Bit0", "Num.numeral_class.numeral", "Groups.plus_class.plus", "Tree.height_class.height", "AVL_Set.avl" ]
[ "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a", "('a \\<times> nat) tree \\<Rightarrow> 'a \\<Rightarrow> ('a \\<times> nat) tree \\<Rightarrow> ('a \\<times> nat) tree", "num", "num \\<Rightarrow> num", "num \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a \\<Rightarrow> nat", "('a \\<times> nat) tree \\<Rightarrow> bool" ]
[ "class ord =\n fixes less_eq :: \"'a \\<Rightarrow> 'a \\<Rightarrow> bool\"\n and less :: \"'a \\<Rightarrow> 'a \\<Rightarrow> bool\"\nbegin", "class one =\n fixes one :: 'a (\"1\")", "definition balR :: \"'a tree_ht \\<Rightarrow> 'a \\<Rightarrow> 'a tree_ht \\<Rightarrow> 'a tree_ht\" where\n\"balR A a BC =\n (if ht BC = ht A + 2 then\n case BC of\n Node B (c, _) C \\<Rightarrow>\n if ht B \\<le> ht C then node (node A a B) c C\n else\n case B of\n Node B\\<^sub>1 (b, _) B\\<^sub>2 \\<Rightarrow> node (node A a B\\<^sub>1) b (node B\\<^sub>2 c C)\n else node A a BC)\"", "datatype num = One | Bit0 num | Bit1 num", "datatype num = One | Bit0 num | Bit1 num", "primrec numeral :: \"num \\<Rightarrow> 'a\"\n where\n numeral_One: \"numeral One = 1\"\n | numeral_Bit0: \"numeral (Bit0 n) = numeral n + numeral n\"\n | numeral_Bit1: \"numeral (Bit1 n) = numeral n + numeral n + 1\"", "class plus =\n fixes plus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"+\" 65)", "class height = fixes height :: \"'a \\<Rightarrow> nat\"", "fun avl :: \"'a tree_ht \\<Rightarrow> bool\" where\n\"avl Leaf = True\" |\n\"avl (Node l (a,n) r) =\n (abs(int(height l) - int(height r)) \\<le> 1 \\<and>\n n = max (height l) (height r) + 1 \\<and> avl l \\<and> avl r)\"" ]
template
###lemma avl ?l \<Longrightarrow> avl ?r \<Longrightarrow> height ?r \<noteq> height ?l + 2 \<Longrightarrow> height (balR ?l ?a ?r) = 1 + max (height ?l) (height ?r) ###symbols Orderings.ord_class.max :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Groups.one_class.one :::: 'a AVL_Set_Code.balR :::: ('a \<times> nat) tree \<Rightarrow> 'a \<Rightarrow> ('a \<times> nat) tree \<Rightarrow> ('a \<times> nat) tree Num.num.One :::: num Num.num.Bit0 :::: num \<Rightarrow> num Num.numeral_class.numeral :::: num \<Rightarrow> 'a Groups.plus_class.plus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Tree.height_class.height :::: 'a \<Rightarrow> nat AVL_Set.avl :::: ('a \<times> nat) tree \<Rightarrow> bool ###defs class ord = fixes less_eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool" and less :: "'a \<Rightarrow> 'a \<Rightarrow> bool" begin class one = fixes one :: 'a ("1") definition balR :: "'a tree_ht \<Rightarrow> 'a \<Rightarrow> 'a tree_ht \<Rightarrow> 'a tree_ht" where "balR A a BC = (if ht BC = ht A + 2 then case BC of Node B (c, _) C \<Rightarrow> if ht B \<le> ht C then node (node A a B) c C else case B of Node B\<^sub>1 (b, _) B\<^sub>2 \<Rightarrow> node (node A a B\<^sub>1) b (node B\<^sub>2 c C) else node A a BC)" datatype num = One | Bit0 num | Bit1 num datatype num = One | Bit0 num | Bit1 num primrec numeral :: "num \<Rightarrow> 'a" where numeral_One: "numeral One = 1" | numeral_Bit0: "numeral (Bit0 n) = numeral n + numeral n" | numeral_Bit1: "numeral (Bit1 n) = numeral n + numeral n + 1" class plus = fixes plus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "+" 65) class height = fixes height :: "'a \<Rightarrow> nat" fun avl :: "'a tree_ht \<Rightarrow> bool" where "avl Leaf = True" | "avl (Node l (a,n) r) = (abs(int(height l) - int(height r)) \<le> 1 \<and> n = max (height l) (height r) + 1 \<and> avl l \<and> avl r)"
###output \<lbrakk> ?H1 x_1; ?H1 x_2; ?H2 x_2 \<noteq> ?H3 (?H2 x_1) (?H4 (?H5 ?H6))\<rbrakk> \<Longrightarrow> ?H2 (?H7 x_1 x_3 x_2) = ?H3 ?H8 (?H9 (?H2 x_1) (?H2 x_2))###end
Transcendental
Transcendental.isCont_arcsin
lemma isCont_arcsin: "-1 < x \<Longrightarrow> x < 1 \<Longrightarrow> isCont arcsin x"
- 1 < ?x \<Longrightarrow> ?x < 1 \<Longrightarrow> isCont arcsin ?x
\<lbrakk> ?H1 ?H2 < x_1; x_1 < ?H2\<rbrakk> \<Longrightarrow> ?H3 ?H4 x_1
[ "Transcendental.arcsin", "Topological_Spaces.isCont", "Groups.one_class.one", "Groups.uminus_class.uminus" ]
[ "real \\<Rightarrow> real", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a \\<Rightarrow> bool", "'a", "'a \\<Rightarrow> 'a" ]
[ "definition arcsin :: \"real \\<Rightarrow> real\"\n where \"arcsin y = (THE x. -(pi/2) \\<le> x \\<and> x \\<le> pi/2 \\<and> sin x = y)\"", "abbreviation isCont :: \"('a::t2_space \\<Rightarrow> 'b::topological_space) \\<Rightarrow> 'a \\<Rightarrow> bool\"\n where \"isCont f a \\<equiv> continuous (at a) f\"", "class one =\n fixes one :: 'a (\"1\")", "class uminus =\n fixes uminus :: \"'a \\<Rightarrow> 'a\" (\"- _\" [81] 80)" ]
template
###lemma - 1 < ?x \<Longrightarrow> ?x < 1 \<Longrightarrow> isCont arcsin ?x ###symbols Transcendental.arcsin :::: real \<Rightarrow> real Topological_Spaces.isCont :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> bool Groups.one_class.one :::: 'a Groups.uminus_class.uminus :::: 'a \<Rightarrow> 'a ###defs definition arcsin :: "real \<Rightarrow> real" where "arcsin y = (THE x. -(pi/2) \<le> x \<and> x \<le> pi/2 \<and> sin x = y)" abbreviation isCont :: "('a::t2_space \<Rightarrow> 'b::topological_space) \<Rightarrow> 'a \<Rightarrow> bool" where "isCont f a \<equiv> continuous (at a) f" class one = fixes one :: 'a ("1") class uminus = fixes uminus :: "'a \<Rightarrow> 'a" ("- _" [81] 80)
###output \<lbrakk> ?H1 ?H2 < x_1; x_1 < ?H2\<rbrakk> \<Longrightarrow> ?H3 ?H4 x_1###end
Library/FSet
FSet.ball_simps(3)
lemma ball_simps [simp, no_atp]: "\<And>A P Q. fBall A (\<lambda>x. P x \<or> Q) = (fBall A P \<or> Q)" "\<And>A P Q. fBall A (\<lambda>x. P \<or> Q x) = (P \<or> fBall A Q)" "\<And>A P Q. fBall A (\<lambda>x. P \<longrightarrow> Q x) = (P \<longrightarrow> fBall A Q)" "\<And>A P Q. fBall A (\<lambda>x. P x \<longrightarrow> Q) = (fBex A P \<longrightarrow> Q)" "\<And>P. fBall {||} P = True" "\<And>a B P. fBall (finsert a B) P = (P a \<and> fBall B P)" "\<And>A P f. fBall (f |`| A) P = fBall A (\<lambda>x. P (f x))" "\<And>A P. (\<not> fBall A P) = fBex A (\<lambda>x. \<not> P x)"
(\<forall>x|\<in>| ?A. ?P \<longrightarrow> ?Q x) = (?P \<longrightarrow> fBall ?A ?Q)
?H1 x_1 (\<lambda>y_0. x_2 \<longrightarrow> x_3 y_0) = (x_2 \<longrightarrow> ?H1 x_1 x_3)
[ "FSet.Ball" ]
[ "'a fset \\<Rightarrow> ('a \\<Rightarrow> bool) \\<Rightarrow> bool" ]
[ "abbreviation Ball :: \"'a fset \\<Rightarrow> ('a \\<Rightarrow> bool) \\<Rightarrow> bool\" where\n \"Ball X \\<equiv> Set.Ball (fset X)\"" ]
template
###lemma (\<forall>x|\<in>| ?A. ?P \<longrightarrow> ?Q x) = (?P \<longrightarrow> fBall ?A ?Q) ###symbols FSet.Ball :::: 'a fset \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool ###defs abbreviation Ball :: "'a fset \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool" where "Ball X \<equiv> Set.Ball (fset X)"
###output ?H1 x_1 (\<lambda>y_0. x_2 \<longrightarrow> x_3 y_0) = (x_2 \<longrightarrow> ?H1 x_1 x_3)###end
HOLCF/FOCUS/Fstream
Fstream.fstream_lub_lemma1
lemma fstream_lub_lemma1: "\<lbrakk>chain Y; (\<Squnion>i. Y i) = a\<leadsto>s\<rbrakk> \<Longrightarrow> \<exists>j t. Y j = a\<leadsto>t"
chain ?Y \<Longrightarrow> (\<Squnion>i. ?Y i) = ?a\<leadsto> ?s \<Longrightarrow> \<exists>j t. ?Y j = ?a\<leadsto>t
\<lbrakk> ?H1 x_1; ?H2 x_1 = ?H3 x_2 x_3\<rbrakk> \<Longrightarrow> \<exists>y_1 y_2. x_1 y_1 = ?H3 x_2 y_2
[ "Fstream.fscons'", "Porder.po_class.Lub", "Porder.po_class.chain" ]
[ "'a \\<Rightarrow> 'a lift stream \\<Rightarrow> 'a lift stream", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'b", "(nat \\<Rightarrow> 'a) \\<Rightarrow> bool" ]
[ "class po = below +\n assumes below_refl [iff]: \"x \\<sqsubseteq> x\"\n assumes below_trans: \"x \\<sqsubseteq> y \\<Longrightarrow> y \\<sqsubseteq> z \\<Longrightarrow> x \\<sqsubseteq> z\"\n assumes below_antisym: \"x \\<sqsubseteq> y \\<Longrightarrow> y \\<sqsubseteq> x \\<Longrightarrow> x = y\"\nbegin", "class po = below +\n assumes below_refl [iff]: \"x \\<sqsubseteq> x\"\n assumes below_trans: \"x \\<sqsubseteq> y \\<Longrightarrow> y \\<sqsubseteq> z \\<Longrightarrow> x \\<sqsubseteq> z\"\n assumes below_antisym: \"x \\<sqsubseteq> y \\<Longrightarrow> y \\<sqsubseteq> x \\<Longrightarrow> x = y\"\nbegin" ]
template
###lemma chain ?Y \<Longrightarrow> (\<Squnion>i. ?Y i) = ?a\<leadsto> ?s \<Longrightarrow> \<exists>j t. ?Y j = ?a\<leadsto>t ###symbols Fstream.fscons' :::: 'a \<Rightarrow> 'a lift stream \<Rightarrow> 'a lift stream Porder.po_class.Lub :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'b Porder.po_class.chain :::: (nat \<Rightarrow> 'a) \<Rightarrow> bool ###defs class po = below + assumes below_refl [iff]: "x \<sqsubseteq> x" assumes below_trans: "x \<sqsubseteq> y \<Longrightarrow> y \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> z" assumes below_antisym: "x \<sqsubseteq> y \<Longrightarrow> y \<sqsubseteq> x \<Longrightarrow> x = y" begin class po = below + assumes below_refl [iff]: "x \<sqsubseteq> x" assumes below_trans: "x \<sqsubseteq> y \<Longrightarrow> y \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> z" assumes below_antisym: "x \<sqsubseteq> y \<Longrightarrow> y \<sqsubseteq> x \<Longrightarrow> x = y" begin
###output \<lbrakk> ?H1 x_1; ?H2 x_1 = ?H3 x_2 x_3\<rbrakk> \<Longrightarrow> \<exists>y_1 y_2. x_1 y_1 = ?H3 x_2 y_2###end
Nominal/Examples/LocalWeakening
LocalWeakening.fresh_eqvt
null
?pi \<bullet> ?a \<sharp> ?x = ?pi \<bullet> ?a \<sharp> ?pi \<bullet> ?x
?H1 x_1 (?H2 x_2 x_3) = ?H2 (?H1 x_1 x_2) (?H1 x_1 x_3)
[ "Nominal.fresh", "Nominal.perm" ]
[ "'a \\<Rightarrow> 'b \\<Rightarrow> bool", "('a \\<times> 'a) list \\<Rightarrow> 'b \\<Rightarrow> 'b" ]
[ "definition fresh :: \"'x \\<Rightarrow> 'a \\<Rightarrow> bool\" (\\<open>_ \\<sharp> _\\<close> [80,80] 80) where\n \"a \\<sharp> x \\<longleftrightarrow> a \\<notin> supp x\"", "consts \n perm :: \"'x prm \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixr \\<open>\\<bullet>\\<close> 80)\n swap :: \"('x \\<times> 'x) \\<Rightarrow> 'x \\<Rightarrow> 'x\"" ]
template
###lemma ?pi \<bullet> ?a \<sharp> ?x = ?pi \<bullet> ?a \<sharp> ?pi \<bullet> ?x ###symbols Nominal.fresh :::: 'a \<Rightarrow> 'b \<Rightarrow> bool Nominal.perm :::: ('a \<times> 'a) list \<Rightarrow> 'b \<Rightarrow> 'b ###defs definition fresh :: "'x \<Rightarrow> 'a \<Rightarrow> bool" (\<open>_ \<sharp> _\<close> [80,80] 80) where "a \<sharp> x \<longleftrightarrow> a \<notin> supp x" consts perm :: "'x prm \<Rightarrow> 'a \<Rightarrow> 'a" (infixr \<open>\<bullet>\<close> 80) swap :: "('x \<times> 'x) \<Rightarrow> 'x \<Rightarrow> 'x"
###output ?H1 x_1 (?H2 x_2 x_3) = ?H2 (?H1 x_1 x_2) (?H1 x_1 x_3)###end
Library/Multiset
Multiset.full_multiset_induct
lemma full_multiset_induct [case_names less]: assumes ih: "\<And>B. \<forall>(A::'a multiset). A \<subset># B \<longrightarrow> P A \<Longrightarrow> P B" shows "P B"
(\<And>B. \<forall>A. A \<subset># B \<longrightarrow> ?P A \<Longrightarrow> ?P B) \<Longrightarrow> ?P ?B
(\<And>y_0. \<forall>y_1. ?H1 y_1 y_0 \<longrightarrow> x_1 y_1 \<Longrightarrow> x_1 y_0) \<Longrightarrow> x_1 x_2
[ "Multiset.subset_mset" ]
[ "'a multiset \\<Rightarrow> 'a multiset \\<Rightarrow> bool" ]
[ "definition subset_mset :: \"'a multiset \\<Rightarrow> 'a multiset \\<Rightarrow> bool\" (infix \"\\<subset>#\" 50)\n where \"A \\<subset># B \\<longleftrightarrow> A \\<subseteq># B \\<and> A \\<noteq> B\"" ]
template
###lemma (\<And>B. \<forall>A. A \<subset># B \<longrightarrow> ?P A \<Longrightarrow> ?P B) \<Longrightarrow> ?P ?B ###symbols Multiset.subset_mset :::: 'a multiset \<Rightarrow> 'a multiset \<Rightarrow> bool ###defs definition subset_mset :: "'a multiset \<Rightarrow> 'a multiset \<Rightarrow> bool" (infix "\<subset>#" 50) where "A \<subset># B \<longleftrightarrow> A \<subseteq># B \<and> A \<noteq> B"
###output (\<And>y_0. \<forall>y_1. ?H1 y_1 y_0 \<longrightarrow> x_1 y_1 \<Longrightarrow> x_1 y_0) \<Longrightarrow> x_1 x_2###end
HOLCF/Domain_Aux
Domain_Aux.decisive_cases
lemma decisive_cases: assumes "decisive d" obtains "d\<cdot>x = x" | "d\<cdot>x = \<bottom>"
decisive ?d \<Longrightarrow> (?d\<cdot> ?x = ?x \<Longrightarrow> ?thesis) \<Longrightarrow> (?d\<cdot> ?x = \<bottom> \<Longrightarrow> ?thesis) \<Longrightarrow> ?thesis
\<lbrakk> ?H1 x_1; ?H2 x_1 x_2 = x_2 \<Longrightarrow> x_3; ?H2 x_1 x_2 = ?H3 \<Longrightarrow> x_3\<rbrakk> \<Longrightarrow> x_3
[ "Pcpo.pcpo_class.bottom", "Cfun.cfun.Rep_cfun", "Domain_Aux.decisive" ]
[ "'a", "('a \\<rightarrow> 'b) \\<Rightarrow> 'a \\<Rightarrow> 'b", "('a \\<rightarrow> 'a) \\<Rightarrow> bool" ]
[ "class pcpo = cpo +\n assumes least: \"\\<exists>x. \\<forall>y. x \\<sqsubseteq> y\"\nbegin", "definition\n decisive :: \"('a::pcpo \\<rightarrow> 'a) \\<Rightarrow> bool\"\nwhere\n \"decisive d \\<longleftrightarrow> (\\<forall>x. d\\<cdot>x = x \\<or> d\\<cdot>x = \\<bottom>)\"" ]
template
###lemma decisive ?d \<Longrightarrow> (?d\<cdot> ?x = ?x \<Longrightarrow> ?thesis) \<Longrightarrow> (?d\<cdot> ?x = \<bottom> \<Longrightarrow> ?thesis) \<Longrightarrow> ?thesis ###symbols Pcpo.pcpo_class.bottom :::: 'a Cfun.cfun.Rep_cfun :::: ('a \<rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b Domain_Aux.decisive :::: ('a \<rightarrow> 'a) \<Rightarrow> bool ###defs class pcpo = cpo + assumes least: "\<exists>x. \<forall>y. x \<sqsubseteq> y" begin definition decisive :: "('a::pcpo \<rightarrow> 'a) \<Rightarrow> bool" where "decisive d \<longleftrightarrow> (\<forall>x. d\<cdot>x = x \<or> d\<cdot>x = \<bottom>)"
###output \<lbrakk> ?H1 x_1; ?H2 x_1 x_2 = x_2 \<Longrightarrow> x_3; ?H2 x_1 x_2 = ?H3 \<Longrightarrow> x_3\<rbrakk> \<Longrightarrow> x_3###end
Filter
Filter.filterlim_at_top_div_const_nat
lemma filterlim_at_top_div_const_nat: assumes "c > 0" shows "filterlim (\<lambda>x::nat. x div c) at_top at_top"
0 < ?c \<Longrightarrow> LIM x sequentially. x div ?c :> sequentially
?H1 < x_1 \<Longrightarrow> ?H2 (\<lambda>y_0. ?H3 y_0 x_1) ?H4 ?H4
[ "Filter.sequentially", "Rings.divide_class.divide", "Filter.filterlim", "Groups.zero_class.zero" ]
[ "nat filter", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'b filter \\<Rightarrow> 'a filter \\<Rightarrow> bool", "'a" ]
[ "abbreviation sequentially :: \"nat filter\"\n where \"sequentially \\<equiv> at_top\"", "class divide =\n fixes divide :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"div\" 70)", "definition filterlim :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'b filter \\<Rightarrow> 'a filter \\<Rightarrow> bool\" where\n \"filterlim f F2 F1 \\<longleftrightarrow> filtermap f F1 \\<le> F2\"", "class zero =\n fixes zero :: 'a (\"0\")" ]
template
###lemma 0 < ?c \<Longrightarrow> LIM x sequentially. x div ?c :> sequentially ###symbols Filter.sequentially :::: nat filter Rings.divide_class.divide :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Filter.filterlim :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'b filter \<Rightarrow> 'a filter \<Rightarrow> bool Groups.zero_class.zero :::: 'a ###defs abbreviation sequentially :: "nat filter" where "sequentially \<equiv> at_top" class divide = fixes divide :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "div" 70) definition filterlim :: "('a \<Rightarrow> 'b) \<Rightarrow> 'b filter \<Rightarrow> 'a filter \<Rightarrow> bool" where "filterlim f F2 F1 \<longleftrightarrow> filtermap f F1 \<le> F2" class zero = fixes zero :: 'a ("0")
###output ?H1 < x_1 \<Longrightarrow> ?H2 (\<lambda>y_0. ?H3 y_0 x_1) ?H4 ?H4###end
Types_To_Sets/Examples/Finite
Finite_Set.bij_betw_finite
null
bij_betw ?f ?A ?B \<Longrightarrow> finite ?A = finite ?B
?H1 x_1 x_2 x_3 \<Longrightarrow> ?H2 x_2 = ?H2 x_3
[ "Finite_Set.finite", "Fun.bij_betw" ]
[ "'a set \\<Rightarrow> bool", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set \\<Rightarrow> bool" ]
[ "class finite =\n assumes finite_UNIV: \"finite (UNIV :: 'a set)\"\nbegin", "definition bij_betw :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set \\<Rightarrow> bool\" \\<comment> \\<open>bijective\\<close>\n where \"bij_betw f A B \\<longleftrightarrow> inj_on f A \\<and> f ` A = B\"" ]
template
###lemma bij_betw ?f ?A ?B \<Longrightarrow> finite ?A = finite ?B ###symbols Finite_Set.finite :::: 'a set \<Rightarrow> bool Fun.bij_betw :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> bool ###defs class finite = assumes finite_UNIV: "finite (UNIV :: 'a set)" begin definition bij_betw :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> bool" \<comment> \<open>bijective\<close> where "bij_betw f A B \<longleftrightarrow> inj_on f A \<and> f ` A = B"
###output ?H1 x_1 x_2 x_3 \<Longrightarrow> ?H2 x_2 = ?H2 x_3###end
Probability/Probability
Probability_Measure.distributed_transform_integral
null
distributed ?M ?N ?X (\<lambda>x. ennreal (?Px x)) \<Longrightarrow> (\<And>x. x \<in> space ?N \<Longrightarrow> 0 \<le> ?Px x) \<Longrightarrow> distributed ?M ?P ?Y (\<lambda>x. ennreal (?Py x)) \<Longrightarrow> (\<And>x. x \<in> space ?P \<Longrightarrow> 0 \<le> ?Py x) \<Longrightarrow> ?Y = ?T \<circ> ?X \<Longrightarrow> ?T \<in> ?N \<rightarrow>\<^sub>M ?P \<Longrightarrow> ?f \<in> borel_measurable ?P \<Longrightarrow> LINT x| ?P. ?Py x * ?f x = LINT x| ?N. ?Px x * ?f (?T x)
\<lbrakk> ?H1 x_1 x_2 x_3 (\<lambda>y_0. ?H2 (x_4 y_0)); \<And>y_1. y_1 \<in> ?H3 x_2 \<Longrightarrow> ?H4 \<le> x_4 y_1; ?H1 x_1 x_5 x_6 (\<lambda>y_2. ?H2 (x_7 y_2)); \<And>y_3. y_3 \<in> ?H3 x_5 \<Longrightarrow> ?H4 \<le> x_7 y_3; x_6 = ?H5 x_8 x_3; x_8 \<in> ?H6 x_2 x_5; x_9 \<in> ?H7 x_5\<rbrakk> \<Longrightarrow> ?H8 x_5 (\<lambda>y_4. ?H9 (x_7 y_4) (x_9 y_4)) = ?H8 x_2 (\<lambda>y_5. ?H9 (x_4 y_5) (x_9 (x_8 y_5)))
[ "Groups.times_class.times", "Bochner_Integration.lebesgue_integral", "Borel_Space.borel_measurable", "Sigma_Algebra.measurable", "Fun.comp", "Groups.zero_class.zero", "Sigma_Algebra.space", "Extended_Nonnegative_Real.ennreal", "Probability_Measure.distributed" ]
[ "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a measure \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> 'b", "'a measure \\<Rightarrow> ('a \\<Rightarrow> 'b) set", "'a measure \\<Rightarrow> 'b measure \\<Rightarrow> ('a \\<Rightarrow> 'b) set", "('a \\<Rightarrow> 'b) \\<Rightarrow> ('c \\<Rightarrow> 'a) \\<Rightarrow> 'c \\<Rightarrow> 'b", "'a", "'a measure \\<Rightarrow> 'a set", "real \\<Rightarrow> ennreal", "'a measure \\<Rightarrow> 'b measure \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> ('b \\<Rightarrow> ennreal) \\<Rightarrow> bool" ]
[ "class times =\n fixes times :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"*\" 70)", "abbreviation \"borel_measurable M \\<equiv> measurable M borel\"", "definition comp :: \"('b \\<Rightarrow> 'c) \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> 'a \\<Rightarrow> 'c\" (infixl \"\\<circ>\" 55)\n where \"f \\<circ> g = (\\<lambda>x. f (g x))\"", "class zero =\n fixes zero :: 'a (\"0\")", "typedef ennreal = \"{x :: ereal. 0 \\<le> x}\"\n morphisms enn2ereal e2ennreal'", "definition distributed :: \"'a measure \\<Rightarrow> 'b measure \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> ('b \\<Rightarrow> ennreal) \\<Rightarrow> bool\"\nwhere\n \"distributed M N X f \\<longleftrightarrow>\n distr M N X = density N f \\<and> f \\<in> borel_measurable N \\<and> X \\<in> measurable M N\"" ]
template
###lemma distributed ?M ?N ?X (\<lambda>x. ennreal (?Px x)) \<Longrightarrow> (\<And>x. x \<in> space ?N \<Longrightarrow> 0 \<le> ?Px x) \<Longrightarrow> distributed ?M ?P ?Y (\<lambda>x. ennreal (?Py x)) \<Longrightarrow> (\<And>x. x \<in> space ?P \<Longrightarrow> 0 \<le> ?Py x) \<Longrightarrow> ?Y = ?T \<circ> ?X \<Longrightarrow> ?T \<in> ?N \<rightarrow>\<^sub>M ?P \<Longrightarrow> ?f \<in> borel_measurable ?P \<Longrightarrow> LINT x| ?P. ?Py x * ?f x = LINT x| ?N. ?Px x * ?f (?T x) ###symbols Groups.times_class.times :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Bochner_Integration.lebesgue_integral :::: 'a measure \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'b Borel_Space.borel_measurable :::: 'a measure \<Rightarrow> ('a \<Rightarrow> 'b) set Sigma_Algebra.measurable :::: 'a measure \<Rightarrow> 'b measure \<Rightarrow> ('a \<Rightarrow> 'b) set Fun.comp :::: ('a \<Rightarrow> 'b) \<Rightarrow> ('c \<Rightarrow> 'a) \<Rightarrow> 'c \<Rightarrow> 'b Groups.zero_class.zero :::: 'a Sigma_Algebra.space :::: 'a measure \<Rightarrow> 'a set Extended_Nonnegative_Real.ennreal :::: real \<Rightarrow> ennreal Probability_Measure.distributed :::: 'a measure \<Rightarrow> 'b measure \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> ennreal) \<Rightarrow> bool ###defs class times = fixes times :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "*" 70) abbreviation "borel_measurable M \<equiv> measurable M borel" definition comp :: "('b \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'c" (infixl "\<circ>" 55) where "f \<circ> g = (\<lambda>x. f (g x))" class zero = fixes zero :: 'a ("0") typedef ennreal = "{x :: ereal. 0 \<le> x}" morphisms enn2ereal e2ennreal' definition distributed :: "'a measure \<Rightarrow> 'b measure \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> ennreal) \<Rightarrow> bool" where "distributed M N X f \<longleftrightarrow> distr M N X = density N f \<and> f \<in> borel_measurable N \<and> X \<in> measurable M N"
###output \<lbrakk> ?H1 x_1 x_2 x_3 (\<lambda>y_0. ?H2 (x_4 y_0)); \<And>y_1. y_1 \<in> ?H3 x_2 \<Longrightarrow> ?H4 \<le> x_4 y_1; ?H1 x_1 x_5 x_6 (\<lambda>y_2. ?H2 (x_7 y_2)); \<And>y_3. y_3 \<in> ?H3 x_5 \<Longrightarrow> ?H4 \<le> x_7 y_3; x_6 = ?H5 x_8 x_3; x_8 \<in> ?H6 x_2 x_5; x_9 \<in> ?H7 x_5\<rbrakk> \<Longrightarrow> ?H8 x_5 (\<lambda>y_4. ?H9 (x_7 y_4) (x_9 y_4)) = ?H8 x_2 (\<lambda>y_5. ?H9 (x_4 y_5) (x_9 (x_8 y_5)))###end
Bali/Decl
Decl.acc_modi_bottom
lemma acc_modi_bottom: "a \<le> Private \<Longrightarrow> a = Private"
?a \<le> Private \<Longrightarrow> ?a = Private
x_1 \<le> ?H1 \<Longrightarrow> x_1 = ?H1
[ "Decl.acc_modi.Private" ]
[ "acc_modi" ]
[ "datatype acc_modi (* access modifier *)\n = Private | Package | Protected | Public" ]
template
###lemma ?a \<le> Private \<Longrightarrow> ?a = Private ###symbols Decl.acc_modi.Private :::: acc_modi ###defs datatype acc_modi (* access modifier *) = Private | Package | Protected | Public
###output x_1 \<le> ?H1 \<Longrightarrow> x_1 = ?H1###end
Analysis/Abstract_Topology
Abstract_Topology.embedding_map_compose
lemma embedding_map_compose: assumes "embedding_map X X' f" "embedding_map X' X'' g" shows "embedding_map X X'' (g \<circ> f)"
embedding_map ?X ?X' ?f \<Longrightarrow> embedding_map ?X' ?X'' ?g \<Longrightarrow> embedding_map ?X ?X'' (?g \<circ> ?f)
\<lbrakk> ?H1 x_1 x_2 x_3; ?H1 x_2 x_4 x_5\<rbrakk> \<Longrightarrow> ?H1 x_1 x_4 (?H2 x_5 x_3)
[ "Fun.comp", "Abstract_Topology.embedding_map" ]
[ "('a \\<Rightarrow> 'b) \\<Rightarrow> ('c \\<Rightarrow> 'a) \\<Rightarrow> 'c \\<Rightarrow> 'b", "'a topology \\<Rightarrow> 'b topology \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> bool" ]
[ "definition comp :: \"('b \\<Rightarrow> 'c) \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> 'a \\<Rightarrow> 'c\" (infixl \"\\<circ>\" 55)\n where \"f \\<circ> g = (\\<lambda>x. f (g x))\"", "definition embedding_map\n where \"embedding_map X Y f \\<equiv> homeomorphic_map X (subtopology Y (f ` (topspace X))) f\"" ]
template
###lemma embedding_map ?X ?X' ?f \<Longrightarrow> embedding_map ?X' ?X'' ?g \<Longrightarrow> embedding_map ?X ?X'' (?g \<circ> ?f) ###symbols Fun.comp :::: ('a \<Rightarrow> 'b) \<Rightarrow> ('c \<Rightarrow> 'a) \<Rightarrow> 'c \<Rightarrow> 'b Abstract_Topology.embedding_map :::: 'a topology \<Rightarrow> 'b topology \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool ###defs definition comp :: "('b \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'c" (infixl "\<circ>" 55) where "f \<circ> g = (\<lambda>x. f (g x))" definition embedding_map where "embedding_map X Y f \<equiv> homeomorphic_map X (subtopology Y (f ` (topspace X))) f"
###output \<lbrakk> ?H1 x_1 x_2 x_3; ?H1 x_2 x_4 x_5\<rbrakk> \<Longrightarrow> ?H1 x_1 x_4 (?H2 x_5 x_3)###end
Algebra/Lattice
Lattices_Big.ex_has_greatest_nat_lemma
null
?P ?k \<Longrightarrow> \<forall>x. ?P x \<longrightarrow> (\<exists>y. ?P y \<and> \<not> ?f y \<le> ?f x) \<Longrightarrow> \<exists>y. ?P y \<and> \<not> ?f y < ?f ?k + ?n
\<lbrakk>x_1 x_2; \<forall>y_0. x_1 y_0 \<longrightarrow> (\<exists>y_1. x_1 y_1 \<and> \<not> x_3 y_1 \<le> x_3 y_0)\<rbrakk> \<Longrightarrow> \<exists>y_2. x_1 y_2 \<and> \<not> x_3 y_2 < ?H1 (x_3 x_2) x_4
[ "Groups.plus_class.plus" ]
[ "'a \\<Rightarrow> 'a \\<Rightarrow> 'a" ]
[ "class plus =\n fixes plus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"+\" 65)" ]
template
###lemma ?P ?k \<Longrightarrow> \<forall>x. ?P x \<longrightarrow> (\<exists>y. ?P y \<and> \<not> ?f y \<le> ?f x) \<Longrightarrow> \<exists>y. ?P y \<and> \<not> ?f y < ?f ?k + ?n ###symbols Groups.plus_class.plus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a ###defs class plus = fixes plus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "+" 65)
###output \<lbrakk>x_1 x_2; \<forall>y_0. x_1 y_0 \<longrightarrow> (\<exists>y_1. x_1 y_1 \<and> \<not> x_3 y_1 \<le> x_3 y_0)\<rbrakk> \<Longrightarrow> \<exists>y_2. x_1 y_2 \<and> \<not> x_3 y_2 < ?H1 (x_3 x_2) x_4###end
Library/Extended_Real
Extended_Real.ereal_power_divide
lemma ereal_power_divide: fixes x y :: ereal shows "y \<noteq> 0 \<Longrightarrow> (x / y) ^ n = x^n / y^n"
?y \<noteq> 0 \<Longrightarrow> (?x / ?y) ^ ?n = ?x ^ ?n / ?y ^ ?n
x_1 \<noteq> ?H1 \<Longrightarrow> ?H2 (?H3 x_2 x_1) x_3 = ?H3 (?H2 x_2 x_3) (?H2 x_1 x_3)
[ "Fields.inverse_class.inverse_divide", "Power.power_class.power", "Groups.zero_class.zero" ]
[ "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a \\<Rightarrow> nat \\<Rightarrow> 'a", "'a" ]
[ "class inverse = divide +\n fixes inverse :: \"'a \\<Rightarrow> 'a\"\nbegin", "primrec power :: \"'a \\<Rightarrow> nat \\<Rightarrow> 'a\" (infixr \"^\" 80)\n where\n power_0: \"a ^ 0 = 1\"\n | power_Suc: \"a ^ Suc n = a * a ^ n\"", "class zero =\n fixes zero :: 'a (\"0\")" ]
template
###lemma ?y \<noteq> 0 \<Longrightarrow> (?x / ?y) ^ ?n = ?x ^ ?n / ?y ^ ?n ###symbols Fields.inverse_class.inverse_divide :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Power.power_class.power :::: 'a \<Rightarrow> nat \<Rightarrow> 'a Groups.zero_class.zero :::: 'a ###defs class inverse = divide + fixes inverse :: "'a \<Rightarrow> 'a" begin primrec power :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infixr "^" 80) where power_0: "a ^ 0 = 1" | power_Suc: "a ^ Suc n = a * a ^ n" class zero = fixes zero :: 'a ("0")
###output x_1 \<noteq> ?H1 \<Longrightarrow> ?H2 (?H3 x_2 x_1) x_3 = ?H3 (?H2 x_2 x_3) (?H2 x_1 x_3)###end
Nonstandard_Analysis/CLim
CLim.star_of_Im
lemma star_of_Im [simp]: "star_of (Im x) = hIm (star_of x)"
hypreal_of_real (Im ?x) = hIm (hcomplex_of_complex ?x)
?H1 (?H2 x_1) = ?H3 (?H4 x_1)
[ "NSComplex.hcomplex_of_complex", "NSComplex.hIm", "Complex.complex.Im", "HyperDef.hypreal_of_real" ]
[ "complex \\<Rightarrow> complex star", "complex star \\<Rightarrow> real star", "complex \\<Rightarrow> real", "real \\<Rightarrow> real star" ]
[ "abbreviation hcomplex_of_complex :: \"complex \\<Rightarrow> complex star\"\n where \"hcomplex_of_complex \\<equiv> star_of\"", "definition hIm :: \"hcomplex \\<Rightarrow> hypreal\"\n where \"hIm = *f* Im\"", "codatatype complex = Complex (Re: real) (Im: real)", "abbreviation hypreal_of_real :: \"real \\<Rightarrow> real star\"\n where \"hypreal_of_real \\<equiv> star_of\"" ]
template
###lemma hypreal_of_real (Im ?x) = hIm (hcomplex_of_complex ?x) ###symbols NSComplex.hcomplex_of_complex :::: complex \<Rightarrow> complex star NSComplex.hIm :::: complex star \<Rightarrow> real star Complex.complex.Im :::: complex \<Rightarrow> real HyperDef.hypreal_of_real :::: real \<Rightarrow> real star ###defs abbreviation hcomplex_of_complex :: "complex \<Rightarrow> complex star" where "hcomplex_of_complex \<equiv> star_of" definition hIm :: "hcomplex \<Rightarrow> hypreal" where "hIm = *f* Im" codatatype complex = Complex (Re: real) (Im: real) abbreviation hypreal_of_real :: "real \<Rightarrow> real star" where "hypreal_of_real \<equiv> star_of"
###output ?H1 (?H2 x_1) = ?H3 (?H4 x_1)###end
List
List.sorted_wrt_iff_nth_less
lemma sorted_wrt_iff_nth_less: "sorted_wrt P xs = (\<forall>i j. i < j \<longrightarrow> j < length xs \<longrightarrow> P (xs ! i) (xs ! j))"
sorted_wrt ?P ?xs = (\<forall>i j. i < j \<longrightarrow> j < length ?xs \<longrightarrow> ?P (?xs ! i) (?xs ! j))
?H1 x_1 x_2 = (\<forall>y_0 y_1. y_0 < y_1 \<longrightarrow> y_1 < ?H2 x_2 \<longrightarrow> x_1 (?H3 x_2 y_0) (?H3 x_2 y_1))
[ "List.nth", "List.length", "List.sorted_wrt" ]
[ "'a list \\<Rightarrow> nat \\<Rightarrow> 'a", "'a list \\<Rightarrow> nat", "('a \\<Rightarrow> 'a \\<Rightarrow> bool) \\<Rightarrow> 'a list \\<Rightarrow> bool" ]
[ "primrec (nonexhaustive) nth :: \"'a list => nat => 'a\" (infixl \"!\" 100) where\nnth_Cons: \"(x # xs) ! n = (case n of 0 \\<Rightarrow> x | Suc k \\<Rightarrow> xs ! k)\"\n \\<comment> \\<open>Warning: simpset does not contain this definition, but separate\n theorems for \\<open>n = 0\\<close> and \\<open>n = Suc k\\<close>\\<close>", "abbreviation length :: \"'a list \\<Rightarrow> nat\" where\n\"length \\<equiv> size\"", "fun sorted_wrt :: \"('a \\<Rightarrow> 'a \\<Rightarrow> bool) \\<Rightarrow> 'a list \\<Rightarrow> bool\" where\n\"sorted_wrt P [] = True\" |\n\"sorted_wrt P (x # ys) = ((\\<forall>y \\<in> set ys. P x y) \\<and> sorted_wrt P ys)\"" ]
template
###lemma sorted_wrt ?P ?xs = (\<forall>i j. i < j \<longrightarrow> j < length ?xs \<longrightarrow> ?P (?xs ! i) (?xs ! j)) ###symbols List.nth :::: 'a list \<Rightarrow> nat \<Rightarrow> 'a List.length :::: 'a list \<Rightarrow> nat List.sorted_wrt :::: ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> bool ###defs primrec (nonexhaustive) nth :: "'a list => nat => 'a" (infixl "!" 100) where nth_Cons: "(x # xs) ! n = (case n of 0 \<Rightarrow> x | Suc k \<Rightarrow> xs ! k)" \<comment> \<open>Warning: simpset does not contain this definition, but separate theorems for \<open>n = 0\<close> and \<open>n = Suc k\<close>\<close> abbreviation length :: "'a list \<Rightarrow> nat" where "length \<equiv> size" fun sorted_wrt :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> bool" where "sorted_wrt P [] = True" | "sorted_wrt P (x # ys) = ((\<forall>y \<in> set ys. P x y) \<and> sorted_wrt P ys)"
###output ?H1 x_1 x_2 = (\<forall>y_0 y_1. y_0 < y_1 \<longrightarrow> y_1 < ?H2 x_2 \<longrightarrow> x_1 (?H3 x_2 y_0) (?H3 x_2 y_1))###end
Analysis/Cartesian_Euclidean_Space
Cartesian_Euclidean_Space.component_le_infnorm_cart
lemma component_le_infnorm_cart: "\<bar>x$i\<bar> \<le> infnorm (x::real^'n)"
\<bar> ?x $ ?i\<bar> \<le> infnorm ?x
?H1 (?H2 x_1 x_2) \<le> ?H3 x_1
[ "Linear_Algebra.infnorm", "Finite_Cartesian_Product.vec.vec_nth", "Groups.abs_class.abs" ]
[ "'a \\<Rightarrow> real", "('a, 'b) vec \\<Rightarrow> 'b \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a" ]
[ "definition \"vec x = (\\<chi> i. x)\"", "class abs =\n fixes abs :: \"'a \\<Rightarrow> 'a\" (\"\\<bar>_\\<bar>\")" ]
template
###lemma \<bar> ?x $ ?i\<bar> \<le> infnorm ?x ###symbols Linear_Algebra.infnorm :::: 'a \<Rightarrow> real Finite_Cartesian_Product.vec.vec_nth :::: ('a, 'b) vec \<Rightarrow> 'b \<Rightarrow> 'a Groups.abs_class.abs :::: 'a \<Rightarrow> 'a ###defs definition "vec x = (\<chi> i. x)" class abs = fixes abs :: "'a \<Rightarrow> 'a" ("\<bar>_\<bar>")
###output ?H1 (?H2 x_1 x_2) \<le> ?H3 x_1###end
Metis_Examples/Message
Message.keysFor_synth
lemma keysFor_synth [simp]: "keysFor (synth H) = keysFor H \<union> invKey`{K. Key K \<in> H}"
keysFor (synth ?H) = keysFor ?H \<union> invKey ` {K. Key K \<in> ?H}
?H1 (?H2 x_1) = ?H3 (?H1 x_1) (?H4 ?H5 (?H6 (\<lambda>y_0. ?H7 y_0 \<in> x_1)))
[ "Message.msg.Key", "Set.Collect", "Message.invKey", "Set.image", "Set.union", "Message.synth", "Message.keysFor" ]
[ "nat \\<Rightarrow> msg", "('a \\<Rightarrow> bool) \\<Rightarrow> 'a set", "nat \\<Rightarrow> nat", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set", "'a set \\<Rightarrow> 'a set \\<Rightarrow> 'a set", "msg set \\<Rightarrow> msg set", "msg set \\<Rightarrow> nat set" ]
[ "datatype\n msg = Agent agent \\<comment> \\<open>Agent names\\<close>\n | Number nat \\<comment> \\<open>Ordinary integers, timestamps, ...\\<close>\n | Nonce nat \\<comment> \\<open>Unguessable nonces\\<close>\n | Key key \\<comment> \\<open>Crypto keys\\<close>\n | Hash msg \\<comment> \\<open>Hashing\\<close>\n | MPair msg msg \\<comment> \\<open>Compound messages\\<close>\n | Crypt key msg \\<comment> \\<open>Encryption, public- or shared-key\\<close>", "definition image :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set\" (infixr \"`\" 90)\n where \"f ` A = {y. \\<exists>x\\<in>A. y = f x}\"", "abbreviation union :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> 'a set\" (infixl \"\\<union>\" 65)\n where \"union \\<equiv> sup\"", "inductive_set\n synth :: \"msg set => msg set\"\n for H :: \"msg set\"\n where\n Inj [intro]: \"X \\<in> H \\<Longrightarrow> X \\<in> synth H\"\n | Agent [intro]: \"Agent agt \\<in> synth H\"\n | Number [intro]: \"Number n \\<in> synth H\"\n | Hash [intro]: \"X \\<in> synth H \\<Longrightarrow> Hash X \\<in> synth H\"\n | MPair [intro]: \"\\<lbrakk>X \\<in> synth H; Y \\<in> synth H\\<rbrakk> \\<Longrightarrow> \\<lbrace>X,Y\\<rbrace> \\<in> synth H\"\n | Crypt [intro]: \"\\<lbrakk>X \\<in> synth H; Key(K) \\<in> H\\<rbrakk> \\<Longrightarrow> Crypt K X \\<in> synth H\"", "definition keysFor :: \"msg set \\<Rightarrow> key set\" where\n \\<comment> \\<open>Keys useful to decrypt elements of a message set\\<close>\n \"keysFor H == invKey ` {K. \\<exists>X. Crypt K X \\<in> H}\"" ]
template
###lemma keysFor (synth ?H) = keysFor ?H \<union> invKey ` {K. Key K \<in> ?H} ###symbols Message.msg.Key :::: nat \<Rightarrow> msg Set.Collect :::: ('a \<Rightarrow> bool) \<Rightarrow> 'a set Message.invKey :::: nat \<Rightarrow> nat Set.image :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set Set.union :::: 'a set \<Rightarrow> 'a set \<Rightarrow> 'a set Message.synth :::: msg set \<Rightarrow> msg set Message.keysFor :::: msg set \<Rightarrow> nat set ###defs datatype msg = Agent agent \<comment> \<open>Agent names\<close> | Number nat \<comment> \<open>Ordinary integers, timestamps, ...\<close> | Nonce nat \<comment> \<open>Unguessable nonces\<close> | Key key \<comment> \<open>Crypto keys\<close> | Hash msg \<comment> \<open>Hashing\<close> | MPair msg msg \<comment> \<open>Compound messages\<close> | Crypt key msg \<comment> \<open>Encryption, public- or shared-key\<close> definition image :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set" (infixr "`" 90) where "f ` A = {y. \<exists>x\<in>A. y = f x}" abbreviation union :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "\<union>" 65) where "union \<equiv> sup" inductive_set synth :: "msg set => msg set" for H :: "msg set" where Inj [intro]: "X \<in> H \<Longrightarrow> X \<in> synth H" | Agent [intro]: "Agent agt \<in> synth H" | Number [intro]: "Number n \<in> synth H" | Hash [intro]: "X \<in> synth H \<Longrightarrow> Hash X \<in> synth H" | MPair [intro]: "\<lbrakk>X \<in> synth H; Y \<in> synth H\<rbrakk> \<Longrightarrow> \<lbrace>X,Y\<rbrace> \<in> synth H" | Crypt [intro]: "\<lbrakk>X \<in> synth H; Key(K) \<in> H\<rbrakk> \<Longrightarrow> Crypt K X \<in> synth H" definition keysFor :: "msg set \<Rightarrow> key set" where \<comment> \<open>Keys useful to decrypt elements of a message set\<close> "keysFor H == invKey ` {K. \<exists>X. Crypt K X \<in> H}"
###output ?H1 (?H2 x_1) = ?H3 (?H1 x_1) (?H4 ?H5 (?H6 (\<lambda>y_0. ?H7 y_0 \<in> x_1)))###end
Predicate_Compile_Examples/Predicate_Compile_Tests
Predicate_Compile_Tests.map_prods_hoaux_PPiii_PiioE
null
pred.eval (map_prods_hoaux_PPiii_Piio ?x (?xa, ?xb)) ?xc \<Longrightarrow> (map_prods_hoaux ?x (?xa, ?xb, ?xc) \<Longrightarrow> ?P) \<Longrightarrow> ?P
\<lbrakk> ?H1 (?H2 x_1 (x_2, x_3)) x_4; ?H3 x_1 (x_2, x_3, x_4) \<Longrightarrow> x_5\<rbrakk> \<Longrightarrow> x_5
[ "Predicate_Compile_Tests.map_prods_hoaux", "Predicate_Compile_Tests.map_prods_hoaux_PPiii_Piio", "Predicate.pred.eval" ]
[ "('a \\<times> 'b) \\<times> 'c \\<Rightarrow> 'a \\<times> 'b \\<times> 'c \\<Rightarrow> bool", "('a \\<times> 'b) \\<times> 'c \\<Rightarrow> 'a \\<times> 'b \\<Rightarrow> 'c Predicate.pred", "'a Predicate.pred \\<Rightarrow> 'a \\<Rightarrow> bool" ]
[ "datatype (plugins only: extraction) (dead 'a) pred = Pred (eval: \"'a \\<Rightarrow> bool\")" ]
template
###lemma pred.eval (map_prods_hoaux_PPiii_Piio ?x (?xa, ?xb)) ?xc \<Longrightarrow> (map_prods_hoaux ?x (?xa, ?xb, ?xc) \<Longrightarrow> ?P) \<Longrightarrow> ?P ###symbols Predicate_Compile_Tests.map_prods_hoaux :::: ('a \<times> 'b) \<times> 'c \<Rightarrow> 'a \<times> 'b \<times> 'c \<Rightarrow> bool Predicate_Compile_Tests.map_prods_hoaux_PPiii_Piio :::: ('a \<times> 'b) \<times> 'c \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c Predicate.pred Predicate.pred.eval :::: 'a Predicate.pred \<Rightarrow> 'a \<Rightarrow> bool ###defs datatype (plugins only: extraction) (dead 'a) pred = Pred (eval: "'a \<Rightarrow> bool")
###output \<lbrakk> ?H1 (?H2 x_1 (x_2, x_3)) x_4; ?H3 x_1 (x_2, x_3, x_4) \<Longrightarrow> x_5\<rbrakk> \<Longrightarrow> x_5###end
Matrix_LP/Matrix
Matrix.transpose_apply_matrix
lemma transpose_apply_matrix: "f 0 = 0 \<Longrightarrow> transpose_matrix (apply_matrix f A) = apply_matrix f (transpose_matrix A)"
?f (0:: ?'b) = (0:: ?'a) \<Longrightarrow> transpose_matrix (apply_matrix ?f ?A) = apply_matrix ?f (transpose_matrix ?A)
x_1 ?H1 = ?H1 \<Longrightarrow> ?H2 (?H3 x_1 x_2) = ?H3 x_1 (?H2 x_2)
[ "Matrix.apply_matrix", "Matrix.transpose_matrix", "Groups.zero_class.zero" ]
[ "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a matrix \\<Rightarrow> 'b matrix", "'a matrix \\<Rightarrow> 'a matrix", "'a" ]
[ "definition apply_matrix :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> ('a::zero) matrix \\<Rightarrow> ('b::zero) matrix\" where\n \"apply_matrix f == % A. Abs_matrix (apply_infmatrix f (Rep_matrix A))\"", "definition transpose_matrix :: \"('a::zero) matrix \\<Rightarrow> 'a matrix\" where\n \"transpose_matrix == Abs_matrix o transpose_infmatrix o Rep_matrix\"", "class zero =\n fixes zero :: 'a (\"0\")" ]
template
###lemma ?f (0:: ?'b) = (0:: ?'a) \<Longrightarrow> transpose_matrix (apply_matrix ?f ?A) = apply_matrix ?f (transpose_matrix ?A) ###symbols Matrix.apply_matrix :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a matrix \<Rightarrow> 'b matrix Matrix.transpose_matrix :::: 'a matrix \<Rightarrow> 'a matrix Groups.zero_class.zero :::: 'a ###defs definition apply_matrix :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a::zero) matrix \<Rightarrow> ('b::zero) matrix" where "apply_matrix f == % A. Abs_matrix (apply_infmatrix f (Rep_matrix A))" definition transpose_matrix :: "('a::zero) matrix \<Rightarrow> 'a matrix" where "transpose_matrix == Abs_matrix o transpose_infmatrix o Rep_matrix" class zero = fixes zero :: 'a ("0")
###output x_1 ?H1 = ?H1 \<Longrightarrow> ?H2 (?H3 x_1 x_2) = ?H3 x_1 (?H2 x_2)###end
Nominal/Examples/Pattern
Pattern.set_pat_vars_supp
lemma set_pat_vars_supp: "set (pat_vars p) = supp p"
set (pat_vars ?p) = supp ?p
?H1 (?H2 x_1) = ?H3 x_1
[ "Nominal.supp", "Pattern.pat_vars", "List.list.set" ]
[ "'a \\<Rightarrow> 'b set", "pat \\<Rightarrow> name list", "'a list \\<Rightarrow> 'a set" ]
[ "definition supp :: \"'a \\<Rightarrow> ('x set)\" where \n \"supp x = {a . (infinite {b . [(a,b)]\\<bullet>x \\<noteq> x})}\"", "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"" ]
template
###lemma set (pat_vars ?p) = supp ?p ###symbols Nominal.supp :::: 'a \<Rightarrow> 'b set Pattern.pat_vars :::: pat \<Rightarrow> name list List.list.set :::: 'a list \<Rightarrow> 'a set ###defs definition supp :: "'a \<Rightarrow> ('x set)" where "supp x = {a . (infinite {b . [(a,b)]\<bullet>x \<noteq> x})}" datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []"
###output ?H1 (?H2 x_1) = ?H3 x_1###end
Decision_Procs/Parametric_Ferrante_Rackoff
Parametric_Ferrante_Rackoff.msubstpos_nb
lemma msubstpos_nb: assumes lp: "islin p" and tnb: "tmbound0 t" shows "bound0 (msubstpos p c t)"
islin ?p \<Longrightarrow> tmbound0 ?t \<Longrightarrow> bound0 (msubstpos ?p ?c ?t)
\<lbrakk> ?H1 x_1; ?H2 x_2\<rbrakk> \<Longrightarrow> ?H3 (?H4 x_1 x_3 x_2)
[ "Parametric_Ferrante_Rackoff.msubstpos", "Parametric_Ferrante_Rackoff.bound0", "Parametric_Ferrante_Rackoff.tmbound0", "Parametric_Ferrante_Rackoff.islin" ]
[ "fm \\<Rightarrow> poly \\<Rightarrow> tm \\<Rightarrow> fm", "fm \\<Rightarrow> bool", "tm \\<Rightarrow> bool", "fm \\<Rightarrow> bool" ]
[ "fun msubstpos :: \"fm \\<Rightarrow> poly \\<Rightarrow> tm \\<Rightarrow> fm\"\n where\n \"msubstpos (And p q) c t = And (msubstpos p c t) (msubstpos q c t)\"\n | \"msubstpos (Or p q) c t = Or (msubstpos p c t) (msubstpos q c t)\"\n | \"msubstpos (Eq (CNP 0 a r)) c t = msubsteq2 c t a r\"\n | \"msubstpos (NEq (CNP 0 a r)) c t = Not (msubsteq2 c t a r)\"\n | \"msubstpos (Lt (CNP 0 a r)) c t = msubstltpos c t a r\"\n | \"msubstpos (Le (CNP 0 a r)) c t = msubstlepos c t a r\"\n | \"msubstpos p c t = p\"", "fun bound0:: \"fm \\<Rightarrow> bool\" \\<comment> \\<open>a formula is independent of Bound 0\\<close>\n where\n \"bound0 T = True\"\n | \"bound0 F = True\"\n | \"bound0 (Lt a) = tmbound0 a\"\n | \"bound0 (Le a) = tmbound0 a\"\n | \"bound0 (Eq a) = tmbound0 a\"\n | \"bound0 (NEq a) = tmbound0 a\"\n | \"bound0 (Not p) = bound0 p\"\n | \"bound0 (And p q) = (bound0 p \\<and> bound0 q)\"\n | \"bound0 (Or p q) = (bound0 p \\<and> bound0 q)\"\n | \"bound0 (Imp p q) = ((bound0 p) \\<and> (bound0 q))\"\n | \"bound0 (Iff p q) = (bound0 p \\<and> bound0 q)\"\n | \"bound0 p = False\"", "primrec tmbound0 :: \"tm \\<Rightarrow> bool\" \\<comment> \\<open>a \\<open>tm\\<close> is \\<^emph>\\<open>independent\\<close> of Bound 0\\<close>\n where\n \"tmbound0 (CP c) = True\"\n | \"tmbound0 (Bound n) = (n>0)\"\n | \"tmbound0 (CNP n c a) = (n\\<noteq>0 \\<and> tmbound0 a)\"\n | \"tmbound0 (Neg a) = tmbound0 a\"\n | \"tmbound0 (Add a b) = (tmbound0 a \\<and> tmbound0 b)\"\n | \"tmbound0 (Sub a b) = (tmbound0 a \\<and> tmbound0 b)\"\n | \"tmbound0 (Mul i a) = tmbound0 a\"", "fun islin :: \"fm \\<Rightarrow> bool\"\n where\n \"islin (And p q) = (islin p \\<and> islin q \\<and> p \\<noteq> T \\<and> p \\<noteq> F \\<and> q \\<noteq> T \\<and> q \\<noteq> F)\"\n | \"islin (Or p q) = (islin p \\<and> islin q \\<and> p \\<noteq> T \\<and> p \\<noteq> F \\<and> q \\<noteq> T \\<and> q \\<noteq> F)\"\n | \"islin (Eq (CNP 0 c s)) = (isnpoly c \\<and> c \\<noteq> 0\\<^sub>p \\<and> tmbound0 s \\<and> allpolys isnpoly s)\"\n | \"islin (NEq (CNP 0 c s)) = (isnpoly c \\<and> c \\<noteq> 0\\<^sub>p \\<and> tmbound0 s \\<and> allpolys isnpoly s)\"\n | \"islin (Lt (CNP 0 c s)) = (isnpoly c \\<and> c \\<noteq> 0\\<^sub>p \\<and> tmbound0 s \\<and> allpolys isnpoly s)\"\n | \"islin (Le (CNP 0 c s)) = (isnpoly c \\<and> c \\<noteq> 0\\<^sub>p \\<and> tmbound0 s \\<and> allpolys isnpoly s)\"\n | \"islin (Not p) = False\"\n | \"islin (Imp p q) = False\"\n | \"islin (Iff p q) = False\"\n | \"islin p = bound0 p\"" ]
template
###lemma islin ?p \<Longrightarrow> tmbound0 ?t \<Longrightarrow> bound0 (msubstpos ?p ?c ?t) ###symbols Parametric_Ferrante_Rackoff.msubstpos :::: fm \<Rightarrow> poly \<Rightarrow> tm \<Rightarrow> fm Parametric_Ferrante_Rackoff.bound0 :::: fm \<Rightarrow> bool Parametric_Ferrante_Rackoff.tmbound0 :::: tm \<Rightarrow> bool Parametric_Ferrante_Rackoff.islin :::: fm \<Rightarrow> bool ###defs fun msubstpos :: "fm \<Rightarrow> poly \<Rightarrow> tm \<Rightarrow> fm" where "msubstpos (And p q) c t = And (msubstpos p c t) (msubstpos q c t)" | "msubstpos (Or p q) c t = Or (msubstpos p c t) (msubstpos q c t)" | "msubstpos (Eq (CNP 0 a r)) c t = msubsteq2 c t a r" | "msubstpos (NEq (CNP 0 a r)) c t = Not (msubsteq2 c t a r)" | "msubstpos (Lt (CNP 0 a r)) c t = msubstltpos c t a r" | "msubstpos (Le (CNP 0 a r)) c t = msubstlepos c t a r" | "msubstpos p c t = p" fun bound0:: "fm \<Rightarrow> bool" \<comment> \<open>a formula is independent of Bound 0\<close> where "bound0 T = True" | "bound0 F = True" | "bound0 (Lt a) = tmbound0 a" | "bound0 (Le a) = tmbound0 a" | "bound0 (Eq a) = tmbound0 a" | "bound0 (NEq a) = tmbound0 a" | "bound0 (Not p) = bound0 p" | "bound0 (And p q) = (bound0 p \<and> bound0 q)" | "bound0 (Or p q) = (bound0 p \<and> bound0 q)" | "bound0 (Imp p q) = ((bound0 p) \<and> (bound0 q))" | "bound0 (Iff p q) = (bound0 p \<and> bound0 q)" | "bound0 p = False" primrec tmbound0 :: "tm \<Rightarrow> bool" \<comment> \<open>a \<open>tm\<close> is \<^emph>\<open>independent\<close> of Bound 0\<close> where "tmbound0 (CP c) = True" | "tmbound0 (Bound n) = (n>0)" | "tmbound0 (CNP n c a) = (n\<noteq>0 \<and> tmbound0 a)" | "tmbound0 (Neg a) = tmbound0 a" | "tmbound0 (Add a b) = (tmbound0 a \<and> tmbound0 b)" | "tmbound0 (Sub a b) = (tmbound0 a \<and> tmbound0 b)" | "tmbound0 (Mul i a) = tmbound0 a" fun islin :: "fm \<Rightarrow> bool" where "islin (And p q) = (islin p \<and> islin q \<and> p \<noteq> T \<and> p \<noteq> F \<and> q \<noteq> T \<and> q \<noteq> F)" | "islin (Or p q) = (islin p \<and> islin q \<and> p \<noteq> T \<and> p \<noteq> F \<and> q \<noteq> T \<and> q \<noteq> F)" | "islin (Eq (CNP 0 c s)) = (isnpoly c \<and> c \<noteq> 0\<^sub>p \<and> tmbound0 s \<and> allpolys isnpoly s)" | "islin (NEq (CNP 0 c s)) = (isnpoly c \<and> c \<noteq> 0\<^sub>p \<and> tmbound0 s \<and> allpolys isnpoly s)" | "islin (Lt (CNP 0 c s)) = (isnpoly c \<and> c \<noteq> 0\<^sub>p \<and> tmbound0 s \<and> allpolys isnpoly s)" | "islin (Le (CNP 0 c s)) = (isnpoly c \<and> c \<noteq> 0\<^sub>p \<and> tmbound0 s \<and> allpolys isnpoly s)" | "islin (Not p) = False" | "islin (Imp p q) = False" | "islin (Iff p q) = False" | "islin p = bound0 p"
###output \<lbrakk> ?H1 x_1; ?H2 x_2\<rbrakk> \<Longrightarrow> ?H3 (?H4 x_1 x_3 x_2)###end
Computational_Algebra/Primes
Primes.prime_ge_0_int
lemma prime_ge_0_int: "prime p \<Longrightarrow> p \<ge> (0::int)"
prime ?p \<Longrightarrow> 0 \<le> ?p
?H1 x_1 \<Longrightarrow> ?H2 \<le> x_1
[ "Groups.zero_class.zero", "Factorial_Ring.normalization_semidom_class.prime" ]
[ "'a", "'a \\<Rightarrow> bool" ]
[ "class zero =\n fixes zero :: 'a (\"0\")" ]
template
###lemma prime ?p \<Longrightarrow> 0 \<le> ?p ###symbols Groups.zero_class.zero :::: 'a Factorial_Ring.normalization_semidom_class.prime :::: 'a \<Rightarrow> bool ###defs class zero = fixes zero :: 'a ("0")
###output ?H1 x_1 \<Longrightarrow> ?H2 \<le> x_1###end
Analysis/Polytope
Polytope.polyhedron_Inter
lemma polyhedron_Inter [intro,simp]: "\<lbrakk>finite F; \<And>S. S \<in> F \<Longrightarrow> polyhedron S\<rbrakk> \<Longrightarrow> polyhedron(\<Inter>F)"
finite ?F \<Longrightarrow> (\<And>S. S \<in> ?F \<Longrightarrow> polyhedron S) \<Longrightarrow> polyhedron (\<Inter> ?F)
\<lbrakk> ?H1 x_1; \<And>y_0. y_0 \<in> x_1 \<Longrightarrow> ?H2 y_0\<rbrakk> \<Longrightarrow> ?H2 (?H3 x_1)
[ "Complete_Lattices.Inter", "Polytope.polyhedron", "Finite_Set.finite" ]
[ "'a set set \\<Rightarrow> 'a set", "'a set \\<Rightarrow> bool", "'a set \\<Rightarrow> bool" ]
[ "abbreviation Inter :: \"'a set set \\<Rightarrow> 'a set\" (\"\\<Inter>\")\n where \"\\<Inter>S \\<equiv> \\<Sqinter>S\"", "class finite =\n assumes finite_UNIV: \"finite (UNIV :: 'a set)\"\nbegin" ]
template
###lemma finite ?F \<Longrightarrow> (\<And>S. S \<in> ?F \<Longrightarrow> polyhedron S) \<Longrightarrow> polyhedron (\<Inter> ?F) ###symbols Complete_Lattices.Inter :::: 'a set set \<Rightarrow> 'a set Polytope.polyhedron :::: 'a set \<Rightarrow> bool Finite_Set.finite :::: 'a set \<Rightarrow> bool ###defs abbreviation Inter :: "'a set set \<Rightarrow> 'a set" ("\<Inter>") where "\<Inter>S \<equiv> \<Sqinter>S" class finite = assumes finite_UNIV: "finite (UNIV :: 'a set)" begin
###output \<lbrakk> ?H1 x_1; \<And>y_0. y_0 \<in> x_1 \<Longrightarrow> ?H2 y_0\<rbrakk> \<Longrightarrow> ?H2 (?H3 x_1)###end
Deriv
Deriv.derivative_eq_intros(13)
null
(?f1 has_derivative ?f'1) (at ?x1 within ?s1) \<Longrightarrow> (?g1 has_derivative ?g'1) (at ?x1 within ?s1) \<Longrightarrow> (\<lambda>h. ?f1 ?x1 * ?g'1 h + ?f'1 h * ?g1 ?x1) = ?g' \<Longrightarrow> ((\<lambda>x. ?f1 x * ?g1 x) has_derivative ?g') (at ?x1 within ?s1)
\<lbrakk> ?H1 x_1 x_2 (?H2 x_3 x_4); ?H1 x_5 x_6 (?H2 x_3 x_4); (\<lambda>y_0. ?H3 (?H4 (x_1 x_3) (x_6 y_0)) (?H4 (x_2 y_0) (x_5 x_3))) = x_7\<rbrakk> \<Longrightarrow> ?H1 (\<lambda>y_1. ?H4 (x_1 y_1) (x_5 y_1)) x_7 (?H2 x_3 x_4)
[ "Groups.times_class.times", "Groups.plus_class.plus", "Topological_Spaces.topological_space_class.at_within", "Deriv.has_derivative" ]
[ "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a set \\<Rightarrow> 'a filter", "('a \\<Rightarrow> 'b) \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> 'a filter \\<Rightarrow> bool" ]
[ "class times =\n fixes times :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"*\" 70)", "class plus =\n fixes plus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"+\" 65)", "class topological_space = \"open\" +\n assumes open_UNIV [simp, intro]: \"open UNIV\"\n assumes open_Int [intro]: \"open S \\<Longrightarrow> open T \\<Longrightarrow> open (S \\<inter> T)\"\n assumes open_Union [intro]: \"\\<forall>S\\<in>K. open S \\<Longrightarrow> open (\\<Union>K)\"\nbegin", "definition has_derivative :: \"('a::real_normed_vector \\<Rightarrow> 'b::real_normed_vector) \\<Rightarrow>\n ('a \\<Rightarrow> 'b) \\<Rightarrow> 'a filter \\<Rightarrow> bool\" (infix \"(has'_derivative)\" 50)\n where \"(f has_derivative f') F \\<longleftrightarrow>\n bounded_linear f' \\<and>\n ((\\<lambda>y. ((f y - f (Lim F (\\<lambda>x. x))) - f' (y - Lim F (\\<lambda>x. x))) /\\<^sub>R norm (y - Lim F (\\<lambda>x. x))) \\<longlongrightarrow> 0) F\"" ]
template
###lemma (?f1 has_derivative ?f'1) (at ?x1 within ?s1) \<Longrightarrow> (?g1 has_derivative ?g'1) (at ?x1 within ?s1) \<Longrightarrow> (\<lambda>h. ?f1 ?x1 * ?g'1 h + ?f'1 h * ?g1 ?x1) = ?g' \<Longrightarrow> ((\<lambda>x. ?f1 x * ?g1 x) has_derivative ?g') (at ?x1 within ?s1) ###symbols Groups.times_class.times :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Groups.plus_class.plus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Topological_Spaces.topological_space_class.at_within :::: 'a \<Rightarrow> 'a set \<Rightarrow> 'a filter Deriv.has_derivative :::: ('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a filter \<Rightarrow> bool ###defs class times = fixes times :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "*" 70) class plus = fixes plus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "+" 65) class topological_space = "open" + assumes open_UNIV [simp, intro]: "open UNIV" assumes open_Int [intro]: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<inter> T)" assumes open_Union [intro]: "\<forall>S\<in>K. open S \<Longrightarrow> open (\<Union>K)" begin definition has_derivative :: "('a::real_normed_vector \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a filter \<Rightarrow> bool" (infix "(has'_derivative)" 50) where "(f has_derivative f') F \<longleftrightarrow> bounded_linear f' \<and> ((\<lambda>y. ((f y - f (Lim F (\<lambda>x. x))) - f' (y - Lim F (\<lambda>x. x))) /\<^sub>R norm (y - Lim F (\<lambda>x. x))) \<longlongrightarrow> 0) F"
###output \<lbrakk> ?H1 x_1 x_2 (?H2 x_3 x_4); ?H1 x_5 x_6 (?H2 x_3 x_4); (\<lambda>y_0. ?H3 (?H4 (x_1 x_3) (x_6 y_0)) (?H4 (x_2 y_0) (x_5 x_3))) = x_7\<rbrakk> \<Longrightarrow> ?H1 (\<lambda>y_1. ?H4 (x_1 y_1) (x_5 y_1)) x_7 (?H2 x_3 x_4)###end
HOLCF/Lift
Lifting.pcr_Domainp
null
Domainp ?B = ?P \<Longrightarrow> Domainp (?A OO ?B) = (\<lambda>x. \<exists>y. ?A x y \<and> ?P y)
?H1 x_1 = x_2 \<Longrightarrow> ?H1 (?H2 x_3 x_1) = (\<lambda>y_0. \<exists>y_1. x_3 y_0 y_1 \<and> x_2 y_1)
[ "Relation.relcompp", "Relation.Domainp" ]
[ "('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> ('b \\<Rightarrow> 'c \\<Rightarrow> bool) \\<Rightarrow> 'a \\<Rightarrow> 'c \\<Rightarrow> bool", "('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> 'a \\<Rightarrow> bool" ]
[]
template
###lemma Domainp ?B = ?P \<Longrightarrow> Domainp (?A OO ?B) = (\<lambda>x. \<exists>y. ?A x y \<and> ?P y) ###symbols Relation.relcompp :::: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'c \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'c \<Rightarrow> bool Relation.Domainp :::: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool ###defs
###output ?H1 x_1 = x_2 \<Longrightarrow> ?H1 (?H2 x_3 x_1) = (\<lambda>y_0. \<exists>y_1. x_3 y_0 y_1 \<and> x_2 y_1)###end
Computational_Algebra/Polynomial
Polynomial.monom_power
lemma monom_power: "monom c n ^ k = monom (c ^ k) (n * k)"
monom ?c ?n ^ ?k = monom (?c ^ ?k) (?n * ?k)
?H1 (?H2 x_1 x_2) x_3 = ?H2 (?H1 x_1 x_3) (?H3 x_2 x_3)
[ "Groups.times_class.times", "Polynomial.monom", "Power.power_class.power" ]
[ "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a \\<Rightarrow> nat \\<Rightarrow> 'a poly", "'a \\<Rightarrow> nat \\<Rightarrow> 'a" ]
[ "class times =\n fixes times :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"*\" 70)", "primrec power :: \"'a \\<Rightarrow> nat \\<Rightarrow> 'a\" (infixr \"^\" 80)\n where\n power_0: \"a ^ 0 = 1\"\n | power_Suc: \"a ^ Suc n = a * a ^ n\"" ]
template
###lemma monom ?c ?n ^ ?k = monom (?c ^ ?k) (?n * ?k) ###symbols Groups.times_class.times :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Polynomial.monom :::: 'a \<Rightarrow> nat \<Rightarrow> 'a poly Power.power_class.power :::: 'a \<Rightarrow> nat \<Rightarrow> 'a ###defs class times = fixes times :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "*" 70) primrec power :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infixr "^" 80) where power_0: "a ^ 0 = 1" | power_Suc: "a ^ Suc n = a * a ^ n"
###output ?H1 (?H2 x_1 x_2) x_3 = ?H2 (?H1 x_1 x_3) (?H3 x_2 x_3)###end
HOLCF/Tr
Transfer.Ex1_parametric
null
bi_unique ?A \<Longrightarrow> bi_total ?A \<Longrightarrow> rel_fun (rel_fun ?A (=)) (=) Ex1 Ex1
\<lbrakk> ?H1 x_1; ?H2 x_1\<rbrakk> \<Longrightarrow> ?H3 (?H3 x_1 (=)) (=) Ex1 Ex1
[ "BNF_Def.rel_fun", "Transfer.bi_total", "Transfer.bi_unique" ]
[ "('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> ('c \\<Rightarrow> 'd \\<Rightarrow> bool) \\<Rightarrow> ('a \\<Rightarrow> 'c) \\<Rightarrow> ('b \\<Rightarrow> 'd) \\<Rightarrow> bool", "('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> bool", "('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> bool" ]
[ "definition\n rel_fun :: \"('a \\<Rightarrow> 'c \\<Rightarrow> bool) \\<Rightarrow> ('b \\<Rightarrow> 'd \\<Rightarrow> bool) \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> ('c \\<Rightarrow> 'd) \\<Rightarrow> bool\"\nwhere\n \"rel_fun A B = (\\<lambda>f g. \\<forall>x y. A x y \\<longrightarrow> B (f x) (g y))\"", "definition bi_total :: \"('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> bool\"\n where \"bi_total R \\<longleftrightarrow> (\\<forall>x. \\<exists>y. R x y) \\<and> (\\<forall>y. \\<exists>x. R x y)\"", "definition bi_unique :: \"('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> bool\"\n where \"bi_unique R \\<longleftrightarrow>\n (\\<forall>x y z. R x y \\<longrightarrow> R x z \\<longrightarrow> y = z) \\<and>\n (\\<forall>x y z. R x z \\<longrightarrow> R y z \\<longrightarrow> x = y)\"" ]
template
###lemma bi_unique ?A \<Longrightarrow> bi_total ?A \<Longrightarrow> rel_fun (rel_fun ?A (=)) (=) Ex1 Ex1 ###symbols BNF_Def.rel_fun :::: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('c \<Rightarrow> 'd \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'c) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> bool Transfer.bi_total :::: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool Transfer.bi_unique :::: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool ###defs definition rel_fun :: "('a \<Rightarrow> 'c \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'd \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('c \<Rightarrow> 'd) \<Rightarrow> bool" where "rel_fun A B = (\<lambda>f g. \<forall>x y. A x y \<longrightarrow> B (f x) (g y))" definition bi_total :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool" where "bi_total R \<longleftrightarrow> (\<forall>x. \<exists>y. R x y) \<and> (\<forall>y. \<exists>x. R x y)" definition bi_unique :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool" where "bi_unique R \<longleftrightarrow> (\<forall>x y z. R x y \<longrightarrow> R x z \<longrightarrow> y = z) \<and> (\<forall>x y z. R x z \<longrightarrow> R y z \<longrightarrow> x = y)"
###output \<lbrakk> ?H1 x_1; ?H2 x_1\<rbrakk> \<Longrightarrow> ?H3 (?H3 x_1 (=)) (=) Ex1 Ex1###end
Analysis/Elementary_Topology
Elementary_Topology.continuous_on_no_limpt
lemma continuous_on_no_limpt: "(\<And>x. \<not> x islimpt S) \<Longrightarrow> continuous_on S f"
(\<And>x. \<not> x islimpt ?S) \<Longrightarrow> continuous_on ?S ?f
(\<And>y_0. \<not> ?H1 y_0 x_1) \<Longrightarrow> ?H2 x_1 x_2
[ "Topological_Spaces.continuous_on", "Elementary_Topology.topological_space_class.islimpt" ]
[ "'a set \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> bool", "'a \\<Rightarrow> 'a set \\<Rightarrow> bool" ]
[ "definition continuous_on :: \"'a set \\<Rightarrow> ('a::topological_space \\<Rightarrow> 'b::topological_space) \\<Rightarrow> bool\"\n where \"continuous_on s f \\<longleftrightarrow> (\\<forall>x\\<in>s. (f \\<longlongrightarrow> f x) (at x within s))\"" ]
template
###lemma (\<And>x. \<not> x islimpt ?S) \<Longrightarrow> continuous_on ?S ?f ###symbols Topological_Spaces.continuous_on :::: 'a set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool Elementary_Topology.topological_space_class.islimpt :::: 'a \<Rightarrow> 'a set \<Rightarrow> bool ###defs definition continuous_on :: "'a set \<Rightarrow> ('a::topological_space \<Rightarrow> 'b::topological_space) \<Rightarrow> bool" where "continuous_on s f \<longleftrightarrow> (\<forall>x\<in>s. (f \<longlongrightarrow> f x) (at x within s))"
###output (\<And>y_0. \<not> ?H1 y_0 x_1) \<Longrightarrow> ?H2 x_1 x_2###end
Combinatorics/Orbits
Orbits.funpow_dist1_le_self
lemma funpow_dist1_le_self: assumes "(f ^^ m) x = x" "0 < m" "y \<in> orbit f x" shows "funpow_dist1 f x y \<le> m"
(?f ^^ ?m) ?x = ?x \<Longrightarrow> 0 < ?m \<Longrightarrow> ?y \<in> orbit ?f ?x \<Longrightarrow> funpow_dist1 ?f ?x ?y \<le> ?m
\<lbrakk> ?H1 x_1 x_2 x_3 = x_3; ?H2 < x_2; x_4 \<in> ?H3 x_1 x_3\<rbrakk> \<Longrightarrow> ?H4 x_1 x_3 x_4 \<le> x_2
[ "Orbits.funpow_dist1", "Orbits.orbit", "Groups.zero_class.zero", "Nat.compower" ]
[ "('a \\<Rightarrow> 'a) \\<Rightarrow> 'a \\<Rightarrow> 'a \\<Rightarrow> nat", "('a \\<Rightarrow> 'a) \\<Rightarrow> 'a \\<Rightarrow> 'a set", "'a", "'a \\<Rightarrow> nat \\<Rightarrow> 'a" ]
[ "abbreviation funpow_dist1 :: \"('a \\<Rightarrow> 'a) \\<Rightarrow> 'a \\<Rightarrow> 'a \\<Rightarrow> nat\" where\n \"funpow_dist1 f x y \\<equiv> Suc (funpow_dist f (f x) y)\"", "inductive_set orbit :: \"('a \\<Rightarrow> 'a) \\<Rightarrow> 'a \\<Rightarrow> 'a set\" for f x where\n base: \"f x \\<in> orbit f x\" |\n step: \"y \\<in> orbit f x \\<Longrightarrow> f y \\<in> orbit f x\"", "class zero =\n fixes zero :: 'a (\"0\")", "abbreviation compower :: \"'a \\<Rightarrow> nat \\<Rightarrow> 'a\" (infixr \"^^\" 80)\n where \"f ^^ n \\<equiv> compow n f\"" ]
template
###lemma (?f ^^ ?m) ?x = ?x \<Longrightarrow> 0 < ?m \<Longrightarrow> ?y \<in> orbit ?f ?x \<Longrightarrow> funpow_dist1 ?f ?x ?y \<le> ?m ###symbols Orbits.funpow_dist1 :::: ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> nat Orbits.orbit :::: ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a set Groups.zero_class.zero :::: 'a Nat.compower :::: 'a \<Rightarrow> nat \<Rightarrow> 'a ###defs abbreviation funpow_dist1 :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> nat" where "funpow_dist1 f x y \<equiv> Suc (funpow_dist f (f x) y)" inductive_set orbit :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a set" for f x where base: "f x \<in> orbit f x" | step: "y \<in> orbit f x \<Longrightarrow> f y \<in> orbit f x" class zero = fixes zero :: 'a ("0") abbreviation compower :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infixr "^^" 80) where "f ^^ n \<equiv> compow n f"
###output \<lbrakk> ?H1 x_1 x_2 x_3 = x_3; ?H2 < x_2; x_4 \<in> ?H3 x_1 x_3\<rbrakk> \<Longrightarrow> ?H4 x_1 x_3 x_4 \<le> x_2###end
Analysis/Interval_Integral
Interval_Integral.ereal_decseq_approx
lemma ereal_decseq_approx: fixes a b :: ereal assumes "a < b" obtains X :: "nat \<Rightarrow> real" where "decseq X" "\<And>i. a < X i" "\<And>i. X i < b" "X \<longlonglongrightarrow> a"
?a < ?b \<Longrightarrow> (\<And>X. decseq X \<Longrightarrow> (\<And>i. ?a < ereal (X i)) \<Longrightarrow> (\<And>i. ereal (X i) < ?b) \<Longrightarrow> (\<lambda>x. ereal (X x)) \<longlonglongrightarrow> ?a \<Longrightarrow> ?thesis) \<Longrightarrow> ?thesis
\<lbrakk>x_1 < x_2; \<And>y_0. \<lbrakk> ?H1 y_0; \<And>y_1. x_1 < ?H2 (y_0 y_1); \<And>y_2. ?H2 (y_0 y_2) < x_2; ?H3 (\<lambda>y_3. ?H2 (y_0 y_3)) x_1\<rbrakk> \<Longrightarrow> x_3\<rbrakk> \<Longrightarrow> x_3
[ "Topological_Spaces.topological_space_class.LIMSEQ", "Extended_Real.ereal.ereal", "Topological_Spaces.decseq" ]
[ "(nat \\<Rightarrow> 'a) \\<Rightarrow> 'a \\<Rightarrow> bool", "real \\<Rightarrow> ereal", "(nat \\<Rightarrow> 'a) \\<Rightarrow> bool" ]
[ "class topological_space = \"open\" +\n assumes open_UNIV [simp, intro]: \"open UNIV\"\n assumes open_Int [intro]: \"open S \\<Longrightarrow> open T \\<Longrightarrow> open (S \\<inter> T)\"\n assumes open_Union [intro]: \"\\<forall>S\\<in>K. open S \\<Longrightarrow> open (\\<Union>K)\"\nbegin", "datatype ereal = ereal real | PInfty | MInfty", "abbreviation decseq :: \"(nat \\<Rightarrow> 'a::order) \\<Rightarrow> bool\"\n where \"decseq X \\<equiv> antimono X\"" ]
template
###lemma ?a < ?b \<Longrightarrow> (\<And>X. decseq X \<Longrightarrow> (\<And>i. ?a < ereal (X i)) \<Longrightarrow> (\<And>i. ereal (X i) < ?b) \<Longrightarrow> (\<lambda>x. ereal (X x)) \<longlonglongrightarrow> ?a \<Longrightarrow> ?thesis) \<Longrightarrow> ?thesis ###symbols Topological_Spaces.topological_space_class.LIMSEQ :::: (nat \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> bool Extended_Real.ereal.ereal :::: real \<Rightarrow> ereal Topological_Spaces.decseq :::: (nat \<Rightarrow> 'a) \<Rightarrow> bool ###defs class topological_space = "open" + assumes open_UNIV [simp, intro]: "open UNIV" assumes open_Int [intro]: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<inter> T)" assumes open_Union [intro]: "\<forall>S\<in>K. open S \<Longrightarrow> open (\<Union>K)" begin datatype ereal = ereal real | PInfty | MInfty abbreviation decseq :: "(nat \<Rightarrow> 'a::order) \<Rightarrow> bool" where "decseq X \<equiv> antimono X"
###output \<lbrakk>x_1 < x_2; \<And>y_0. \<lbrakk> ?H1 y_0; \<And>y_1. x_1 < ?H2 (y_0 y_1); \<And>y_2. ?H2 (y_0 y_2) < x_2; ?H3 (\<lambda>y_3. ?H2 (y_0 y_3)) x_1\<rbrakk> \<Longrightarrow> x_3\<rbrakk> \<Longrightarrow> x_3###end
Library/Multiset
Multiset.filter_mset_add_mset
lemma filter_mset_add_mset [simp]: "filter_mset P (add_mset x A) = (if P x then add_mset x (filter_mset P A) else filter_mset P A)"
filter_mset ?P (add_mset ?x ?A) = (if ?P ?x then add_mset ?x (filter_mset ?P ?A) else filter_mset ?P ?A)
?H1 x_1 (?H2 x_2 x_3) = (if x_1 x_2 then ?H2 x_2 (?H1 x_1 x_3) else ?H1 x_1 x_3)
[ "Multiset.add_mset", "Multiset.filter_mset" ]
[ "'a \\<Rightarrow> 'a multiset \\<Rightarrow> 'a multiset", "('a \\<Rightarrow> bool) \\<Rightarrow> 'a multiset \\<Rightarrow> 'a multiset" ]
[]
template
###lemma filter_mset ?P (add_mset ?x ?A) = (if ?P ?x then add_mset ?x (filter_mset ?P ?A) else filter_mset ?P ?A) ###symbols Multiset.add_mset :::: 'a \<Rightarrow> 'a multiset \<Rightarrow> 'a multiset Multiset.filter_mset :::: ('a \<Rightarrow> bool) \<Rightarrow> 'a multiset \<Rightarrow> 'a multiset ###defs
###output ?H1 x_1 (?H2 x_2 x_3) = (if x_1 x_2 then ?H2 x_2 (?H1 x_1 x_3) else ?H1 x_1 x_3)###end
Analysis/Brouwer_Fixpoint
Brouwer_Fixpoint.Borsuk_maps_homotopic_in_path_component
lemma Borsuk_maps_homotopic_in_path_component: assumes "path_component (- S) a b" shows "homotopic_with_canon (\<lambda>x. True) S (sphere 0 1) (\<lambda>x. inverse(norm(x-a)) *\<^sub>R (x-a)) (\<lambda>x. inverse(norm(x - b)) *\<^sub>R (x - b))"
path_component (- ?S) ?a ?b \<Longrightarrow> homotopic_with_canon (\<lambda>x. True) ?S (sphere (0:: ?'a) 1) (\<lambda>x. (x - ?a) /\<^sub>R norm (x - ?a)) (\<lambda>x. (x - ?b) /\<^sub>R norm (x - ?b))
?H1 (?H2 x_1) x_2 x_3 \<Longrightarrow> ?H3 (\<lambda>y_0. True) x_1 (?H4 ?H5 ?H6) (\<lambda>y_1. ?H7 (?H8 y_1 x_2) (?H9 (?H8 y_1 x_2))) (\<lambda>y_2. ?H7 (?H8 y_2 x_3) (?H9 (?H8 y_2 x_3)))
[ "Real_Vector_Spaces.norm_class.norm", "Groups.minus_class.minus", "Real_Vector_Spaces.scaleR_class.divideR", "Groups.one_class.one", "Groups.zero_class.zero", "Elementary_Metric_Spaces.sphere", "Homotopy.homotopic_with_canon", "Groups.uminus_class.uminus", "Path_Connected.path_component" ]
[ "'a \\<Rightarrow> real", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a \\<Rightarrow> real \\<Rightarrow> 'a", "'a", "'a", "'a \\<Rightarrow> real \\<Rightarrow> 'a set", "(('a \\<Rightarrow> 'b) \\<Rightarrow> bool) \\<Rightarrow> 'a set \\<Rightarrow> 'b set \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> bool", "'a \\<Rightarrow> 'a", "'a set \\<Rightarrow> 'a \\<Rightarrow> 'a \\<Rightarrow> bool" ]
[ "class norm =\n fixes norm :: \"'a \\<Rightarrow> real\"", "class minus =\n fixes minus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"-\" 65)", "class scaleR =\n fixes scaleR :: \"real \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixr \"*\\<^sub>R\" 75)\nbegin", "class one =\n fixes one :: 'a (\"1\")", "class zero =\n fixes zero :: 'a (\"0\")", "abbreviation homotopic_with_canon ::\n \"[('a::topological_space \\<Rightarrow> 'b::topological_space) \\<Rightarrow> bool, 'a set, 'b set, 'a \\<Rightarrow> 'b, 'a \\<Rightarrow> 'b] \\<Rightarrow> bool\"\nwhere\n \"homotopic_with_canon P S T p q \\<equiv> homotopic_with P (top_of_set S) (top_of_set T) p q\"", "class uminus =\n fixes uminus :: \"'a \\<Rightarrow> 'a\" (\"- _\" [81] 80)" ]
template
###lemma path_component (- ?S) ?a ?b \<Longrightarrow> homotopic_with_canon (\<lambda>x. True) ?S (sphere (0:: ?'a) 1) (\<lambda>x. (x - ?a) /\<^sub>R norm (x - ?a)) (\<lambda>x. (x - ?b) /\<^sub>R norm (x - ?b)) ###symbols Real_Vector_Spaces.norm_class.norm :::: 'a \<Rightarrow> real Groups.minus_class.minus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Real_Vector_Spaces.scaleR_class.divideR :::: 'a \<Rightarrow> real \<Rightarrow> 'a Groups.one_class.one :::: 'a Groups.zero_class.zero :::: 'a Elementary_Metric_Spaces.sphere :::: 'a \<Rightarrow> real \<Rightarrow> 'a set Homotopy.homotopic_with_canon :::: (('a \<Rightarrow> 'b) \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool Groups.uminus_class.uminus :::: 'a \<Rightarrow> 'a Path_Connected.path_component :::: 'a set \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool ###defs class norm = fixes norm :: "'a \<Rightarrow> real" class minus = fixes minus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "-" 65) class scaleR = fixes scaleR :: "real \<Rightarrow> 'a \<Rightarrow> 'a" (infixr "*\<^sub>R" 75) begin class one = fixes one :: 'a ("1") class zero = fixes zero :: 'a ("0") abbreviation homotopic_with_canon :: "[('a::topological_space \<Rightarrow> 'b::topological_space) \<Rightarrow> bool, 'a set, 'b set, 'a \<Rightarrow> 'b, 'a \<Rightarrow> 'b] \<Rightarrow> bool" where "homotopic_with_canon P S T p q \<equiv> homotopic_with P (top_of_set S) (top_of_set T) p q" class uminus = fixes uminus :: "'a \<Rightarrow> 'a" ("- _" [81] 80)
###output ?H1 (?H2 x_1) x_2 x_3 \<Longrightarrow> ?H3 (\<lambda>y_0. True) x_1 (?H4 ?H5 ?H6) (\<lambda>y_1. ?H7 (?H8 y_1 x_2) (?H9 (?H8 y_1 x_2))) (\<lambda>y_2. ?H7 (?H8 y_2 x_3) (?H9 (?H8 y_2 x_3)))###end
Probability/Probability
Probability_Mass_Function.set_return_pmf
null
set_pmf (return_pmf ?x) = { ?x}
?H1 (?H2 x_1) = ?H3 x_1 ?H4
[ "Set.empty", "Set.insert", "Probability_Mass_Function.return_pmf", "Probability_Mass_Function.set_pmf" ]
[ "'a set", "'a \\<Rightarrow> 'a set \\<Rightarrow> 'a set", "'a \\<Rightarrow> 'a pmf", "'a pmf \\<Rightarrow> 'a set" ]
[ "abbreviation empty :: \"'a set\" (\"{}\")\n where \"{} \\<equiv> bot\"", "definition insert :: \"'a \\<Rightarrow> 'a set \\<Rightarrow> 'a set\"\n where insert_compr: \"insert a B = {x. x = a \\<or> x \\<in> B}\"" ]
template
###lemma set_pmf (return_pmf ?x) = { ?x} ###symbols Set.empty :::: 'a set Set.insert :::: 'a \<Rightarrow> 'a set \<Rightarrow> 'a set Probability_Mass_Function.return_pmf :::: 'a \<Rightarrow> 'a pmf Probability_Mass_Function.set_pmf :::: 'a pmf \<Rightarrow> 'a set ###defs abbreviation empty :: "'a set" ("{}") where "{} \<equiv> bot" definition insert :: "'a \<Rightarrow> 'a set \<Rightarrow> 'a set" where insert_compr: "insert a B = {x. x = a \<or> x \<in> B}"
###output ?H1 (?H2 x_1) = ?H3 x_1 ?H4###end
Bali/State
State.obj_ty_obj_class
lemma obj_ty_obj_class: "G\<turnstile>obj_ty obj\<preceq> Class statC = G\<turnstile>obj_class obj \<preceq>\<^sub>C statC"
?G\<turnstile>obj_ty ?obj\<preceq>Class ?statC = ?G\<turnstile>obj_class ?obj\<preceq>\<^sub>C ?statC
?H1 x_1 (?H2 x_2) (?H3 x_3) = ?H4 x_1 (?H5 x_2) x_3
[ "State.obj_class", "Decl.subclseq_syntax", "Type.Class", "State.obj_ty", "TypeRel.widen" ]
[ "obj \\<Rightarrow> qtname", "prog \\<Rightarrow> qtname \\<Rightarrow> qtname \\<Rightarrow> bool", "qtname \\<Rightarrow> ty", "obj \\<Rightarrow> ty", "prog \\<Rightarrow> ty \\<Rightarrow> ty \\<Rightarrow> bool" ]
[ "definition\n obj_class :: \"obj \\<Rightarrow> qtname\" where\n \"obj_class obj = (case tag obj of \n CInst C \\<Rightarrow> C \n | Arr T k \\<Rightarrow> Object)\"", "abbreviation\n subclseq_syntax :: \"prog => [qtname, qtname] => bool\" (\"_\\<turnstile>_\\<preceq>\\<^sub>C _\" [71,71,71] 70) \n where \"G\\<turnstile>C \\<preceq>\\<^sub>C D == (C,D) \\<in>(subcls1 G)\\<^sup>*\"", "abbreviation \"Class C == RefT (ClassT C)\"", "definition\n obj_ty :: \"obj \\<Rightarrow> ty\" where\n \"obj_ty obj = (case tag obj of \n CInst C \\<Rightarrow> Class C \n | Arr T k \\<Rightarrow> T.[])\"", "inductive\n widen :: \"ty => ty => bool\" (\"_ \\<preceq> _\" [71,71] 70)\nwhere\n refl [intro!, simp]: \"T \\<preceq> T\"\n| subcls: \"C\\<preceq>C D \\<Longrightarrow> Class C \\<preceq> Class D\"\n| null [intro!]: \"NT \\<preceq> R\"" ]
template
###lemma ?G\<turnstile>obj_ty ?obj\<preceq>Class ?statC = ?G\<turnstile>obj_class ?obj\<preceq>\<^sub>C ?statC ###symbols State.obj_class :::: obj \<Rightarrow> qtname Decl.subclseq_syntax :::: prog \<Rightarrow> qtname \<Rightarrow> qtname \<Rightarrow> bool Type.Class :::: qtname \<Rightarrow> ty State.obj_ty :::: obj \<Rightarrow> ty TypeRel.widen :::: prog \<Rightarrow> ty \<Rightarrow> ty \<Rightarrow> bool ###defs definition obj_class :: "obj \<Rightarrow> qtname" where "obj_class obj = (case tag obj of CInst C \<Rightarrow> C | Arr T k \<Rightarrow> Object)" abbreviation subclseq_syntax :: "prog => [qtname, qtname] => bool" ("_\<turnstile>_\<preceq>\<^sub>C _" [71,71,71] 70) where "G\<turnstile>C \<preceq>\<^sub>C D == (C,D) \<in>(subcls1 G)\<^sup>*" abbreviation "Class C == RefT (ClassT C)" definition obj_ty :: "obj \<Rightarrow> ty" where "obj_ty obj = (case tag obj of CInst C \<Rightarrow> Class C | Arr T k \<Rightarrow> T.[])" inductive widen :: "ty => ty => bool" ("_ \<preceq> _" [71,71] 70) where refl [intro!, simp]: "T \<preceq> T" | subcls: "C\<preceq>C D \<Longrightarrow> Class C \<preceq> Class D" | null [intro!]: "NT \<preceq> R"
###output ?H1 x_1 (?H2 x_2) (?H3 x_3) = ?H4 x_1 (?H5 x_2) x_3###end
Metis_Examples/Message
Message.analz_insert_eq_I
null
(\<And>x. x \<in> analz (insert ?X ?H) \<Longrightarrow> x \<in> insert ?X (analz ?H)) \<Longrightarrow> analz (insert ?X ?H) = insert ?X (analz ?H)
(\<And>y_0. y_0 \<in> ?H1 (?H2 x_1 x_2) \<Longrightarrow> y_0 \<in> ?H2 x_1 (?H1 x_2)) \<Longrightarrow> ?H1 (?H2 x_1 x_2) = ?H2 x_1 (?H1 x_2)
[ "Set.insert", "Message.analz" ]
[ "'a \\<Rightarrow> 'a set \\<Rightarrow> 'a set", "msg set \\<Rightarrow> msg set" ]
[ "definition insert :: \"'a \\<Rightarrow> 'a set \\<Rightarrow> 'a set\"\n where insert_compr: \"insert a B = {x. x = a \\<or> x \\<in> B}\"", "inductive_set\n analz :: \"msg set \\<Rightarrow> msg set\"\n for H :: \"msg set\"\n where\n Inj [intro,simp]: \"X \\<in> H \\<Longrightarrow> X \\<in> analz H\"\n | Fst: \"\\<lbrace>X,Y\\<rbrace> \\<in> analz H \\<Longrightarrow> X \\<in> analz H\"\n | Snd: \"\\<lbrace>X,Y\\<rbrace> \\<in> analz H \\<Longrightarrow> Y \\<in> analz H\"\n | Decrypt [dest]: \n \"\\<lbrakk>Crypt K X \\<in> analz H; Key(invKey K) \\<in> analz H\\<rbrakk> \\<Longrightarrow> X \\<in> analz H\"" ]
template
###lemma (\<And>x. x \<in> analz (insert ?X ?H) \<Longrightarrow> x \<in> insert ?X (analz ?H)) \<Longrightarrow> analz (insert ?X ?H) = insert ?X (analz ?H) ###symbols Set.insert :::: 'a \<Rightarrow> 'a set \<Rightarrow> 'a set Message.analz :::: msg set \<Rightarrow> msg set ###defs definition insert :: "'a \<Rightarrow> 'a set \<Rightarrow> 'a set" where insert_compr: "insert a B = {x. x = a \<or> x \<in> B}" inductive_set analz :: "msg set \<Rightarrow> msg set" for H :: "msg set" where Inj [intro,simp]: "X \<in> H \<Longrightarrow> X \<in> analz H" | Fst: "\<lbrace>X,Y\<rbrace> \<in> analz H \<Longrightarrow> X \<in> analz H" | Snd: "\<lbrace>X,Y\<rbrace> \<in> analz H \<Longrightarrow> Y \<in> analz H" | Decrypt [dest]: "\<lbrakk>Crypt K X \<in> analz H; Key(invKey K) \<in> analz H\<rbrakk> \<Longrightarrow> X \<in> analz H"
###output (\<And>y_0. y_0 \<in> ?H1 (?H2 x_1 x_2) \<Longrightarrow> y_0 \<in> ?H2 x_1 (?H1 x_2)) \<Longrightarrow> ?H1 (?H2 x_1 x_2) = ?H2 x_1 (?H1 x_2)###end
Real
Real.le_nat_floor
lemma le_nat_floor: "real x \<le> a \<Longrightarrow> x \<le> nat \<lfloor>a\<rfloor>"
real ?x \<le> ?a \<Longrightarrow> ?x \<le> nat \<lfloor> ?a\<rfloor>
?H1 x_1 \<le> x_2 \<Longrightarrow> x_1 \<le> ?H2 (?H3 x_2)
[ "Archimedean_Field.floor_ceiling_class.floor", "Int.nat", "Real.real" ]
[ "'a \\<Rightarrow> int", "int \\<Rightarrow> nat", "nat \\<Rightarrow> real" ]
[ "class floor_ceiling = archimedean_field +\n fixes floor :: \"'a \\<Rightarrow> int\" (\"\\<lfloor>_\\<rfloor>\")\n assumes floor_correct: \"of_int \\<lfloor>x\\<rfloor> \\<le> x \\<and> x < of_int (\\<lfloor>x\\<rfloor> + 1)\"", "abbreviation real :: \"nat \\<Rightarrow> real\"\n where \"real \\<equiv> of_nat\"" ]
template
###lemma real ?x \<le> ?a \<Longrightarrow> ?x \<le> nat \<lfloor> ?a\<rfloor> ###symbols Archimedean_Field.floor_ceiling_class.floor :::: 'a \<Rightarrow> int Int.nat :::: int \<Rightarrow> nat Real.real :::: nat \<Rightarrow> real ###defs class floor_ceiling = archimedean_field + fixes floor :: "'a \<Rightarrow> int" ("\<lfloor>_\<rfloor>") assumes floor_correct: "of_int \<lfloor>x\<rfloor> \<le> x \<and> x < of_int (\<lfloor>x\<rfloor> + 1)" abbreviation real :: "nat \<Rightarrow> real" where "real \<equiv> of_nat"
###output ?H1 x_1 \<le> x_2 \<Longrightarrow> x_1 \<le> ?H2 (?H3 x_2)###end
Probability/Hoeffding
Hoeffding.prob_neg_binomial_pmf_abs_ge_bound
lemma prob_neg_binomial_pmf_abs_ge_bound: fixes n :: nat and k :: real defines "\<mu> \<equiv> real n * q / p" assumes "k \<ge> 0" and n_ge: "n \<ge> p * k * (p\<^sup>2 * k + 1)" shows "measure_pmf.prob (neg_binomial_pmf n p) {x. \<bar>real x - \<mu>\<bar> \<ge> k} \<le> 2 * exp (-2 * p ^ 3 * k ^ 2 / n)"
?p \<in> {0<..<1} \<Longrightarrow> 0 \<le> ?k \<Longrightarrow> ?p * ?k * (?p\<^sup>2 * ?k + 1) \<le> real ?n \<Longrightarrow> measure_pmf.prob (neg_binomial_pmf ?n ?p) {x. ?k \<le> \<bar>real x - real ?n * (1 - ?p) / ?p\<bar>} \<le> 2 * exp (- 2 * ?p ^ 3 * ?k\<^sup>2 / real ?n)
\<lbrakk>x_1 \<in> ?H1 ?H2 ?H3; ?H2 \<le> x_2; ?H4 (?H4 x_1 x_2) (?H5 (?H4 (?H6 x_1) x_2) ?H3) \<le> ?H7 x_3\<rbrakk> \<Longrightarrow> ?H8 (?H9 x_3 x_1) (?H10 (\<lambda>y_0. x_2 \<le> ?H11 (?H12 (?H7 y_0) (?H13 (?H4 (?H7 x_3) (?H12 ?H3 x_1)) x_1)))) \<le> ?H4 (?H14 (?H15 ?H16)) (?H17 (?H13 (?H4 (?H4 (?H18 (?H14 (?H15 ?H16))) (?H19 x_1 (?H14 (?H20 ?H16)))) (?H6 x_2)) (?H7 x_3)))
[ "Num.num.Bit1", "Power.power_class.power", "Groups.uminus_class.uminus", "Transcendental.exp", "Num.num.One", "Num.num.Bit0", "Num.numeral_class.numeral", "Fields.inverse_class.inverse_divide", "Groups.minus_class.minus", "Groups.abs_class.abs", "Set.Collect", "Probability_Mass_Function.neg_binomial_pmf", "Probability_Mass_Function.measure_pmf.prob", "Real.real", "Power.power_class.power2", "Groups.plus_class.plus", "Groups.times_class.times", "Groups.one_class.one", "Groups.zero_class.zero", "Set_Interval.ord_class.greaterThanLessThan" ]
[ "num \\<Rightarrow> num", "'a \\<Rightarrow> nat \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a", "num", "num \\<Rightarrow> num", "num \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a", "('a \\<Rightarrow> bool) \\<Rightarrow> 'a set", "nat \\<Rightarrow> real \\<Rightarrow> nat pmf", "'a pmf \\<Rightarrow> 'a set \\<Rightarrow> real", "nat \\<Rightarrow> real", "'a \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a", "'a", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a set" ]
[ "datatype num = One | Bit0 num | Bit1 num", "primrec power :: \"'a \\<Rightarrow> nat \\<Rightarrow> 'a\" (infixr \"^\" 80)\n where\n power_0: \"a ^ 0 = 1\"\n | power_Suc: \"a ^ Suc n = a * a ^ n\"", "class uminus =\n fixes uminus :: \"'a \\<Rightarrow> 'a\" (\"- _\" [81] 80)", "definition exp :: \"'a \\<Rightarrow> 'a::{real_normed_algebra_1,banach}\"\n where \"exp = (\\<lambda>x. \\<Sum>n. x^n /\\<^sub>R fact n)\"", "datatype num = One | Bit0 num | Bit1 num", "datatype num = One | Bit0 num | Bit1 num", "primrec numeral :: \"num \\<Rightarrow> 'a\"\n where\n numeral_One: \"numeral One = 1\"\n | numeral_Bit0: \"numeral (Bit0 n) = numeral n + numeral n\"\n | numeral_Bit1: \"numeral (Bit1 n) = numeral n + numeral n + 1\"", "class inverse = divide +\n fixes inverse :: \"'a \\<Rightarrow> 'a\"\nbegin", "class minus =\n fixes minus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"-\" 65)", "class abs =\n fixes abs :: \"'a \\<Rightarrow> 'a\" (\"\\<bar>_\\<bar>\")", "primrec neg_binomial_pmf :: \"nat \\<Rightarrow> real \\<Rightarrow> nat pmf\" where\n \"neg_binomial_pmf 0 p = return_pmf 0\"\n| \"neg_binomial_pmf (Suc n) p =\n map_pmf (\\<lambda>(x,y). (x + y)) (pair_pmf (geometric_pmf p) (neg_binomial_pmf n p))\"", "abbreviation real :: \"nat \\<Rightarrow> real\"\n where \"real \\<equiv> of_nat\"", "primrec power :: \"'a \\<Rightarrow> nat \\<Rightarrow> 'a\" (infixr \"^\" 80)\n where\n power_0: \"a ^ 0 = 1\"\n | power_Suc: \"a ^ Suc n = a * a ^ n\"", "class plus =\n fixes plus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"+\" 65)", "class times =\n fixes times :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"*\" 70)", "class one =\n fixes one :: 'a (\"1\")", "class zero =\n fixes zero :: 'a (\"0\")" ]
template
###lemma ?p \<in> {0<..<1} \<Longrightarrow> 0 \<le> ?k \<Longrightarrow> ?p * ?k * (?p\<^sup>2 * ?k + 1) \<le> real ?n \<Longrightarrow> measure_pmf.prob (neg_binomial_pmf ?n ?p) {x. ?k \<le> \<bar>real x - real ?n * (1 - ?p) / ?p\<bar>} \<le> 2 * exp (- 2 * ?p ^ 3 * ?k\<^sup>2 / real ?n) ###symbols Num.num.Bit1 :::: num \<Rightarrow> num Power.power_class.power :::: 'a \<Rightarrow> nat \<Rightarrow> 'a Groups.uminus_class.uminus :::: 'a \<Rightarrow> 'a Transcendental.exp :::: 'a \<Rightarrow> 'a Num.num.One :::: num Num.num.Bit0 :::: num \<Rightarrow> num Num.numeral_class.numeral :::: num \<Rightarrow> 'a Fields.inverse_class.inverse_divide :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Groups.minus_class.minus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Groups.abs_class.abs :::: 'a \<Rightarrow> 'a Set.Collect :::: ('a \<Rightarrow> bool) \<Rightarrow> 'a set Probability_Mass_Function.neg_binomial_pmf :::: nat \<Rightarrow> real \<Rightarrow> nat pmf Probability_Mass_Function.measure_pmf.prob :::: 'a pmf \<Rightarrow> 'a set \<Rightarrow> real Real.real :::: nat \<Rightarrow> real Power.power_class.power2 :::: 'a \<Rightarrow> 'a Groups.plus_class.plus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Groups.times_class.times :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Groups.one_class.one :::: 'a Groups.zero_class.zero :::: 'a Set_Interval.ord_class.greaterThanLessThan :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a set ###defs datatype num = One | Bit0 num | Bit1 num primrec power :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infixr "^" 80) where power_0: "a ^ 0 = 1" | power_Suc: "a ^ Suc n = a * a ^ n" class uminus = fixes uminus :: "'a \<Rightarrow> 'a" ("- _" [81] 80) definition exp :: "'a \<Rightarrow> 'a::{real_normed_algebra_1,banach}" where "exp = (\<lambda>x. \<Sum>n. x^n /\<^sub>R fact n)" datatype num = One | Bit0 num | Bit1 num datatype num = One | Bit0 num | Bit1 num primrec numeral :: "num \<Rightarrow> 'a" where numeral_One: "numeral One = 1" | numeral_Bit0: "numeral (Bit0 n) = numeral n + numeral n" | numeral_Bit1: "numeral (Bit1 n) = numeral n + numeral n + 1" class inverse = divide + fixes inverse :: "'a \<Rightarrow> 'a" begin class minus = fixes minus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "-" 65) class abs = fixes abs :: "'a \<Rightarrow> 'a" ("\<bar>_\<bar>") primrec neg_binomial_pmf :: "nat \<Rightarrow> real \<Rightarrow> nat pmf" where "neg_binomial_pmf 0 p = return_pmf 0" | "neg_binomial_pmf (Suc n) p = map_pmf (\<lambda>(x,y). (x + y)) (pair_pmf (geometric_pmf p) (neg_binomial_pmf n p))" abbreviation real :: "nat \<Rightarrow> real" where "real \<equiv> of_nat" primrec power :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infixr "^" 80) where power_0: "a ^ 0 = 1" | power_Suc: "a ^ Suc n = a * a ^ n" class plus = fixes plus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "+" 65) class times = fixes times :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "*" 70) class one = fixes one :: 'a ("1") class zero = fixes zero :: 'a ("0")
###output \<lbrakk>x_1 \<in> ?H1 ?H2 ?H3; ?H2 \<le> x_2; ?H4 (?H4 x_1 x_2) (?H5 (?H4 (?H6 x_1) x_2) ?H3) \<le> ?H7 x_3\<rbrakk> \<Longrightarrow> ?H8 (?H9 x_3 x_1) (?H10 (\<lambda>y_0. x_2 \<le> ?H11 (?H12 (?H7 y_0) (?H13 (?H4 (?H7 x_3) (?H12 ?H3 x_1)) x_1)))) \<le> ?H4 (?H14 (?H15 ?H16)) (?H17 (?H13 (?H4 (?H4 (?H18 (?H14 (?H15 ?H16))) (?H19 x_1 (?H14 (?H20 ?H16)))) (?H6 x_2)) (?H7 x_3)))###end
Complex
Complex.sgn_eq
lemma sgn_eq: "sgn z = z / complex_of_real (cmod z)"
sgn ?z = ?z / complex_of_real (cmod ?z)
?H1 x_1 = ?H2 x_1 (?H3 (?H4 x_1))
[ "Complex.cmod", "Complex.complex_of_real", "Fields.inverse_class.inverse_divide", "Groups.sgn_class.sgn" ]
[ "complex \\<Rightarrow> real", "real \\<Rightarrow> complex", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a" ]
[ "abbreviation cmod :: \"complex \\<Rightarrow> real\"\n where \"cmod \\<equiv> norm\"", "abbreviation complex_of_real :: \"real \\<Rightarrow> complex\"\n where \"complex_of_real \\<equiv> of_real\"", "class inverse = divide +\n fixes inverse :: \"'a \\<Rightarrow> 'a\"\nbegin", "class sgn =\n fixes sgn :: \"'a \\<Rightarrow> 'a\"" ]
template
###lemma sgn ?z = ?z / complex_of_real (cmod ?z) ###symbols Complex.cmod :::: complex \<Rightarrow> real Complex.complex_of_real :::: real \<Rightarrow> complex Fields.inverse_class.inverse_divide :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Groups.sgn_class.sgn :::: 'a \<Rightarrow> 'a ###defs abbreviation cmod :: "complex \<Rightarrow> real" where "cmod \<equiv> norm" abbreviation complex_of_real :: "real \<Rightarrow> complex" where "complex_of_real \<equiv> of_real" class inverse = divide + fixes inverse :: "'a \<Rightarrow> 'a" begin class sgn = fixes sgn :: "'a \<Rightarrow> 'a"
###output ?H1 x_1 = ?H2 x_1 (?H3 (?H4 x_1))###end
Analysis/Retracts
Retracts.nullhomotopic_into_rel_frontier_extension
null
closed ?S \<Longrightarrow> continuous_on ?S ?f \<Longrightarrow> convex ?T \<Longrightarrow> bounded ?T \<Longrightarrow> ?f ` ?S \<subseteq> rel_frontier ?T \<Longrightarrow> ?S \<noteq> {} \<Longrightarrow> (\<exists>c. homotopic_with_canon (\<lambda>x. True) ?S (rel_frontier ?T) ?f (\<lambda>x. c)) = (\<exists>g. continuous_on UNIV g \<and> range g \<subseteq> rel_frontier ?T \<and> (\<forall>x\<in> ?S. g x = ?f x))
\<lbrakk> ?H1 x_1; ?H2 x_1 x_2; ?H3 x_3; ?H4 x_3; ?H5 (?H6 x_2 x_1) (?H7 x_3); x_1 \<noteq> ?H8\<rbrakk> \<Longrightarrow> (\<exists>y_0. ?H9 (\<lambda>y_1. True) x_1 (?H7 x_3) x_2 (\<lambda>y_2. y_0)) = (\<exists>y_3. ?H2 ?H10 y_3 \<and> ?H5 (?H11 y_3) (?H7 x_3) \<and> (\<forall>y_4\<in>x_1. y_3 y_4 = x_2 y_4))
[ "Set.range", "Set.UNIV", "Homotopy.homotopic_with_canon", "Set.empty", "Starlike.rel_frontier", "Set.image", "Set.subset_eq", "Elementary_Metric_Spaces.metric_space_class.bounded", "Convex.convex", "Topological_Spaces.continuous_on", "Topological_Spaces.topological_space_class.closed" ]
[ "('a \\<Rightarrow> 'b) \\<Rightarrow> 'b set", "'a set", "(('a \\<Rightarrow> 'b) \\<Rightarrow> bool) \\<Rightarrow> 'a set \\<Rightarrow> 'b set \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> bool", "'a set", "'a set \\<Rightarrow> 'a set", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set", "'a set \\<Rightarrow> 'a set \\<Rightarrow> bool", "'a set \\<Rightarrow> bool", "'a set \\<Rightarrow> bool", "'a set \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> bool", "'a set \\<Rightarrow> bool" ]
[ "abbreviation range :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'b set\" \\<comment> \\<open>of function\\<close>\n where \"range f \\<equiv> f ` UNIV\"", "abbreviation UNIV :: \"'a set\"\n where \"UNIV \\<equiv> top\"", "abbreviation homotopic_with_canon ::\n \"[('a::topological_space \\<Rightarrow> 'b::topological_space) \\<Rightarrow> bool, 'a set, 'b set, 'a \\<Rightarrow> 'b, 'a \\<Rightarrow> 'b] \\<Rightarrow> bool\"\nwhere\n \"homotopic_with_canon P S T p q \\<equiv> homotopic_with P (top_of_set S) (top_of_set T) p q\"", "abbreviation empty :: \"'a set\" (\"{}\")\n where \"{} \\<equiv> bot\"", "definition image :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set\" (infixr \"`\" 90)\n where \"f ` A = {y. \\<exists>x\\<in>A. y = f x}\"", "abbreviation subset_eq :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> bool\"\n where \"subset_eq \\<equiv> less_eq\"", "definition continuous_on :: \"'a set \\<Rightarrow> ('a::topological_space \\<Rightarrow> 'b::topological_space) \\<Rightarrow> bool\"\n where \"continuous_on s f \\<longleftrightarrow> (\\<forall>x\\<in>s. (f \\<longlongrightarrow> f x) (at x within s))\"", "class topological_space = \"open\" +\n assumes open_UNIV [simp, intro]: \"open UNIV\"\n assumes open_Int [intro]: \"open S \\<Longrightarrow> open T \\<Longrightarrow> open (S \\<inter> T)\"\n assumes open_Union [intro]: \"\\<forall>S\\<in>K. open S \\<Longrightarrow> open (\\<Union>K)\"\nbegin" ]
template
###lemma closed ?S \<Longrightarrow> continuous_on ?S ?f \<Longrightarrow> convex ?T \<Longrightarrow> bounded ?T \<Longrightarrow> ?f ` ?S \<subseteq> rel_frontier ?T \<Longrightarrow> ?S \<noteq> {} \<Longrightarrow> (\<exists>c. homotopic_with_canon (\<lambda>x. True) ?S (rel_frontier ?T) ?f (\<lambda>x. c)) = (\<exists>g. continuous_on UNIV g \<and> range g \<subseteq> rel_frontier ?T \<and> (\<forall>x\<in> ?S. g x = ?f x)) ###symbols Set.range :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'b set Set.UNIV :::: 'a set Homotopy.homotopic_with_canon :::: (('a \<Rightarrow> 'b) \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool Set.empty :::: 'a set Starlike.rel_frontier :::: 'a set \<Rightarrow> 'a set Set.image :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set Set.subset_eq :::: 'a set \<Rightarrow> 'a set \<Rightarrow> bool Elementary_Metric_Spaces.metric_space_class.bounded :::: 'a set \<Rightarrow> bool Convex.convex :::: 'a set \<Rightarrow> bool Topological_Spaces.continuous_on :::: 'a set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool Topological_Spaces.topological_space_class.closed :::: 'a set \<Rightarrow> bool ###defs abbreviation range :: "('a \<Rightarrow> 'b) \<Rightarrow> 'b set" \<comment> \<open>of function\<close> where "range f \<equiv> f ` UNIV" abbreviation UNIV :: "'a set" where "UNIV \<equiv> top" abbreviation homotopic_with_canon :: "[('a::topological_space \<Rightarrow> 'b::topological_space) \<Rightarrow> bool, 'a set, 'b set, 'a \<Rightarrow> 'b, 'a \<Rightarrow> 'b] \<Rightarrow> bool" where "homotopic_with_canon P S T p q \<equiv> homotopic_with P (top_of_set S) (top_of_set T) p q" abbreviation empty :: "'a set" ("{}") where "{} \<equiv> bot" definition image :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set" (infixr "`" 90) where "f ` A = {y. \<exists>x\<in>A. y = f x}" abbreviation subset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where "subset_eq \<equiv> less_eq" definition continuous_on :: "'a set \<Rightarrow> ('a::topological_space \<Rightarrow> 'b::topological_space) \<Rightarrow> bool" where "continuous_on s f \<longleftrightarrow> (\<forall>x\<in>s. (f \<longlongrightarrow> f x) (at x within s))" class topological_space = "open" + assumes open_UNIV [simp, intro]: "open UNIV" assumes open_Int [intro]: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<inter> T)" assumes open_Union [intro]: "\<forall>S\<in>K. open S \<Longrightarrow> open (\<Union>K)" begin
###output \<lbrakk> ?H1 x_1; ?H2 x_1 x_2; ?H3 x_3; ?H4 x_3; ?H5 (?H6 x_2 x_1) (?H7 x_3); x_1 \<noteq> ?H8\<rbrakk> \<Longrightarrow> (\<exists>y_0. ?H9 (\<lambda>y_1. True) x_1 (?H7 x_3) x_2 (\<lambda>y_2. y_0)) = (\<exists>y_3. ?H2 ?H10 y_3 \<and> ?H5 (?H11 y_3) (?H7 x_3) \<and> (\<forall>y_4\<in>x_1. y_3 y_4 = x_2 y_4))###end
Decision_Procs/Parametric_Ferrante_Rackoff
Parametric_Ferrante_Rackoff.disj_nb
lemma disj_nb[simp]: "bound n p \<Longrightarrow> bound n q \<Longrightarrow> bound n (disj p q)"
bound ?n ?p \<Longrightarrow> bound ?n ?q \<Longrightarrow> bound ?n (Parametric_Ferrante_Rackoff.disj ?p ?q)
\<lbrakk> ?H1 x_1 x_2; ?H1 x_1 x_3\<rbrakk> \<Longrightarrow> ?H1 x_1 (?H2 x_2 x_3)
[ "Parametric_Ferrante_Rackoff.disj", "Parametric_Ferrante_Rackoff.bound" ]
[ "fm \\<Rightarrow> fm \\<Rightarrow> fm", "nat \\<Rightarrow> fm \\<Rightarrow> bool" ]
[ "definition disj :: \"fm \\<Rightarrow> fm \\<Rightarrow> fm\"\n where \"disj p q \\<equiv>\n (if (p = T \\<or> q = T) then T\n else if p = F then q\n else if q = F then p\n else if p = q then p\n else Or p q)\"", "primrec bound:: \"nat \\<Rightarrow> fm \\<Rightarrow> bool\" \\<comment> \\<open>a formula is independent of Bound n\\<close>\n where\n \"bound m T = True\"\n | \"bound m F = True\"\n | \"bound m (Lt t) = tmbound m t\"\n | \"bound m (Le t) = tmbound m t\"\n | \"bound m (Eq t) = tmbound m t\"\n | \"bound m (NEq t) = tmbound m t\"\n | \"bound m (Not p) = bound m p\"\n | \"bound m (And p q) = (bound m p \\<and> bound m q)\"\n | \"bound m (Or p q) = (bound m p \\<and> bound m q)\"\n | \"bound m (Imp p q) = ((bound m p) \\<and> (bound m q))\"\n | \"bound m (Iff p q) = (bound m p \\<and> bound m q)\"\n | \"bound m (E p) = bound (Suc m) p\"\n | \"bound m (A p) = bound (Suc m) p\"" ]
template
###lemma bound ?n ?p \<Longrightarrow> bound ?n ?q \<Longrightarrow> bound ?n (Parametric_Ferrante_Rackoff.disj ?p ?q) ###symbols Parametric_Ferrante_Rackoff.disj :::: fm \<Rightarrow> fm \<Rightarrow> fm Parametric_Ferrante_Rackoff.bound :::: nat \<Rightarrow> fm \<Rightarrow> bool ###defs definition disj :: "fm \<Rightarrow> fm \<Rightarrow> fm" where "disj p q \<equiv> (if (p = T \<or> q = T) then T else if p = F then q else if q = F then p else if p = q then p else Or p q)" primrec bound:: "nat \<Rightarrow> fm \<Rightarrow> bool" \<comment> \<open>a formula is independent of Bound n\<close> where "bound m T = True" | "bound m F = True" | "bound m (Lt t) = tmbound m t" | "bound m (Le t) = tmbound m t" | "bound m (Eq t) = tmbound m t" | "bound m (NEq t) = tmbound m t" | "bound m (Not p) = bound m p" | "bound m (And p q) = (bound m p \<and> bound m q)" | "bound m (Or p q) = (bound m p \<and> bound m q)" | "bound m (Imp p q) = ((bound m p) \<and> (bound m q))" | "bound m (Iff p q) = (bound m p \<and> bound m q)" | "bound m (E p) = bound (Suc m) p" | "bound m (A p) = bound (Suc m) p"
###output \<lbrakk> ?H1 x_1 x_2; ?H1 x_1 x_3\<rbrakk> \<Longrightarrow> ?H1 x_1 (?H2 x_2 x_3)###end
Induct/SList
SList.ListI
lemma ListI: "x \<in> list (range Leaf) \<Longrightarrow> x \<in> List"
?x \<in> list (range Leaf) \<Longrightarrow> ?x \<in> List
x_1 \<in> ?H1 (?H2 ?H3) \<Longrightarrow> x_1 \<in> ?H4
[ "SList.List", "Sexp.Leaf", "Set.range", "SList.list" ]
[ "('a, unit) Old_Datatype.node set set", "'a \\<Rightarrow> ('a, 'b) Old_Datatype.node set", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'b set", "('a, unit) Old_Datatype.node set set \\<Rightarrow> ('a, unit) Old_Datatype.node set set" ]
[ "definition \"List = list (range Leaf)\"", "abbreviation \"Leaf == Old_Datatype.Leaf\"", "abbreviation range :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'b set\" \\<comment> \\<open>of function\\<close>\n where \"range f \\<equiv> f ` UNIV\"", "inductive_set\n list :: \"'a item set => 'a item set\"\n for A :: \"'a item set\"\n where\n NIL_I: \"NIL \\<in> list A\"\n | CONS_I: \"[| a \\<in> A; M \\<in> list A |] ==> CONS a M \\<in> list A\"" ]
template
###lemma ?x \<in> list (range Leaf) \<Longrightarrow> ?x \<in> List ###symbols SList.List :::: ('a, unit) Old_Datatype.node set set Sexp.Leaf :::: 'a \<Rightarrow> ('a, 'b) Old_Datatype.node set Set.range :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'b set SList.list :::: ('a, unit) Old_Datatype.node set set \<Rightarrow> ('a, unit) Old_Datatype.node set set ###defs definition "List = list (range Leaf)" abbreviation "Leaf == Old_Datatype.Leaf" abbreviation range :: "('a \<Rightarrow> 'b) \<Rightarrow> 'b set" \<comment> \<open>of function\<close> where "range f \<equiv> f ` UNIV" inductive_set list :: "'a item set => 'a item set" for A :: "'a item set" where NIL_I: "NIL \<in> list A" | CONS_I: "[| a \<in> A; M \<in> list A |] ==> CONS a M \<in> list A"
###output x_1 \<in> ?H1 (?H2 ?H3) \<Longrightarrow> x_1 \<in> ?H4###end
Auth/Smartcard/EventSC
EventSC.knows_subset_knows_A_Gets
lemma knows_subset_knows_A_Gets: "knows A evs \<subseteq> knows A (A_Gets A' X # evs)"
knows ?A ?evs \<subseteq> knows ?A (A_Gets ?A' ?X # ?evs)
?H1 (?H2 x_1 x_2) (?H2 x_1 (?H3 (?H4 x_3 x_4) x_2))
[ "EventSC.event.A_Gets", "List.list.Cons", "EventSC.knows", "Set.subset_eq" ]
[ "agent \\<Rightarrow> msg \\<Rightarrow> event", "'a \\<Rightarrow> 'a list \\<Rightarrow> 'a list", "agent \\<Rightarrow> event list \\<Rightarrow> msg set", "'a set \\<Rightarrow> 'a set \\<Rightarrow> bool" ]
[ "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "abbreviation subset_eq :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> bool\"\n where \"subset_eq \\<equiv> less_eq\"" ]
template
###lemma knows ?A ?evs \<subseteq> knows ?A (A_Gets ?A' ?X # ?evs) ###symbols EventSC.event.A_Gets :::: agent \<Rightarrow> msg \<Rightarrow> event List.list.Cons :::: 'a \<Rightarrow> 'a list \<Rightarrow> 'a list EventSC.knows :::: agent \<Rightarrow> event list \<Rightarrow> msg set Set.subset_eq :::: 'a set \<Rightarrow> 'a set \<Rightarrow> bool ###defs datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" abbreviation subset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where "subset_eq \<equiv> less_eq"
###output ?H1 (?H2 x_1 x_2) (?H2 x_1 (?H3 (?H4 x_3 x_4) x_2))###end
Complete_Lattices
Complete_Lattices.UN_iff
lemma UN_iff [simp]: "b \<in> (\<Union>x\<in>A. B x) \<longleftrightarrow> (\<exists>x\<in>A. b \<in> B x)"
(?b \<in> \<Union> (?B ` ?A)) = (\<exists>x\<in> ?A. ?b \<in> ?B x)
(x_1 \<in> ?H1 (?H2 x_2 x_3)) = (\<exists>y_1\<in>x_3. x_1 \<in> x_2 y_1)
[ "Set.image", "Complete_Lattices.Union" ]
[ "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set", "'a set set \\<Rightarrow> 'a set" ]
[ "definition image :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set\" (infixr \"`\" 90)\n where \"f ` A = {y. \\<exists>x\\<in>A. y = f x}\"", "abbreviation Union :: \"'a set set \\<Rightarrow> 'a set\" (\"\\<Union>\")\n where \"\\<Union>S \\<equiv> \\<Squnion>S\"" ]
template
###lemma (?b \<in> \<Union> (?B ` ?A)) = (\<exists>x\<in> ?A. ?b \<in> ?B x) ###symbols Set.image :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set Complete_Lattices.Union :::: 'a set set \<Rightarrow> 'a set ###defs definition image :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set" (infixr "`" 90) where "f ` A = {y. \<exists>x\<in>A. y = f x}" abbreviation Union :: "'a set set \<Rightarrow> 'a set" ("\<Union>") where "\<Union>S \<equiv> \<Squnion>S"
###output (x_1 \<in> ?H1 (?H2 x_2 x_3)) = (\<exists>y_1\<in>x_3. x_1 \<in> x_2 y_1)###end
HOLCF/Tr
Transfer.transfer_raw(200)
null
Transfer.Rel (rel_fun ?A (rel_fun (rel_fun (=) (rel_fun ?A ?A)) (rel_fun (=) ?A))) rec_nat rec_nat
?H1 (?H2 x_1 (?H2 (?H2 (=) (?H2 x_1 x_1)) (?H2 (=) x_1))) ?H3 ?H3
[ "Nat.rec_nat", "BNF_Def.rel_fun", "Transfer.Rel" ]
[ "'a \\<Rightarrow> (nat \\<Rightarrow> 'a \\<Rightarrow> 'a) \\<Rightarrow> nat \\<Rightarrow> 'a", "('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> ('c \\<Rightarrow> 'd \\<Rightarrow> bool) \\<Rightarrow> ('a \\<Rightarrow> 'c) \\<Rightarrow> ('b \\<Rightarrow> 'd) \\<Rightarrow> bool", "('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> 'a \\<Rightarrow> 'b \\<Rightarrow> bool" ]
[ "abbreviation rec_nat :: \"'a \\<Rightarrow> (nat \\<Rightarrow> 'a \\<Rightarrow> 'a) \\<Rightarrow> nat \\<Rightarrow> 'a\"\n where \"rec_nat \\<equiv> old.rec_nat\"", "definition\n rel_fun :: \"('a \\<Rightarrow> 'c \\<Rightarrow> bool) \\<Rightarrow> ('b \\<Rightarrow> 'd \\<Rightarrow> bool) \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> ('c \\<Rightarrow> 'd) \\<Rightarrow> bool\"\nwhere\n \"rel_fun A B = (\\<lambda>f g. \\<forall>x y. A x y \\<longrightarrow> B (f x) (g y))\"", "definition Rel :: \"('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> 'a \\<Rightarrow> 'b \\<Rightarrow> bool\"\n where \"Rel r \\<equiv> r\"" ]
template
###lemma Transfer.Rel (rel_fun ?A (rel_fun (rel_fun (=) (rel_fun ?A ?A)) (rel_fun (=) ?A))) rec_nat rec_nat ###symbols Nat.rec_nat :::: 'a \<Rightarrow> (nat \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> 'a BNF_Def.rel_fun :::: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('c \<Rightarrow> 'd \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'c) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> bool Transfer.Rel :::: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool ###defs abbreviation rec_nat :: "'a \<Rightarrow> (nat \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> 'a" where "rec_nat \<equiv> old.rec_nat" definition rel_fun :: "('a \<Rightarrow> 'c \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'd \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('c \<Rightarrow> 'd) \<Rightarrow> bool" where "rel_fun A B = (\<lambda>f g. \<forall>x y. A x y \<longrightarrow> B (f x) (g y))" definition Rel :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool" where "Rel r \<equiv> r"
###output ?H1 (?H2 x_1 (?H2 (?H2 (=) (?H2 x_1 x_1)) (?H2 (=) x_1))) ?H3 ?H3###end
Analysis/Convex_Euclidean_Space
Convex_Euclidean_Space.any_closest_point_dot
lemma any_closest_point_dot: assumes "convex S" "closed S" "x \<in> S" "y \<in> S" "\<forall>z\<in>S. dist a x \<le> dist a z" shows "inner (a - x) (y - x) \<le> 0"
convex ?S \<Longrightarrow> closed ?S \<Longrightarrow> ?x \<in> ?S \<Longrightarrow> ?y \<in> ?S \<Longrightarrow> \<forall>z\<in> ?S. dist ?a ?x \<le> dist ?a z \<Longrightarrow> (?a - ?x) \<bullet> (?y - ?x) \<le> 0
\<lbrakk> ?H1 x_1; ?H2 x_1; x_2 \<in> x_1; x_3 \<in> x_1; \<forall>y_0\<in>x_1. ?H3 x_4 x_2 \<le> ?H3 x_4 y_0\<rbrakk> \<Longrightarrow> ?H4 (?H5 x_4 x_2) (?H5 x_3 x_2) \<le> ?H6
[ "Groups.zero_class.zero", "Groups.minus_class.minus", "Inner_Product.real_inner_class.inner", "Real_Vector_Spaces.dist_class.dist", "Topological_Spaces.topological_space_class.closed", "Convex.convex" ]
[ "'a", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a \\<Rightarrow> real", "'a \\<Rightarrow> 'a \\<Rightarrow> real", "'a set \\<Rightarrow> bool", "'a set \\<Rightarrow> bool" ]
[ "class zero =\n fixes zero :: 'a (\"0\")", "class minus =\n fixes minus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"-\" 65)", "class real_inner = real_vector + sgn_div_norm + dist_norm + uniformity_dist + open_uniformity +\n fixes inner :: \"'a \\<Rightarrow> 'a \\<Rightarrow> real\"\n assumes inner_commute: \"inner x y = inner y x\"\n and inner_add_left: \"inner (x + y) z = inner x z + inner y z\"\n and inner_scaleR_left [simp]: \"inner (scaleR r x) y = r * (inner x y)\"\n and inner_ge_zero [simp]: \"0 \\<le> inner x x\"\n and inner_eq_zero_iff [simp]: \"inner x x = 0 \\<longleftrightarrow> x = 0\"\n and norm_eq_sqrt_inner: \"norm x = sqrt (inner x x)\"\nbegin", "class dist =\n fixes dist :: \"'a \\<Rightarrow> 'a \\<Rightarrow> real\"", "class topological_space = \"open\" +\n assumes open_UNIV [simp, intro]: \"open UNIV\"\n assumes open_Int [intro]: \"open S \\<Longrightarrow> open T \\<Longrightarrow> open (S \\<inter> T)\"\n assumes open_Union [intro]: \"\\<forall>S\\<in>K. open S \\<Longrightarrow> open (\\<Union>K)\"\nbegin" ]
template
###lemma convex ?S \<Longrightarrow> closed ?S \<Longrightarrow> ?x \<in> ?S \<Longrightarrow> ?y \<in> ?S \<Longrightarrow> \<forall>z\<in> ?S. dist ?a ?x \<le> dist ?a z \<Longrightarrow> (?a - ?x) \<bullet> (?y - ?x) \<le> 0 ###symbols Groups.zero_class.zero :::: 'a Groups.minus_class.minus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Inner_Product.real_inner_class.inner :::: 'a \<Rightarrow> 'a \<Rightarrow> real Real_Vector_Spaces.dist_class.dist :::: 'a \<Rightarrow> 'a \<Rightarrow> real Topological_Spaces.topological_space_class.closed :::: 'a set \<Rightarrow> bool Convex.convex :::: 'a set \<Rightarrow> bool ###defs class zero = fixes zero :: 'a ("0") class minus = fixes minus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "-" 65) class real_inner = real_vector + sgn_div_norm + dist_norm + uniformity_dist + open_uniformity + fixes inner :: "'a \<Rightarrow> 'a \<Rightarrow> real" assumes inner_commute: "inner x y = inner y x" and inner_add_left: "inner (x + y) z = inner x z + inner y z" and inner_scaleR_left [simp]: "inner (scaleR r x) y = r * (inner x y)" and inner_ge_zero [simp]: "0 \<le> inner x x" and inner_eq_zero_iff [simp]: "inner x x = 0 \<longleftrightarrow> x = 0" and norm_eq_sqrt_inner: "norm x = sqrt (inner x x)" begin class dist = fixes dist :: "'a \<Rightarrow> 'a \<Rightarrow> real" class topological_space = "open" + assumes open_UNIV [simp, intro]: "open UNIV" assumes open_Int [intro]: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<inter> T)" assumes open_Union [intro]: "\<forall>S\<in>K. open S \<Longrightarrow> open (\<Union>K)" begin
###output \<lbrakk> ?H1 x_1; ?H2 x_1; x_2 \<in> x_1; x_3 \<in> x_1; \<forall>y_0\<in>x_1. ?H3 x_4 x_2 \<le> ?H3 x_4 y_0\<rbrakk> \<Longrightarrow> ?H4 (?H5 x_4 x_2) (?H5 x_3 x_2) \<le> ?H6###end
Algebra/Coset
Coset.one_FactGroup
lemma one_FactGroup [simp]: "one(G Mod N) = N"
\<one>\<^bsub> ?G Mod ?N\<^esub> = ?N
?H1 (?H2 x_1 x_2) = x_2
[ "Coset.FactGroup", "Group.monoid.one" ]
[ "('a, 'b) monoid_scheme \\<Rightarrow> 'a set \\<Rightarrow> 'a set monoid", "('a, 'b) monoid_scheme \\<Rightarrow> 'a" ]
[ "definition\n FactGroup :: \"[('a,'b) monoid_scheme, 'a set] \\<Rightarrow> ('a set) monoid\" (infixl \"Mod\" 65)\n \\<comment> \\<open>Actually defined for groups rather than monoids\\<close>\n where \"FactGroup G H = \\<lparr>carrier = rcosets\\<^bsub>G\\<^esub> H, mult = set_mult G, one = H\\<rparr>\"", "class monoid = times + one +\n assumes monoid_assoc: \"(x * y) * z = x * (y * z)\"\n and monoid_left_one: \"1 * x = x\"\n and monoid_right_one: \"x * 1 = x\"" ]
template
###lemma \<one>\<^bsub> ?G Mod ?N\<^esub> = ?N ###symbols Coset.FactGroup :::: ('a, 'b) monoid_scheme \<Rightarrow> 'a set \<Rightarrow> 'a set monoid Group.monoid.one :::: ('a, 'b) monoid_scheme \<Rightarrow> 'a ###defs definition FactGroup :: "[('a,'b) monoid_scheme, 'a set] \<Rightarrow> ('a set) monoid" (infixl "Mod" 65) \<comment> \<open>Actually defined for groups rather than monoids\<close> where "FactGroup G H = \<lparr>carrier = rcosets\<^bsub>G\<^esub> H, mult = set_mult G, one = H\<rparr>" class monoid = times + one + assumes monoid_assoc: "(x * y) * z = x * (y * z)" and monoid_left_one: "1 * x = x" and monoid_right_one: "x * 1 = x"
###output ?H1 (?H2 x_1 x_2) = x_2###end
Equiv_Relations
Equiv_Relations.eq_equiv_class
lemma eq_equiv_class: "r``{a} = r``{b} \<Longrightarrow> equiv A r \<Longrightarrow> b \<in> A \<Longrightarrow> (a, b) \<in> r"
?r `` { ?a} = ?r `` { ?b} \<Longrightarrow> equiv ?A ?r \<Longrightarrow> ?b \<in> ?A \<Longrightarrow> (?a, ?b) \<in> ?r
\<lbrakk> ?H1 x_1 (?H2 x_2 ?H3) = ?H1 x_1 (?H2 x_3 ?H3); ?H4 x_4 x_1; x_3 \<in> x_4\<rbrakk> \<Longrightarrow> (x_2, x_3) \<in> x_1
[ "Equiv_Relations.equiv", "Set.empty", "Set.insert", "Relation.Image" ]
[ "'a set \\<Rightarrow> ('a \\<times> 'a) set \\<Rightarrow> bool", "'a set", "'a \\<Rightarrow> 'a set \\<Rightarrow> 'a set", "('a \\<times> 'b) set \\<Rightarrow> 'a set \\<Rightarrow> 'b set" ]
[ "definition equiv :: \"'a set \\<Rightarrow> ('a \\<times> 'a) set \\<Rightarrow> bool\"\n where \"equiv A r \\<longleftrightarrow> refl_on A r \\<and> sym r \\<and> trans r\"", "abbreviation empty :: \"'a set\" (\"{}\")\n where \"{} \\<equiv> bot\"", "definition insert :: \"'a \\<Rightarrow> 'a set \\<Rightarrow> 'a set\"\n where insert_compr: \"insert a B = {x. x = a \\<or> x \\<in> B}\"", "definition Image :: \"('a \\<times> 'b) set \\<Rightarrow> 'a set \\<Rightarrow> 'b set\" (infixr \"``\" 90)\n where \"r `` s = {y. \\<exists>x\\<in>s. (x, y) \\<in> r}\"" ]
template
###lemma ?r `` { ?a} = ?r `` { ?b} \<Longrightarrow> equiv ?A ?r \<Longrightarrow> ?b \<in> ?A \<Longrightarrow> (?a, ?b) \<in> ?r ###symbols Equiv_Relations.equiv :::: 'a set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> bool Set.empty :::: 'a set Set.insert :::: 'a \<Rightarrow> 'a set \<Rightarrow> 'a set Relation.Image :::: ('a \<times> 'b) set \<Rightarrow> 'a set \<Rightarrow> 'b set ###defs definition equiv :: "'a set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> bool" where "equiv A r \<longleftrightarrow> refl_on A r \<and> sym r \<and> trans r" abbreviation empty :: "'a set" ("{}") where "{} \<equiv> bot" definition insert :: "'a \<Rightarrow> 'a set \<Rightarrow> 'a set" where insert_compr: "insert a B = {x. x = a \<or> x \<in> B}" definition Image :: "('a \<times> 'b) set \<Rightarrow> 'a set \<Rightarrow> 'b set" (infixr "``" 90) where "r `` s = {y. \<exists>x\<in>s. (x, y) \<in> r}"
###output \<lbrakk> ?H1 x_1 (?H2 x_2 ?H3) = ?H1 x_1 (?H2 x_3 ?H3); ?H4 x_4 x_1; x_3 \<in> x_4\<rbrakk> \<Longrightarrow> (x_2, x_3) \<in> x_1###end
Series
Series.summable_norm_comparison_test
lemma summable_norm_comparison_test: "\<exists>N. \<forall>n\<ge>N. norm (f n) \<le> g n \<Longrightarrow> summable g \<Longrightarrow> summable (\<lambda>n. norm (f n))"
\<exists>N. \<forall>n\<ge>N. norm (?f n) \<le> ?g n \<Longrightarrow> summable ?g \<Longrightarrow> summable (\<lambda>n. norm (?f n))
\<lbrakk>\<exists>y_0. \<forall>y_1\<ge>y_0. ?H1 (x_1 y_1) \<le> x_2 y_1; ?H2 x_2\<rbrakk> \<Longrightarrow> ?H2 (\<lambda>y_2. ?H1 (x_1 y_2))
[ "Series.summable", "Real_Vector_Spaces.norm_class.norm" ]
[ "(nat \\<Rightarrow> 'a) \\<Rightarrow> bool", "'a \\<Rightarrow> real" ]
[ "definition summable :: \"(nat \\<Rightarrow> 'a::{topological_space, comm_monoid_add}) \\<Rightarrow> bool\"\n where \"summable f \\<longleftrightarrow> (\\<exists>s. f sums s)\"", "class norm =\n fixes norm :: \"'a \\<Rightarrow> real\"" ]
template
###lemma \<exists>N. \<forall>n\<ge>N. norm (?f n) \<le> ?g n \<Longrightarrow> summable ?g \<Longrightarrow> summable (\<lambda>n. norm (?f n)) ###symbols Series.summable :::: (nat \<Rightarrow> 'a) \<Rightarrow> bool Real_Vector_Spaces.norm_class.norm :::: 'a \<Rightarrow> real ###defs definition summable :: "(nat \<Rightarrow> 'a::{topological_space, comm_monoid_add}) \<Rightarrow> bool" where "summable f \<longleftrightarrow> (\<exists>s. f sums s)" class norm = fixes norm :: "'a \<Rightarrow> real"
###output \<lbrakk>\<exists>y_0. \<forall>y_1\<ge>y_0. ?H1 (x_1 y_1) \<le> x_2 y_1; ?H2 x_2\<rbrakk> \<Longrightarrow> ?H2 (\<lambda>y_2. ?H1 (x_1 y_2))###end
Library/RBT_Set
RBT_Set.subset_Coset_empty_Set_empty
lemma subset_Coset_empty_Set_empty [code]: "Coset t1 \<le> Set t2 \<longleftrightarrow> (case (RBT.impl_of t1, RBT.impl_of t2) of (rbt.Empty, rbt.Empty) \<Rightarrow> False | (_, _) \<Rightarrow> Code.abort (STR ''non_empty_trees'') (\<lambda>_. Coset t1 \<le> Set t2))"
(RBT_Set.Coset ?t1.0 \<subseteq> RBT_Set.Set ?t2.0) = (case (rbt.impl_of ?t1.0, rbt.impl_of ?t2.0) of (rbt.Empty, rbt.Empty) \<Rightarrow> False | (rbt.Empty, Branch color rbt1 a b rbt2) \<Rightarrow> Code.abort STR ''non_empty_trees'' (\<lambda>_. RBT_Set.Coset ?t1.0 \<subseteq> RBT_Set.Set ?t2.0) | (Branch color rbt1 a ba rbt2, xa) \<Rightarrow> Code.abort STR ''non_empty_trees'' (\<lambda>_. RBT_Set.Coset ?t1.0 \<subseteq> RBT_Set.Set ?t2.0))
?H1 (?H2 x_1) (?H3 x_2) = ?H4 (\<lambda>y_0 y_1. ?H5 (?H5 False (\<lambda>y_2 y_3 y_4 y_5 y_6. ?H6 (?H7 False True True True False True True (?H7 True True True True False True True (?H7 False True True True False True True (?H7 True True True True True False True (?H7 True False True False False True True (?H7 True False True True False True True (?H7 False False False False True True True (?H7 False False True False True True True (?H7 True False False True True True True (?H7 True True True True True False True (?H7 False False True False True True True (?H7 False True False False True True True (?H7 True False True False False True True (?H7 True False True False False True True (?H7 True True False False True True True ?H8))))))))))))))) (\<lambda>y_7. ?H1 (?H2 x_1) (?H3 x_2))) y_1) (\<lambda>y_8 y_9 y_10 y_11 y_12. ?H6 (?H7 False True True True False True True (?H7 True True True True False True True (?H7 False True True True False True True (?H7 True True True True True False True (?H7 True False True False False True True (?H7 True False True True False True True (?H7 False False False False True True True (?H7 False False True False True True True (?H7 True False False True True True True (?H7 True True True True True False True (?H7 False False True False True True True (?H7 False True False False True True True (?H7 True False True False False True True (?H7 True False True False False True True (?H7 True True False False True True True ?H8))))))))))))))) (\<lambda>y_13. ?H1 (?H2 x_1) (?H3 x_2))) y_0) (?H9 x_1, ?H9 x_2)
[ "RBT.rbt.impl_of", "String.empty_literal", "String.Literal", "String.Code.abort", "RBT_Impl.rbt.case_rbt", "Product_Type.prod.case_prod", "RBT_Set.Set", "RBT_Set.Coset", "Set.subset_eq" ]
[ "('a, 'b) RBT.rbt \\<Rightarrow> ('a, 'b) RBT_Impl.rbt", "String.literal", "bool \\<Rightarrow> bool \\<Rightarrow> bool \\<Rightarrow> bool \\<Rightarrow> bool \\<Rightarrow> bool \\<Rightarrow> bool \\<Rightarrow> String.literal \\<Rightarrow> String.literal", "String.literal \\<Rightarrow> (unit \\<Rightarrow> 'a) \\<Rightarrow> 'a", "'a \\<Rightarrow> (color \\<Rightarrow> ('b, 'c) RBT_Impl.rbt \\<Rightarrow> 'b \\<Rightarrow> 'c \\<Rightarrow> ('b, 'c) RBT_Impl.rbt \\<Rightarrow> 'a) \\<Rightarrow> ('b, 'c) RBT_Impl.rbt \\<Rightarrow> 'a", "('a \\<Rightarrow> 'b \\<Rightarrow> 'c) \\<Rightarrow> 'a \\<times> 'b \\<Rightarrow> 'c", "('a, unit) RBT.rbt \\<Rightarrow> 'a set", "('a, unit) RBT.rbt \\<Rightarrow> 'a set", "'a set \\<Rightarrow> 'a set \\<Rightarrow> bool" ]
[ "typedef (overloaded) ('a, 'b) rbt = \"{t :: ('a::linorder, 'b) RBT_Impl.rbt. is_rbt t}\"\n morphisms impl_of RBT", "abbreviation (output) empty_literal :: String.literal\n where \"empty_literal \\<equiv> 0\"", "datatype ('a, 'b) rbt = Empty | Branch color \"('a, 'b) rbt\" 'a 'b \"('a, 'b) rbt\"", "definition \"prod = {f. \\<exists>a b. f = Pair_Rep (a::'a) (b::'b)}\"", "definition Set :: \"('a::linorder, unit) rbt \\<Rightarrow> 'a set\" \n where \"Set t = {x . RBT.lookup t x = Some ()}\"", "definition Coset :: \"('a::linorder, unit) rbt \\<Rightarrow> 'a set\" \n where [simp]: \"Coset t = - Set t\"", "abbreviation subset_eq :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> bool\"\n where \"subset_eq \\<equiv> less_eq\"" ]
template
###lemma (RBT_Set.Coset ?t1.0 \<subseteq> RBT_Set.Set ?t2.0) = (case (rbt.impl_of ?t1.0, rbt.impl_of ?t2.0) of (rbt.Empty, rbt.Empty) \<Rightarrow> False | (rbt.Empty, Branch color rbt1 a b rbt2) \<Rightarrow> Code.abort STR ''non_empty_trees'' (\<lambda>_. RBT_Set.Coset ?t1.0 \<subseteq> RBT_Set.Set ?t2.0) | (Branch color rbt1 a ba rbt2, xa) \<Rightarrow> Code.abort STR ''non_empty_trees'' (\<lambda>_. RBT_Set.Coset ?t1.0 \<subseteq> RBT_Set.Set ?t2.0)) ###symbols RBT.rbt.impl_of :::: ('a, 'b) RBT.rbt \<Rightarrow> ('a, 'b) RBT_Impl.rbt String.empty_literal :::: String.literal String.Literal :::: bool \<Rightarrow> bool \<Rightarrow> bool \<Rightarrow> bool \<Rightarrow> bool \<Rightarrow> bool \<Rightarrow> bool \<Rightarrow> String.literal \<Rightarrow> String.literal String.Code.abort :::: String.literal \<Rightarrow> (unit \<Rightarrow> 'a) \<Rightarrow> 'a RBT_Impl.rbt.case_rbt :::: 'a \<Rightarrow> (color \<Rightarrow> ('b, 'c) RBT_Impl.rbt \<Rightarrow> 'b \<Rightarrow> 'c \<Rightarrow> ('b, 'c) RBT_Impl.rbt \<Rightarrow> 'a) \<Rightarrow> ('b, 'c) RBT_Impl.rbt \<Rightarrow> 'a Product_Type.prod.case_prod :::: ('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c RBT_Set.Set :::: ('a, unit) RBT.rbt \<Rightarrow> 'a set RBT_Set.Coset :::: ('a, unit) RBT.rbt \<Rightarrow> 'a set Set.subset_eq :::: 'a set \<Rightarrow> 'a set \<Rightarrow> bool ###defs typedef (overloaded) ('a, 'b) rbt = "{t :: ('a::linorder, 'b) RBT_Impl.rbt. is_rbt t}" morphisms impl_of RBT abbreviation (output) empty_literal :: String.literal where "empty_literal \<equiv> 0" datatype ('a, 'b) rbt = Empty | Branch color "('a, 'b) rbt" 'a 'b "('a, 'b) rbt" definition "prod = {f. \<exists>a b. f = Pair_Rep (a::'a) (b::'b)}" definition Set :: "('a::linorder, unit) rbt \<Rightarrow> 'a set" where "Set t = {x . RBT.lookup t x = Some ()}" definition Coset :: "('a::linorder, unit) rbt \<Rightarrow> 'a set" where [simp]: "Coset t = - Set t" abbreviation subset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where "subset_eq \<equiv> less_eq"
###output ?H1 (?H2 x_1) (?H3 x_2) = ?H4 (\<lambda>y_0 y_1. ?H5 (?H5 False (\<lambda>y_2 y_3 y_4 y_5 y_6. ?H6 (?H7 False True True True False True True (?H7 True True True True False True True (?H7 False True True True False True True (?H7 True True True True True False True (?H7 True False True False False True True (?H7 True False True True False True True (?H7 False False False False True True True (?H7 False False True False True True True (?H7 True False False True True True True (?H7 True True True True True False True (?H7 False False True False True True True (?H7 False True False False True True True (?H7 True False True False False True True (?H7 True False True False False True True (?H7 True True False False True True True ?H8))))))))))))))) (\<lambda>y_7. ?H1 (?H2 x_1) (?H3 x_2))) y_1) (\<lambda>y_8 y_9 y_10 y_11 y_12. ?H6 (?H7 False True True True False True True (?H7 True True True True False True True (?H7 False True True True False True True (?H7 True True True True True False True (?H7 True False True False False True True (?H7 True False True True False True True (?H7 False False False False True True True (?H7 False False True False True True True (?H7 True False False True True True True (?H7 True True True True True False True (?H7 False False True False True True True (?H7 False True False False True True True (?H7 True False True False False True True (?H7 True False True False False True True (?H7 True True False False True True True ?H8))))))))))))))) (\<lambda>y_13. ?H1 (?H2 x_1) (?H3 x_2))) y_0) (?H9 x_1, ?H9 x_2)###end
Analysis/Norm_Arith
Norm_Arith.arithmetic_simps(45)
null
numeral ?m + numeral ?n = numeral (?m + ?n)
?H1 (?H2 x_1) (?H2 x_2) = ?H2 (?H1 x_1 x_2)
[ "Num.numeral_class.numeral", "Groups.plus_class.plus" ]
[ "num \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a" ]
[ "primrec numeral :: \"num \\<Rightarrow> 'a\"\n where\n numeral_One: \"numeral One = 1\"\n | numeral_Bit0: \"numeral (Bit0 n) = numeral n + numeral n\"\n | numeral_Bit1: \"numeral (Bit1 n) = numeral n + numeral n + 1\"", "class plus =\n fixes plus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"+\" 65)" ]
template
###lemma numeral ?m + numeral ?n = numeral (?m + ?n) ###symbols Num.numeral_class.numeral :::: num \<Rightarrow> 'a Groups.plus_class.plus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a ###defs primrec numeral :: "num \<Rightarrow> 'a" where numeral_One: "numeral One = 1" | numeral_Bit0: "numeral (Bit0 n) = numeral n + numeral n" | numeral_Bit1: "numeral (Bit1 n) = numeral n + numeral n + 1" class plus = fixes plus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "+" 65)
###output ?H1 (?H2 x_1) (?H2 x_2) = ?H2 (?H1 x_1 x_2)###end
Computational_Algebra/Formal_Laurent_Series
Formal_Laurent_Series.fls_subdegree_mult
lemma fls_subdegree_mult [simp]: fixes f g :: "'a::semiring_no_zero_divisors fls" assumes "f \<noteq> 0" "g \<noteq> 0" shows "fls_subdegree (f * g) = fls_subdegree f + fls_subdegree g"
?f \<noteq> 0 \<Longrightarrow> ?g \<noteq> 0 \<Longrightarrow> fls_subdegree (?f * ?g) = fls_subdegree ?f + fls_subdegree ?g
\<lbrakk>x_1 \<noteq> ?H1; x_2 \<noteq> ?H1\<rbrakk> \<Longrightarrow> ?H2 (?H3 x_1 x_2) = ?H4 (?H2 x_1) (?H2 x_2)
[ "Groups.plus_class.plus", "Groups.times_class.times", "Formal_Laurent_Series.fls_subdegree", "Groups.zero_class.zero" ]
[ "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a fls \\<Rightarrow> int", "'a" ]
[ "class plus =\n fixes plus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"+\" 65)", "class times =\n fixes times :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"*\" 70)", "definition fls_subdegree :: \"('a::zero) fls \\<Rightarrow> int\"\n where \"fls_subdegree f \\<equiv> (if f = 0 then 0 else LEAST n::int. f$$n \\<noteq> 0)\"", "class zero =\n fixes zero :: 'a (\"0\")" ]
template
###lemma ?f \<noteq> 0 \<Longrightarrow> ?g \<noteq> 0 \<Longrightarrow> fls_subdegree (?f * ?g) = fls_subdegree ?f + fls_subdegree ?g ###symbols Groups.plus_class.plus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Groups.times_class.times :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Formal_Laurent_Series.fls_subdegree :::: 'a fls \<Rightarrow> int Groups.zero_class.zero :::: 'a ###defs class plus = fixes plus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "+" 65) class times = fixes times :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "*" 70) definition fls_subdegree :: "('a::zero) fls \<Rightarrow> int" where "fls_subdegree f \<equiv> (if f = 0 then 0 else LEAST n::int. f$$n \<noteq> 0)" class zero = fixes zero :: 'a ("0")
###output \<lbrakk>x_1 \<noteq> ?H1; x_2 \<noteq> ?H1\<rbrakk> \<Longrightarrow> ?H2 (?H3 x_1 x_2) = ?H4 (?H2 x_1) (?H2 x_2)###end
Bali/DefiniteAssignment
DefiniteAssignment.da_elim_cases(55)
null
?Env\<turnstile> ?B \<guillemotright>\<langle> ?e1.0.[ ?e2.0]\<rangle>\<guillemotright> ?A \<Longrightarrow> (\<And>E1. ?Env\<turnstile> ?B \<guillemotright>\<langle> ?e1.0\<rangle>\<guillemotright> E1 \<Longrightarrow> ?Env\<turnstile> nrm E1 \<guillemotright>\<langle> ?e2.0\<rangle>\<guillemotright> ?A \<Longrightarrow> ?P) \<Longrightarrow> ?P
\<lbrakk> ?H1 x_1 x_2 (?H2 (?H3 x_3 x_4)) x_5; \<And>y_0. \<lbrakk> ?H1 x_1 x_2 (?H2 x_3) y_0; ?H1 x_1 (?H4 y_0) (?H2 x_4) x_5\<rbrakk> \<Longrightarrow> x_6\<rbrakk> \<Longrightarrow> x_6
[ "DefiniteAssignment.assigned.nrm", "Term.var.AVar", "Term.inj_term_class.inj_term", "DefiniteAssignment.da" ]
[ "'a assigned_scheme \\<Rightarrow> lname set", "expr \\<Rightarrow> expr \\<Rightarrow> Term.var", "'a \\<Rightarrow> Term.term", "env \\<Rightarrow> lname set \\<Rightarrow> Term.term \\<Rightarrow> assigned \\<Rightarrow> bool" ]
[ "record assigned = \n nrm :: \"lname set\" \\<comment> \\<open>Definetly assigned variables \n for normal completion\\<close>\n brk :: \"breakass\" \\<comment> \\<open>Definetly assigned variables for \n abrupt completion with a break\\<close>", "datatype var\n = LVar lname \\<comment> \\<open>local variable (incl. parameters)\\<close>\n | FVar qtname qtname bool expr vname (\"{_,_,_}_.._\"[10,10,10,85,99]90)\n \\<comment> \\<open>class field\\<close>\n \\<comment> \\<open>\\<^term>\\<open>{accC,statDeclC,stat}e..fn\\<close>\\<close>\n \\<comment> \\<open>\\<open>accC\\<close>: accessing class (static class were\\<close>\n \\<comment> \\<open>the code is declared. Annotation only needed for\\<close>\n \\<comment> \\<open>evaluation to check accessibility)\\<close>\n \\<comment> \\<open>\\<open>statDeclC\\<close>: static declaration class of field\\<close>\n \\<comment> \\<open>\\<open>stat\\<close>: static or instance field?\\<close>\n \\<comment> \\<open>\\<open>e\\<close>: reference to object\\<close>\n \\<comment> \\<open>\\<open>fn\\<close>: field name\\<close>\n | AVar expr expr (\"_.[_]\"[90,10 ]90)\n \\<comment> \\<open>array component\\<close>\n \\<comment> \\<open>\\<^term>\\<open>e1.[e2]\\<close>: e1 array reference; e2 index\\<close>\n | InsInitV stmt var \n \\<comment> \\<open>insertion of initialization before evaluation\\<close>\n \\<comment> \\<open>of var (technical term for smallstep semantics.)\\<close>\n\nand expr\n = NewC qtname \\<comment> \\<open>class instance creation\\<close>\n | NewA ty expr (\"New _[_]\"[99,10 ]85) \n \\<comment> \\<open>array creation\\<close> \n | Cast ty expr \\<comment> \\<open>type cast\\<close>\n | Inst expr ref_ty (\"_ InstOf _\"[85,99] 85) \n \\<comment> \\<open>instanceof\\<close> \n | Lit val \\<comment> \\<open>literal value, references not allowed\\<close>\n | UnOp unop expr \\<comment> \\<open>unary operation\\<close>\n | BinOp binop expr expr \\<comment> \\<open>binary operation\\<close>\n \n | Super \\<comment> \\<open>special Super keyword\\<close>\n | Acc var \\<comment> \\<open>variable access\\<close>\n | Ass var expr (\"_:=_\" [90,85 ]85)\n \\<comment> \\<open>variable assign\\<close> \n | Cond expr expr expr (\"_ ? _ : _\" [85,85,80]80) \\<comment> \\<open>conditional\\<close> \n | Call qtname ref_ty inv_mode expr mname \"(ty list)\" \"(expr list)\" \n (\"{_,_,_}_\\<cdot>_'( {_}_')\"[10,10,10,85,99,10,10]85) \n \\<comment> \\<open>method call\\<close> \n \\<comment> \\<open>\\<^term>\\<open>{accC,statT,mode}e\\<cdot>mn({pTs}args)\\<close> \"\\<close>\n \\<comment> \\<open>\\<open>accC\\<close>: accessing class (static class were\\<close>\n \\<comment> \\<open>the call code is declared. Annotation only needed for\\<close>\n \\<comment> \\<open>evaluation to check accessibility)\\<close>\n \\<comment> \\<open>\\<open>statT\\<close>: static declaration class/interface of\\<close>\n \\<comment> \\<open>method\\<close>\n \\<comment> \\<open>\\<open>mode\\<close>: invocation mode\\<close>\n \\<comment> \\<open>\\<open>e\\<close>: reference to object\\<close>\n \\<comment> \\<open>\\<open>mn\\<close>: field name\\<close> \n \\<comment> \\<open>\\<open>pTs\\<close>: types of parameters\\<close>\n \\<comment> \\<open>\\<open>args\\<close>: the actual parameters/arguments\\<close> \n | Methd qtname sig \\<comment> \\<open>(folded) method (see below)\\<close>\n | Body qtname stmt \\<comment> \\<open>(unfolded) method body\\<close>\n | InsInitE stmt expr \n \\<comment> \\<open>insertion of initialization before\\<close>\n \\<comment> \\<open>evaluation of expr (technical term for smallstep sem.)\\<close>\n | Callee locals expr \\<comment> \\<open>save callers locals in callee-Frame\\<close>\n \\<comment> \\<open>(technical term for smallstep semantics)\\<close>\nand stmt\n = Skip \\<comment> \\<open>empty statement\\<close>\n | Expr expr \\<comment> \\<open>expression statement\\<close>\n | Lab jump stmt (\"_\\<bullet> _\" [ 99,66]66)\n \\<comment> \\<open>labeled statement; handles break\\<close>\n | Comp stmt stmt (\"_;; _\" [ 66,65]65)\n | If' expr stmt stmt (\"If'(_') _ Else _\" [ 80,79,79]70)\n | Loop label expr stmt (\"_\\<bullet> While'(_') _\" [ 99,80,79]70)\n | Jmp jump \\<comment> \\<open>break, continue, return\\<close>\n | Throw expr\n | TryC stmt qtname vname stmt (\"Try _ Catch'(_ _') _\" [79,99,80,79]70)\n \\<comment> \\<open>\\<^term>\\<open>Try c1 Catch(C vn) c2\\<close>\\<close> \n \\<comment> \\<open>\\<open>c1\\<close>: block were exception may be thrown\\<close>\n \\<comment> \\<open>\\<open>C\\<close>: execption class to catch\\<close>\n \\<comment> \\<open>\\<open>vn\\<close>: local name for exception used in \\<open>c2\\<close>\\<close>\n \\<comment> \\<open>\\<open>c2\\<close>: block to execute when exception is cateched\\<close>\n | Fin stmt stmt (\"_ Finally _\" [ 79,79]70)\n | FinA abopt stmt \\<comment> \\<open>Save abruption of first statement\\<close> \n \\<comment> \\<open>technical term for smallstep sem.)\\<close>\n | Init qtname \\<comment> \\<open>class initialization\\<close>", "class inj_term =\n fixes inj_term:: \"'a \\<Rightarrow> term\" (\"\\<langle>_\\<rangle>\" 1000)", "inductive\n da :: \"env \\<Rightarrow> lname set \\<Rightarrow> term \\<Rightarrow> assigned \\<Rightarrow> bool\" (\"_\\<turnstile> _ \\<guillemotright>_\\<guillemotright> _\" [65,65,65,65] 71)\nwhere\n Skip: \"Env\\<turnstile> B \\<guillemotright>\\<langle>Skip\\<rangle>\\<guillemotright> \\<lparr>nrm=B,brk=\\<lambda> l. UNIV\\<rparr>\"\n\n| Expr: \"Env\\<turnstile> B \\<guillemotright>\\<langle>e\\<rangle>\\<guillemotright> A \n \\<Longrightarrow> \n Env\\<turnstile> B \\<guillemotright>\\<langle>Expr e\\<rangle>\\<guillemotright> A\"\n| Lab: \"\\<lbrakk>Env\\<turnstile> B \\<guillemotright>\\<langle>c\\<rangle>\\<guillemotright> C; nrm A = nrm C \\<inter> (brk C) l; brk A = rmlab l (brk C)\\<rbrakk>\n \\<Longrightarrow> \n Env\\<turnstile> B \\<guillemotright>\\<langle>Break l\\<bullet> c\\<rangle>\\<guillemotright> A\" \n\n| Comp: \"\\<lbrakk>Env\\<turnstile> B \\<guillemotright>\\<langle>c1\\<rangle>\\<guillemotright> C1; Env\\<turnstile> nrm C1 \\<guillemotright>\\<langle>c2\\<rangle>\\<guillemotright> C2; \n nrm A = nrm C2; brk A = (brk C1) \\<Rightarrow>\\<inter> (brk C2)\\<rbrakk> \n \\<Longrightarrow> \n Env\\<turnstile> B \\<guillemotright>\\<langle>c1;; c2\\<rangle>\\<guillemotright> A\"\n\n| If: \"\\<lbrakk>Env\\<turnstile> B \\<guillemotright>\\<langle>e\\<rangle>\\<guillemotright> E;\n Env\\<turnstile> (B \\<union> assigns_if True e) \\<guillemotright>\\<langle>c1\\<rangle>\\<guillemotright> C1;\n Env\\<turnstile> (B \\<union> assigns_if False e) \\<guillemotright>\\<langle>c2\\<rangle>\\<guillemotright> C2;\n nrm A = nrm C1 \\<inter> nrm C2;\n brk A = brk C1 \\<Rightarrow>\\<inter> brk C2 \\<rbrakk> \n \\<Longrightarrow>\n Env\\<turnstile> B \\<guillemotright>\\<langle>If(e) c1 Else c2\\<rangle>\\<guillemotright> A\"\n\n\\<comment> \\<open>Note that \\<^term>\\<open>E\\<close> is not further used, because we take the specialized\n sets that also consider if the expression evaluates to True or False. \n Inside of \\<^term>\\<open>e\\<close> there is no {\\tt break} or {\\tt finally}, so the break\n map of \\<^term>\\<open>E\\<close> will be the trivial one. So \n \\<^term>\\<open>Env\\<turnstile>B \\<guillemotright>\\<langle>e\\<rangle>\\<guillemotright> E\\<close> is just used to ensure the definite assignment in\n expression \\<^term>\\<open>e\\<close>.\n Notice the implicit analysis of a constant boolean expression \\<^term>\\<open>e\\<close>\n in this rule. For example, if \\<^term>\\<open>e\\<close> is constantly \\<^term>\\<open>True\\<close> then \n \\<^term>\\<open>assigns_if False e = UNIV\\<close> and therefor \\<^term>\\<open>nrm C2=UNIV\\<close>.\n So finally \\<^term>\\<open>nrm A = nrm C1\\<close>. For the break maps this trick \n workd too, because the trivial break map will map all labels to \n \\<^term>\\<open>UNIV\\<close>. In the example, if no break occurs in \\<^term>\\<open>c2\\<close> the break\n maps will trivially map to \\<^term>\\<open>UNIV\\<close> and if a break occurs it will map\n to \\<^term>\\<open>UNIV\\<close> too, because \\<^term>\\<open>assigns_if False e = UNIV\\<close>. So\n in the intersection of the break maps the path \\<^term>\\<open>c2\\<close> will have no\n contribution.\\<close>\n\n| Loop: \"\\<lbrakk>Env\\<turnstile> B \\<guillemotright>\\<langle>e\\<rangle>\\<guillemotright> E; \n Env\\<turnstile> (B \\<union> assigns_if True e) \\<guillemotright>\\<langle>c\\<rangle>\\<guillemotright> C;\n nrm A = nrm C \\<inter> (B \\<union> assigns_if False e);\n brk A = brk C\\<rbrakk> \n \\<Longrightarrow>\n Env\\<turnstile> B \\<guillemotright>\\<langle>l\\<bullet> While(e) c\\<rangle>\\<guillemotright> A\"\n\\<comment> \\<open>The \\<open>Loop\\<close> rule resembles some of the ideas of the \\<open>If\\<close> rule.\n For the \\<^term>\\<open>nrm A\\<close> the set \\<^term>\\<open>B \\<union> assigns_if False e\\<close> \n will be \\<^term>\\<open>UNIV\\<close> if the condition is constantly True. To normally exit\n the while loop, we must consider the body \\<^term>\\<open>c\\<close> to be completed \n normally (\\<^term>\\<open>nrm C\\<close>) or with a break. But in this model, \n the label \\<^term>\\<open>l\\<close> of the loop\n only handles continue labels, not break labels. The break label will be\n handled by an enclosing \\<^term>\\<open>Lab\\<close> statement. So we don't have to\n handle the breaks specially.\\<close>\n\n| Jmp: \"\\<lbrakk>jump=Ret \\<longrightarrow> Result \\<in> B;\n nrm A = UNIV;\n brk A = (case jump of\n Break l \\<Rightarrow> \\<lambda> k. if k=l then B else UNIV \n | Cont l \\<Rightarrow> \\<lambda> k. UNIV\n | Ret \\<Rightarrow> \\<lambda> k. UNIV)\\<rbrakk> \n \\<Longrightarrow> \n Env\\<turnstile> B \\<guillemotright>\\<langle>Jmp jump\\<rangle>\\<guillemotright> A\"\n\\<comment> \\<open>In case of a break to label \\<^term>\\<open>l\\<close> the corresponding break set is all\n variables assigned before the break. The assigned variables for normal\n completion of the \\<^term>\\<open>Jmp\\<close> is \\<^term>\\<open>UNIV\\<close>, because the statement will\n never complete normally. For continue and return the break map is the \n trivial one. In case of a return we enshure that the result value is\n assigned.\\<close>\n\n| Throw: \"\\<lbrakk>Env\\<turnstile> B \\<guillemotright>\\<langle>e\\<rangle>\\<guillemotright> E; nrm A = UNIV; brk A = (\\<lambda> l. UNIV)\\<rbrakk> \n \\<Longrightarrow> Env\\<turnstile> B \\<guillemotright>\\<langle>Throw e\\<rangle>\\<guillemotright> A\"\n\n| Try: \"\\<lbrakk>Env\\<turnstile> B \\<guillemotright>\\<langle>c1\\<rangle>\\<guillemotright> C1; \n Env\\<lparr>lcl := (lcl Env)(VName vn\\<mapsto>Class C)\\<rparr>\\<turnstile> (B \\<union> {VName vn}) \\<guillemotright>\\<langle>c2\\<rangle>\\<guillemotright> C2; \n nrm A = nrm C1 \\<inter> nrm C2;\n brk A = brk C1 \\<Rightarrow>\\<inter> brk C2\\<rbrakk> \n \\<Longrightarrow> Env\\<turnstile> B \\<guillemotright>\\<langle>Try c1 Catch(C vn) c2\\<rangle>\\<guillemotright> A\"\n\n| Fin: \"\\<lbrakk>Env\\<turnstile> B \\<guillemotright>\\<langle>c1\\<rangle>\\<guillemotright> C1;\n Env\\<turnstile> B \\<guillemotright>\\<langle>c2\\<rangle>\\<guillemotright> C2;\n nrm A = nrm C1 \\<union> nrm C2;\n brk A = ((brk C1) \\<Rightarrow>\\<union>\\<^sub>\\<forall> (nrm C2)) \\<Rightarrow>\\<inter> (brk C2)\\<rbrakk> \n \\<Longrightarrow>\n Env\\<turnstile> B \\<guillemotright>\\<langle>c1 Finally c2\\<rangle>\\<guillemotright> A\" \n\\<comment> \\<open>The set of assigned variables before execution \\<^term>\\<open>c2\\<close> are the same\n as before execution \\<^term>\\<open>c1\\<close>, because \\<^term>\\<open>c1\\<close> could throw an exception\n and so we can't guarantee that any variable will be assigned in \\<^term>\\<open>c1\\<close>.\n The \\<open>Finally\\<close> statement completes\n normally if both \\<^term>\\<open>c1\\<close> and \\<^term>\\<open>c2\\<close> complete normally. If \\<^term>\\<open>c1\\<close>\n completes abruptly with a break, then \\<^term>\\<open>c2\\<close> also will be executed \n and may terminate normally or with a break. The overall break map then is\n the intersection of the maps of both paths. If \\<^term>\\<open>c2\\<close> terminates \n normally we have to extend all break sets in \\<^term>\\<open>brk C1\\<close> with \n \\<^term>\\<open>nrm C2\\<close> (\\<open>\\<Rightarrow>\\<union>\\<^sub>\\<forall>\\<close>). If \\<^term>\\<open>c2\\<close> exits with a break this\n break will appear in the overall result state. We don't know if \n \\<^term>\\<open>c1\\<close> completed normally or abruptly (maybe with an exception not only\n a break) so \\<^term>\\<open>c1\\<close> has no contribution to the break map following this\n path.\\<close>\n\n\\<comment> \\<open>Evaluation of expressions and the break sets of definite assignment:\n Thinking of a Java expression we assume that we can never have\n a break statement inside of a expression. So for all expressions the\n break sets could be set to the trivial one: \\<^term>\\<open>\\<lambda> l. UNIV\\<close>. \n But we can't\n trivially proof, that evaluating an expression will never result in a \n break, allthough Java expressions allready syntactically don't allow\n nested stetements in them. The reason are the nested class initialzation \n statements which are inserted by the evaluation rules. So to proof the\n absence of a break we need to ensure, that the initialization statements\n will never end up in a break. In a wellfromed initialization statement, \n of course, were breaks are nested correctly inside of \\<^term>\\<open>Lab\\<close> \n or \\<^term>\\<open>Loop\\<close> statements evaluation of the whole initialization \n statement will never result in a break, because this break will be \n handled inside of the statement. But for simplicity we haven't added\n the analysis of the correct nesting of breaks in the typing judgments \n right now. So we have decided to adjust the rules of definite assignment\n to fit to these circumstances. If an initialization is involved during\n evaluation of the expression (evaluation rules \\<open>FVar\\<close>, \\<open>NewC\\<close> \n and \\<open>NewA\\<close>\\<close>\n\n| Init: \"Env\\<turnstile> B \\<guillemotright>\\<langle>Init C\\<rangle>\\<guillemotright> \\<lparr>nrm=B,brk=\\<lambda> l. UNIV\\<rparr>\"\n\\<comment> \\<open>Wellformedness of a program will ensure, that every static initialiser \n is definetly assigned and the jumps are nested correctly. The case here\n for \\<^term>\\<open>Init\\<close> is just for convenience, to get a proper precondition \n for the induction hypothesis in various proofs, so that we don't have to\n expand the initialisation on every point where it is triggerred by the\n evaluation rules.\\<close> \n| NewC: \"Env\\<turnstile> B \\<guillemotright>\\<langle>NewC C\\<rangle>\\<guillemotright> \\<lparr>nrm=B,brk=\\<lambda> l. UNIV\\<rparr>\" \n\n| NewA: \"Env\\<turnstile> B \\<guillemotright>\\<langle>e\\<rangle>\\<guillemotright> A \n \\<Longrightarrow>\n Env\\<turnstile> B \\<guillemotright>\\<langle>New T[e]\\<rangle>\\<guillemotright> A\"\n\n| Cast: \"Env\\<turnstile> B \\<guillemotright>\\<langle>e\\<rangle>\\<guillemotright> A\n \\<Longrightarrow>\n Env\\<turnstile> B \\<guillemotright>\\<langle>Cast T e\\<rangle>\\<guillemotright> A\"\n\n| Inst: \"Env\\<turnstile> B \\<guillemotright>\\<langle>e\\<rangle>\\<guillemotright> A \n \\<Longrightarrow> \n Env\\<turnstile> B \\<guillemotright>\\<langle>e InstOf T\\<rangle>\\<guillemotright> A\"\n\n| Lit: \"Env\\<turnstile> B \\<guillemotright>\\<langle>Lit v\\<rangle>\\<guillemotright> \\<lparr>nrm=B,brk=\\<lambda> l. UNIV\\<rparr>\"\n\n| UnOp: \"Env\\<turnstile> B \\<guillemotright>\\<langle>e\\<rangle>\\<guillemotright> A\n \\<Longrightarrow> \n Env\\<turnstile> B \\<guillemotright>\\<langle>UnOp unop e\\<rangle>\\<guillemotright> A\"\n\n| CondAnd: \"\\<lbrakk>Env\\<turnstile> B \\<guillemotright>\\<langle>e1\\<rangle>\\<guillemotright> E1; Env\\<turnstile> (B \\<union> assigns_if True e1) \\<guillemotright>\\<langle>e2\\<rangle>\\<guillemotright> E2; \n nrm A = B \\<union> (assigns_if True (BinOp CondAnd e1 e2) \\<inter> \n assigns_if False (BinOp CondAnd e1 e2));\n brk A = (\\<lambda> l. UNIV) \\<rbrakk>\n \\<Longrightarrow>\n Env\\<turnstile> B \\<guillemotright>\\<langle>BinOp CondAnd e1 e2\\<rangle>\\<guillemotright> A\"\n\n| CondOr: \"\\<lbrakk>Env\\<turnstile> B \\<guillemotright>\\<langle>e1\\<rangle>\\<guillemotright> E1; Env\\<turnstile> (B \\<union> assigns_if False e1) \\<guillemotright>\\<langle>e2\\<rangle>\\<guillemotright> E2; \n nrm A = B \\<union> (assigns_if True (BinOp CondOr e1 e2) \\<inter> \n assigns_if False (BinOp CondOr e1 e2));\n brk A = (\\<lambda> l. UNIV) \\<rbrakk>\n \\<Longrightarrow>\n Env\\<turnstile> B \\<guillemotright>\\<langle>BinOp CondOr e1 e2\\<rangle>\\<guillemotright> A\"\n\n| BinOp: \"\\<lbrakk>Env\\<turnstile> B \\<guillemotright>\\<langle>e1\\<rangle>\\<guillemotright> E1; Env\\<turnstile> nrm E1 \\<guillemotright>\\<langle>e2\\<rangle>\\<guillemotright> A; \n binop \\<noteq> CondAnd; binop \\<noteq> CondOr\\<rbrakk>\n \\<Longrightarrow>\n Env\\<turnstile> B \\<guillemotright>\\<langle>BinOp binop e1 e2\\<rangle>\\<guillemotright> A\"\n\n| Super: \"This \\<in> B \n \\<Longrightarrow> \n Env\\<turnstile> B \\<guillemotright>\\<langle>Super\\<rangle>\\<guillemotright> \\<lparr>nrm=B,brk=\\<lambda> l. UNIV\\<rparr>\"\n\n| AccLVar: \"\\<lbrakk>vn \\<in> B;\n nrm A = B; brk A = (\\<lambda> k. UNIV)\\<rbrakk> \n \\<Longrightarrow> \n Env\\<turnstile> B \\<guillemotright>\\<langle>Acc (LVar vn)\\<rangle>\\<guillemotright> A\"\n\\<comment> \\<open>To properly access a local variable we have to test the definite \n assignment here. The variable must occur in the set \\<^term>\\<open>B\\<close>\\<close>\n\n| Acc: \"\\<lbrakk>\\<forall> vn. v \\<noteq> LVar vn;\n Env\\<turnstile> B \\<guillemotright>\\<langle>v\\<rangle>\\<guillemotright> A\\<rbrakk>\n \\<Longrightarrow>\n Env\\<turnstile> B \\<guillemotright>\\<langle>Acc v\\<rangle>\\<guillemotright> A\"\n\n| AssLVar: \"\\<lbrakk>Env\\<turnstile> B \\<guillemotright>\\<langle>e\\<rangle>\\<guillemotright> E; nrm A = nrm E \\<union> {vn}; brk A = brk E\\<rbrakk> \n \\<Longrightarrow> \n Env\\<turnstile> B \\<guillemotright>\\<langle>(LVar vn) := e\\<rangle>\\<guillemotright> A\"\n\n| Ass: \"\\<lbrakk>\\<forall> vn. v \\<noteq> LVar vn; Env\\<turnstile> B \\<guillemotright>\\<langle>v\\<rangle>\\<guillemotright> V; Env\\<turnstile> nrm V \\<guillemotright>\\<langle>e\\<rangle>\\<guillemotright> A\\<rbrakk>\n \\<Longrightarrow>\n Env\\<turnstile> B \\<guillemotright>\\<langle>v := e\\<rangle>\\<guillemotright> A\"\n\n| CondBool: \"\\<lbrakk>Env\\<turnstile>(c ? e1 : e2)\\<Colon>-(PrimT Boolean);\n Env\\<turnstile> B \\<guillemotright>\\<langle>c\\<rangle>\\<guillemotright> C;\n Env\\<turnstile> (B \\<union> assigns_if True c) \\<guillemotright>\\<langle>e1\\<rangle>\\<guillemotright> E1;\n Env\\<turnstile> (B \\<union> assigns_if False c) \\<guillemotright>\\<langle>e2\\<rangle>\\<guillemotright> E2;\n nrm A = B \\<union> (assigns_if True (c ? e1 : e2) \\<inter> \n assigns_if False (c ? e1 : e2));\n brk A = (\\<lambda> l. UNIV)\\<rbrakk>\n \\<Longrightarrow> \n Env\\<turnstile> B \\<guillemotright>\\<langle>c ? e1 : e2\\<rangle>\\<guillemotright> A\" \n\n| Cond: \"\\<lbrakk>\\<not> Env\\<turnstile>(c ? e1 : e2)\\<Colon>-(PrimT Boolean);\n Env\\<turnstile> B \\<guillemotright>\\<langle>c\\<rangle>\\<guillemotright> C;\n Env\\<turnstile> (B \\<union> assigns_if True c) \\<guillemotright>\\<langle>e1\\<rangle>\\<guillemotright> E1;\n Env\\<turnstile> (B \\<union> assigns_if False c) \\<guillemotright>\\<langle>e2\\<rangle>\\<guillemotright> E2;\n nrm A = nrm E1 \\<inter> nrm E2; brk A = (\\<lambda> l. UNIV)\\<rbrakk>\n \\<Longrightarrow> \n Env\\<turnstile> B \\<guillemotright>\\<langle>c ? e1 : e2\\<rangle>\\<guillemotright> A\" \n\n| Call: \"\\<lbrakk>Env\\<turnstile> B \\<guillemotright>\\<langle>e\\<rangle>\\<guillemotright> E; Env\\<turnstile> nrm E \\<guillemotright>\\<langle>args\\<rangle>\\<guillemotright> A\\<rbrakk> \n \\<Longrightarrow> \n Env\\<turnstile> B \\<guillemotright>\\<langle>{accC,statT,mode}e\\<cdot>mn({pTs}args)\\<rangle>\\<guillemotright> A\"\n\n\\<comment> \\<open>The interplay of \\<^term>\\<open>Call\\<close>, \\<^term>\\<open>Methd\\<close> and \\<^term>\\<open>Body\\<close>:\n Why rules for \\<^term>\\<open>Methd\\<close> and \\<^term>\\<open>Body\\<close> at all? Note that a\n Java source program will not include bare \\<^term>\\<open>Methd\\<close> or \\<^term>\\<open>Body\\<close>\n terms. These terms are just introduced during evaluation. So definite\n assignment of \\<^term>\\<open>Call\\<close> does not consider \\<^term>\\<open>Methd\\<close> or \n \\<^term>\\<open>Body\\<close> at all. So for definite assignment alone we could omit the\n rules for \\<^term>\\<open>Methd\\<close> and \\<^term>\\<open>Body\\<close>. \n But since evaluation of the method invocation is\n split up into three rules we must ensure that we have enough information\n about the call even in the \\<^term>\\<open>Body\\<close> term to make sure that we can\n proof type safety. Also we must be able transport this information \n from \\<^term>\\<open>Call\\<close> to \\<^term>\\<open>Methd\\<close> and then further to \\<^term>\\<open>Body\\<close> \n during evaluation to establish the definite assignment of \\<^term>\\<open>Methd\\<close>\n during evaluation of \\<^term>\\<open>Call\\<close>, and of \\<^term>\\<open>Body\\<close> during evaluation\n of \\<^term>\\<open>Methd\\<close>. This is necessary since definite assignment will be\n a precondition for each induction hypothesis coming out of the evaluation\n rules, and therefor we have to establish the definite assignment of the\n sub-evaluation during the type-safety proof. Note that well-typedness is\n also a precondition for type-safety and so we can omit some assertion \n that are already ensured by well-typedness.\\<close>\n| Methd: \"\\<lbrakk>methd (prg Env) D sig = Some m;\n Env\\<turnstile> B \\<guillemotright>\\<langle>Body (declclass m) (stmt (mbody (mthd m)))\\<rangle>\\<guillemotright> A\n \\<rbrakk>\n \\<Longrightarrow>\n Env\\<turnstile> B \\<guillemotright>\\<langle>Methd D sig\\<rangle>\\<guillemotright> A\" \n\n| Body: \"\\<lbrakk>Env\\<turnstile> B \\<guillemotright>\\<langle>c\\<rangle>\\<guillemotright> C; jumpNestingOkS {Ret} c; Result \\<in> nrm C;\n nrm A = B; brk A = (\\<lambda> l. UNIV)\\<rbrakk>\n \\<Longrightarrow>\n Env\\<turnstile> B \\<guillemotright>\\<langle>Body D c\\<rangle>\\<guillemotright> A\"\n\\<comment> \\<open>Note that \\<^term>\\<open>A\\<close> is not correlated to \\<^term>\\<open>C\\<close>. If the body\n statement returns abruptly with return, evaluation of \\<^term>\\<open>Body\\<close>\n will absorb this return and complete normally. So we cannot trivially\n get the assigned variables of the body statement since it has not \n completed normally or with a break.\n If the body completes normally we guarantee that the result variable\n is set with this rule. But if the body completes abruptly with a return\n we can't guarantee that the result variable is set here, since \n definite assignment only talks about normal completion and breaks. So\n for a return the \\<^term>\\<open>Jump\\<close> rule ensures that the result variable is\n set and then this information must be carried over to the \\<^term>\\<open>Body\\<close>\n rule by the conformance predicate of the state.\\<close>\n| LVar: \"Env\\<turnstile> B \\<guillemotright>\\<langle>LVar vn\\<rangle>\\<guillemotright> \\<lparr>nrm=B, brk=\\<lambda> l. UNIV\\<rparr>\" \n\n| FVar: \"Env\\<turnstile> B \\<guillemotright>\\<langle>e\\<rangle>\\<guillemotright> A \n \\<Longrightarrow> \n Env\\<turnstile> B \\<guillemotright>\\<langle>{accC,statDeclC,stat}e..fn\\<rangle>\\<guillemotright> A\" \n\n| AVar: \"\\<lbrakk>Env\\<turnstile> B \\<guillemotright>\\<langle>e1\\<rangle>\\<guillemotright> E1; Env\\<turnstile> nrm E1 \\<guillemotright>\\<langle>e2\\<rangle>\\<guillemotright> A\\<rbrakk>\n \\<Longrightarrow> \n Env\\<turnstile> B \\<guillemotright>\\<langle>e1.[e2]\\<rangle>\\<guillemotright> A\" \n\n| Nil: \"Env\\<turnstile> B \\<guillemotright>\\<langle>[]::expr list\\<rangle>\\<guillemotright> \\<lparr>nrm=B, brk=\\<lambda> l. UNIV\\<rparr>\" \n\n| Cons: \"\\<lbrakk>Env\\<turnstile> B \\<guillemotright>\\<langle>e::expr\\<rangle>\\<guillemotright> E; Env\\<turnstile> nrm E \\<guillemotright>\\<langle>es\\<rangle>\\<guillemotright> A\\<rbrakk>\n \\<Longrightarrow> \n Env\\<turnstile> B \\<guillemotright>\\<langle>e#es\\<rangle>\\<guillemotright> A\"" ]
template
###lemma ?Env\<turnstile> ?B \<guillemotright>\<langle> ?e1.0.[ ?e2.0]\<rangle>\<guillemotright> ?A \<Longrightarrow> (\<And>E1. ?Env\<turnstile> ?B \<guillemotright>\<langle> ?e1.0\<rangle>\<guillemotright> E1 \<Longrightarrow> ?Env\<turnstile> nrm E1 \<guillemotright>\<langle> ?e2.0\<rangle>\<guillemotright> ?A \<Longrightarrow> ?P) \<Longrightarrow> ?P ###symbols DefiniteAssignment.assigned.nrm :::: 'a assigned_scheme \<Rightarrow> lname set Term.var.AVar :::: expr \<Rightarrow> expr \<Rightarrow> Term.var Term.inj_term_class.inj_term :::: 'a \<Rightarrow> Term.term DefiniteAssignment.da :::: env \<Rightarrow> lname set \<Rightarrow> Term.term \<Rightarrow> assigned \<Rightarrow> bool ###defs record assigned = nrm :: "lname set" \<comment> \<open>Definetly assigned variables for normal completion\<close> brk :: "breakass" \<comment> \<open>Definetly assigned variables for abrupt completion with a break\<close> datatype var = LVar lname \<comment> \<open>local variable (incl. parameters)\<close> | FVar qtname qtname bool expr vname ("{_,_,_}_.._"[10,10,10,85,99]90) \<comment> \<open>class field\<close> \<comment> \<open>\<^term>\<open>{accC,statDeclC,stat}e..fn\<close>\<close> \<comment> \<open>\<open>accC\<close>: accessing class (static class were\<close> \<comment> \<open>the code is declared. Annotation only needed for\<close> \<comment> \<open>evaluation to check accessibility)\<close> \<comment> \<open>\<open>statDeclC\<close>: static declaration class of field\<close> \<comment> \<open>\<open>stat\<close>: static or instance field?\<close> \<comment> \<open>\<open>e\<close>: reference to object\<close> \<comment> \<open>\<open>fn\<close>: field name\<close> | AVar expr expr ("_.[_]"[90,10 ]90) \<comment> \<open>array component\<close> \<comment> \<open>\<^term>\<open>e1.[e2]\<close>: e1 array reference; e2 index\<close> | InsInitV stmt var \<comment> \<open>insertion of initialization before evaluation\<close> \<comment> \<open>of var (technical term for smallstep semantics.)\<close> and expr = NewC qtname \<comment> \<open>class instance creation\<close> | NewA ty expr ("New _[_]"[99,10 ]85) \<comment> \<open>array creation\<close> | Cast ty expr \<comment> \<open>type cast\<close> | Inst expr ref_ty ("_ InstOf _"[85,99] 85) \<comment> \<open>instanceof\<close> | Lit val \<comment> \<open>literal value, references not allowed\<close> | UnOp unop expr \<comment> \<open>unary operation\<close> | BinOp binop expr expr \<comment> \<open>binary operation\<close> | Super \<comment> \<open>special Super keyword\<close> | Acc var \<comment> \<open>variable access\<close> | Ass var expr ("_:=_" [90,85 ]85) \<comment> \<open>variable assign\<close> | Cond expr expr expr ("_ ? _ : _" [85,85,80]80) \<comment> \<open>conditional\<close> | Call qtname ref_ty inv_mode expr mname "(ty list)" "(expr list)" ("{_,_,_}_\<cdot>_'( {_}_')"[10,10,10,85,99,10,10]85) \<comment> \<open>method call\<close> \<comment> \<open>\<^term>\<open>{accC,statT,mode}e\<cdot>mn({pTs}args)\<close> "\<close> \<comment> \<open>\<open>accC\<close>: accessing class (static class were\<close> \<comment> \<open>the call code is declared. Annotation only needed for\<close> \<comment> \<open>evaluation to check accessibility)\<close> \<comment> \<open>\<open>statT\<close>: static declaration class/interface of\<close> \<comment> \<open>method\<close> \<comment> \<open>\<open>mode\<close>: invocation mode\<close> \<comment> \<open>\<open>e\<close>: reference to object\<close> \<comment> \<open>\<open>mn\<close>: field name\<close> \<comment> \<open>\<open>pTs\<close>: types of parameters\<close> \<comment> \<open>\<open>args\<close>: the actual parameters/arguments\<close> | Methd qtname sig \<comment> \<open>(folded) method (see below)\<close> | Body qtname stmt \<comment> \<open>(unfolded) method body\<close> | InsInitE stmt expr \<comment> \<open>insertion of initialization before\<close> \<comment> \<open>evaluation of expr (technical term for smallstep sem.)\<close> | Callee locals expr \<comment> \<open>save callers locals in callee-Frame\<close> \<comment> \<open>(technical term for smallstep semantics)\<close> and stmt = Skip \<comment> \<open>empty statement\<close> | Expr expr \<comment> \<open>expression statement\<close> | Lab jump stmt ("_\<bullet> _" [ 99,66]66) \<comment> \<open>labeled statement; handles break\<close> | Comp stmt stmt ("_;; _" [ 66,65]65) | If' expr stmt stmt ("If'(_') _ Else _" [ 80,79,79]70) | Loop label expr stmt ("_\<bullet> While'(_') _" [ 99,80,79]70) | Jmp jump \<comment> \<open>break, continue, return\<close> | Throw expr | TryC stmt qtname vname stmt ("Try _ Catch'(_ _') _" [79,99,80,79]70) \<comment> \<open>\<^term>\<open>Try c1 Catch(C vn) c2\<close>\<close> \<comment> \<open>\<open>c1\<close>: block were exception may be thrown\<close> \<comment> \<open>\<open>C\<close>: execption class to catch\<close> \<comment> \<open>\<open>vn\<close>: local name for exception used in \<open>c2\<close>\<close> \<comment> \<open>\<open>c2\<close>: block to execute when exception is cateched\<close> | Fin stmt stmt ("_ Finally _" [ 79,79]70) | FinA abopt stmt \<comment> \<open>Save abruption of first statement\<close> \<comment> \<open>technical term for smallstep sem.)\<close> | Init qtname \<comment> \<open>class initialization\<close> class inj_term = fixes inj_term:: "'a \<Rightarrow> term" ("\<langle>_\<rangle>" 1000) inductive da :: "env \<Rightarrow> lname set \<Rightarrow> term \<Rightarrow> assigned \<Rightarrow> bool" ("_\<turnstile> _ \<guillemotright>_\<guillemotright> _" [65,65,65,65] 71) where Skip: "Env\<turnstile> B \<guillemotright>\<langle>Skip\<rangle>\<guillemotright> \<lparr>nrm=B,brk=\<lambda> l. UNIV\<rparr>" | Expr: "Env\<turnstile> B \<guillemotright>\<langle>e\<rangle>\<guillemotright> A \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>Expr e\<rangle>\<guillemotright> A" | Lab: "\<lbrakk>Env\<turnstile> B \<guillemotright>\<langle>c\<rangle>\<guillemotright> C; nrm A = nrm C \<inter> (brk C) l; brk A = rmlab l (brk C)\<rbrakk> \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>Break l\<bullet> c\<rangle>\<guillemotright> A" | Comp: "\<lbrakk>Env\<turnstile> B \<guillemotright>\<langle>c1\<rangle>\<guillemotright> C1; Env\<turnstile> nrm C1 \<guillemotright>\<langle>c2\<rangle>\<guillemotright> C2; nrm A = nrm C2; brk A = (brk C1) \<Rightarrow>\<inter> (brk C2)\<rbrakk> \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>c1;; c2\<rangle>\<guillemotright> A" | If: "\<lbrakk>Env\<turnstile> B \<guillemotright>\<langle>e\<rangle>\<guillemotright> E; Env\<turnstile> (B \<union> assigns_if True e) \<guillemotright>\<langle>c1\<rangle>\<guillemotright> C1; Env\<turnstile> (B \<union> assigns_if False e) \<guillemotright>\<langle>c2\<rangle>\<guillemotright> C2; nrm A = nrm C1 \<inter> nrm C2; brk A = brk C1 \<Rightarrow>\<inter> brk C2 \<rbrakk> \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>If(e) c1 Else c2\<rangle>\<guillemotright> A" \<comment> \<open>Note that \<^term>\<open>E\<close> is not further used, because we take the specialized sets that also consider if the expression evaluates to True or False. Inside of \<^term>\<open>e\<close> there is no {\tt break} or {\tt finally}, so the break map of \<^term>\<open>E\<close> will be the trivial one. So \<^term>\<open>Env\<turnstile>B \<guillemotright>\<langle>e\<rangle>\<guillemotright> E\<close> is just used to ensure the definite assignment in expression \<^term>\<open>e\<close>. Notice the implicit analysis of a constant boolean expression \<^term>\<open>e\<close> in this rule. For example, if \<^term>\<open>e\<close> is constantly \<^term>\<open>True\<close> then \<^term>\<open>assigns_if False e = UNIV\<close> and therefor \<^term>\<open>nrm C2=UNIV\<close>. So finally \<^term>\<open>nrm A = nrm C1\<close>. For the break maps this trick workd too, because the trivial break map will map all labels to \<^term>\<open>UNIV\<close>. In the example, if no break occurs in \<^term>\<open>c2\<close> the break maps will trivially map to \<^term>\<open>UNIV\<close> and if a break occurs it will map to \<^term>\<open>UNIV\<close> too, because \<^term>\<open>assigns_if False e = UNIV\<close>. So in the intersection of the break maps the path \<^term>\<open>c2\<close> will have no contribution.\<close> | Loop: "\<lbrakk>Env\<turnstile> B \<guillemotright>\<langle>e\<rangle>\<guillemotright> E; Env\<turnstile> (B \<union> assigns_if True e) \<guillemotright>\<langle>c\<rangle>\<guillemotright> C; nrm A = nrm C \<inter> (B \<union> assigns_if False e); brk A = brk C\<rbrakk> \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>l\<bullet> While(e) c\<rangle>\<guillemotright> A" \<comment> \<open>The \<open>Loop\<close> rule resembles some of the ideas of the \<open>If\<close> rule. For the \<^term>\<open>nrm A\<close> the set \<^term>\<open>B \<union> assigns_if False e\<close> will be \<^term>\<open>UNIV\<close> if the condition is constantly True. To normally exit the while loop, we must consider the body \<^term>\<open>c\<close> to be completed normally (\<^term>\<open>nrm C\<close>) or with a break. But in this model, the label \<^term>\<open>l\<close> of the loop only handles continue labels, not break labels. The break label will be handled by an enclosing \<^term>\<open>Lab\<close> statement. So we don't have to handle the breaks specially.\<close> | Jmp: "\<lbrakk>jump=Ret \<longrightarrow> Result \<in> B; nrm A = UNIV; brk A = (case jump of Break l \<Rightarrow> \<lambda> k. if k=l then B else UNIV | Cont l \<Rightarrow> \<lambda> k. UNIV | Ret \<Rightarrow> \<lambda> k. UNIV)\<rbrakk> \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>Jmp jump\<rangle>\<guillemotright> A" \<comment> \<open>In case of a break to label \<^term>\<open>l\<close> the corresponding break set is all variables assigned before the break. The assigned variables for normal completion of the \<^term>\<open>Jmp\<close> is \<^term>\<open>UNIV\<close>, because the statement will never complete normally. For continue and return the break map is the trivial one. In case of a return we enshure that the result value is assigned.\<close> | Throw: "\<lbrakk>Env\<turnstile> B \<guillemotright>\<langle>e\<rangle>\<guillemotright> E; nrm A = UNIV; brk A = (\<lambda> l. UNIV)\<rbrakk> \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>Throw e\<rangle>\<guillemotright> A" | Try: "\<lbrakk>Env\<turnstile> B \<guillemotright>\<langle>c1\<rangle>\<guillemotright> C1; Env\<lparr>lcl := (lcl Env)(VName vn\<mapsto>Class C)\<rparr>\<turnstile> (B \<union> {VName vn}) \<guillemotright>\<langle>c2\<rangle>\<guillemotright> C2; nrm A = nrm C1 \<inter> nrm C2; brk A = brk C1 \<Rightarrow>\<inter> brk C2\<rbrakk> \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>Try c1 Catch(C vn) c2\<rangle>\<guillemotright> A" | Fin: "\<lbrakk>Env\<turnstile> B \<guillemotright>\<langle>c1\<rangle>\<guillemotright> C1; Env\<turnstile> B \<guillemotright>\<langle>c2\<rangle>\<guillemotright> C2; nrm A = nrm C1 \<union> nrm C2; brk A = ((brk C1) \<Rightarrow>\<union>\<^sub>\<forall> (nrm C2)) \<Rightarrow>\<inter> (brk C2)\<rbrakk> \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>c1 Finally c2\<rangle>\<guillemotright> A" \<comment> \<open>The set of assigned variables before execution \<^term>\<open>c2\<close> are the same as before execution \<^term>\<open>c1\<close>, because \<^term>\<open>c1\<close> could throw an exception and so we can't guarantee that any variable will be assigned in \<^term>\<open>c1\<close>. The \<open>Finally\<close> statement completes normally if both \<^term>\<open>c1\<close> and \<^term>\<open>c2\<close> complete normally. If \<^term>\<open>c1\<close> completes abruptly with a break, then \<^term>\<open>c2\<close> also will be executed and may terminate normally or with a break. The overall break map then is the intersection of the maps of both paths. If \<^term>\<open>c2\<close> terminates normally we have to extend all break sets in \<^term>\<open>brk C1\<close> with \<^term>\<open>nrm C2\<close> (\<open>\<Rightarrow>\<union>\<^sub>\<forall>\<close>). If \<^term>\<open>c2\<close> exits with a break this break will appear in the overall result state. We don't know if \<^term>\<open>c1\<close> completed normally or abruptly (maybe with an exception not only a break) so \<^term>\<open>c1\<close> has no contribution to the break map following this path.\<close> \<comment> \<open>Evaluation of expressions and the break sets of definite assignment: Thinking of a Java expression we assume that we can never have a break statement inside of a expression. So for all expressions the break sets could be set to the trivial one: \<^term>\<open>\<lambda> l. UNIV\<close>. But we can't trivially proof, that evaluating an expression will never result in a break, allthough Java expressions allready syntactically don't allow nested stetements in them. The reason are the nested class initialzation statements which are inserted by the evaluation rules. So to proof the absence of a break we need to ensure, that the initialization statements will never end up in a break. In a wellfromed initialization statement, of course, were breaks are nested correctly inside of \<^term>\<open>Lab\<close> or \<^term>\<open>Loop\<close> statements evaluation of the whole initialization statement will never result in a break, because this break will be handled inside of the statement. But for simplicity we haven't added the analysis of the correct nesting of breaks in the typing judgments right now. So we have decided to adjust the rules of definite assignment to fit to these circumstances. If an initialization is involved during evaluation of the expression (evaluation rules \<open>FVar\<close>, \<open>NewC\<close> and \<open>NewA\<close>\<close> | Init: "Env\<turnstile> B \<guillemotright>\<langle>Init C\<rangle>\<guillemotright> \<lparr>nrm=B,brk=\<lambda> l. UNIV\<rparr>" \<comment> \<open>Wellformedness of a program will ensure, that every static initialiser is definetly assigned and the jumps are nested correctly. The case here for \<^term>\<open>Init\<close> is just for convenience, to get a proper precondition for the induction hypothesis in various proofs, so that we don't have to expand the initialisation on every point where it is triggerred by the evaluation rules.\<close> | NewC: "Env\<turnstile> B \<guillemotright>\<langle>NewC C\<rangle>\<guillemotright> \<lparr>nrm=B,brk=\<lambda> l. UNIV\<rparr>" | NewA: "Env\<turnstile> B \<guillemotright>\<langle>e\<rangle>\<guillemotright> A \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>New T[e]\<rangle>\<guillemotright> A" | Cast: "Env\<turnstile> B \<guillemotright>\<langle>e\<rangle>\<guillemotright> A \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>Cast T e\<rangle>\<guillemotright> A" | Inst: "Env\<turnstile> B \<guillemotright>\<langle>e\<rangle>\<guillemotright> A \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>e InstOf T\<rangle>\<guillemotright> A" | Lit: "Env\<turnstile> B \<guillemotright>\<langle>Lit v\<rangle>\<guillemotright> \<lparr>nrm=B,brk=\<lambda> l. UNIV\<rparr>" | UnOp: "Env\<turnstile> B \<guillemotright>\<langle>e\<rangle>\<guillemotright> A \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>UnOp unop e\<rangle>\<guillemotright> A" | CondAnd: "\<lbrakk>Env\<turnstile> B \<guillemotright>\<langle>e1\<rangle>\<guillemotright> E1; Env\<turnstile> (B \<union> assigns_if True e1) \<guillemotright>\<langle>e2\<rangle>\<guillemotright> E2; nrm A = B \<union> (assigns_if True (BinOp CondAnd e1 e2) \<inter> assigns_if False (BinOp CondAnd e1 e2)); brk A = (\<lambda> l. UNIV) \<rbrakk> \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>BinOp CondAnd e1 e2\<rangle>\<guillemotright> A" | CondOr: "\<lbrakk>Env\<turnstile> B \<guillemotright>\<langle>e1\<rangle>\<guillemotright> E1; Env\<turnstile> (B \<union> assigns_if False e1) \<guillemotright>\<langle>e2\<rangle>\<guillemotright> E2; nrm A = B \<union> (assigns_if True (BinOp CondOr e1 e2) \<inter> assigns_if False (BinOp CondOr e1 e2)); brk A = (\<lambda> l. UNIV) \<rbrakk> \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>BinOp CondOr e1 e2\<rangle>\<guillemotright> A" | BinOp: "\<lbrakk>Env\<turnstile> B \<guillemotright>\<langle>e1\<rangle>\<guillemotright> E1; Env\<turnstile> nrm E1 \<guillemotright>\<langle>e2\<rangle>\<guillemotright> A; binop \<noteq> CondAnd; binop \<noteq> CondOr\<rbrakk> \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>BinOp binop e1 e2\<rangle>\<guillemotright> A" | Super: "This \<in> B \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>Super\<rangle>\<guillemotright> \<lparr>nrm=B,brk=\<lambda> l. UNIV\<rparr>" | AccLVar: "\<lbrakk>vn \<in> B; nrm A = B; brk A = (\<lambda> k. UNIV)\<rbrakk> \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>Acc (LVar vn)\<rangle>\<guillemotright> A" \<comment> \<open>To properly access a local variable we have to test the definite assignment here. The variable must occur in the set \<^term>\<open>B\<close>\<close> | Acc: "\<lbrakk>\<forall> vn. v \<noteq> LVar vn; Env\<turnstile> B \<guillemotright>\<langle>v\<rangle>\<guillemotright> A\<rbrakk> \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>Acc v\<rangle>\<guillemotright> A" | AssLVar: "\<lbrakk>Env\<turnstile> B \<guillemotright>\<langle>e\<rangle>\<guillemotright> E; nrm A = nrm E \<union> {vn}; brk A = brk E\<rbrakk> \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>(LVar vn) := e\<rangle>\<guillemotright> A" | Ass: "\<lbrakk>\<forall> vn. v \<noteq> LVar vn; Env\<turnstile> B \<guillemotright>\<langle>v\<rangle>\<guillemotright> V; Env\<turnstile> nrm V \<guillemotright>\<langle>e\<rangle>\<guillemotright> A\<rbrakk> \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>v := e\<rangle>\<guillemotright> A" | CondBool: "\<lbrakk>Env\<turnstile>(c ? e1 : e2)\<Colon>-(PrimT Boolean); Env\<turnstile> B \<guillemotright>\<langle>c\<rangle>\<guillemotright> C; Env\<turnstile> (B \<union> assigns_if True c) \<guillemotright>\<langle>e1\<rangle>\<guillemotright> E1; Env\<turnstile> (B \<union> assigns_if False c) \<guillemotright>\<langle>e2\<rangle>\<guillemotright> E2; nrm A = B \<union> (assigns_if True (c ? e1 : e2) \<inter> assigns_if False (c ? e1 : e2)); brk A = (\<lambda> l. UNIV)\<rbrakk> \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>c ? e1 : e2\<rangle>\<guillemotright> A" | Cond: "\<lbrakk>\<not> Env\<turnstile>(c ? e1 : e2)\<Colon>-(PrimT Boolean); Env\<turnstile> B \<guillemotright>\<langle>c\<rangle>\<guillemotright> C; Env\<turnstile> (B \<union> assigns_if True c) \<guillemotright>\<langle>e1\<rangle>\<guillemotright> E1; Env\<turnstile> (B \<union> assigns_if False c) \<guillemotright>\<langle>e2\<rangle>\<guillemotright> E2; nrm A = nrm E1 \<inter> nrm E2; brk A = (\<lambda> l. UNIV)\<rbrakk> \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>c ? e1 : e2\<rangle>\<guillemotright> A" | Call: "\<lbrakk>Env\<turnstile> B \<guillemotright>\<langle>e\<rangle>\<guillemotright> E; Env\<turnstile> nrm E \<guillemotright>\<langle>args\<rangle>\<guillemotright> A\<rbrakk> \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>{accC,statT,mode}e\<cdot>mn({pTs}args)\<rangle>\<guillemotright> A" \<comment> \<open>The interplay of \<^term>\<open>Call\<close>, \<^term>\<open>Methd\<close> and \<^term>\<open>Body\<close>: Why rules for \<^term>\<open>Methd\<close> and \<^term>\<open>Body\<close> at all? Note that a Java source program will not include bare \<^term>\<open>Methd\<close> or \<^term>\<open>Body\<close> terms. These terms are just introduced during evaluation. So definite assignment of \<^term>\<open>Call\<close> does not consider \<^term>\<open>Methd\<close> or \<^term>\<open>Body\<close> at all. So for definite assignment alone we could omit the rules for \<^term>\<open>Methd\<close> and \<^term>\<open>Body\<close>. But since evaluation of the method invocation is split up into three rules we must ensure that we have enough information about the call even in the \<^term>\<open>Body\<close> term to make sure that we can proof type safety. Also we must be able transport this information from \<^term>\<open>Call\<close> to \<^term>\<open>Methd\<close> and then further to \<^term>\<open>Body\<close> during evaluation to establish the definite assignment of \<^term>\<open>Methd\<close> during evaluation of \<^term>\<open>Call\<close>, and of \<^term>\<open>Body\<close> during evaluation of \<^term>\<open>Methd\<close>. This is necessary since definite assignment will be a precondition for each induction hypothesis coming out of the evaluation rules, and therefor we have to establish the definite assignment of the sub-evaluation during the type-safety proof. Note that well-typedness is also a precondition for type-safety and so we can omit some assertion that are already ensured by well-typedness.\<close> | Methd: "\<lbrakk>methd (prg Env) D sig = Some m; Env\<turnstile> B \<guillemotright>\<langle>Body (declclass m) (stmt (mbody (mthd m)))\<rangle>\<guillemotright> A \<rbrakk> \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>Methd D sig\<rangle>\<guillemotright> A" | Body: "\<lbrakk>Env\<turnstile> B \<guillemotright>\<langle>c\<rangle>\<guillemotright> C; jumpNestingOkS {Ret} c; Result \<in> nrm C; nrm A = B; brk A = (\<lambda> l. UNIV)\<rbrakk> \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>Body D c\<rangle>\<guillemotright> A" \<comment> \<open>Note that \<^term>\<open>A\<close> is not correlated to \<^term>\<open>C\<close>. If the body statement returns abruptly with return, evaluation of \<^term>\<open>Body\<close> will absorb this return and complete normally. So we cannot trivially get the assigned variables of the body statement since it has not completed normally or with a break. If the body completes normally we guarantee that the result variable is set with this rule. But if the body completes abruptly with a return we can't guarantee that the result variable is set here, since definite assignment only talks about normal completion and breaks. So for a return the \<^term>\<open>Jump\<close> rule ensures that the result variable is set and then this information must be carried over to the \<^term>\<open>Body\<close> rule by the conformance predicate of the state.\<close> | LVar: "Env\<turnstile> B \<guillemotright>\<langle>LVar vn\<rangle>\<guillemotright> \<lparr>nrm=B, brk=\<lambda> l. UNIV\<rparr>" | FVar: "Env\<turnstile> B \<guillemotright>\<langle>e\<rangle>\<guillemotright> A \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>{accC,statDeclC,stat}e..fn\<rangle>\<guillemotright> A" | AVar: "\<lbrakk>Env\<turnstile> B \<guillemotright>\<langle>e1\<rangle>\<guillemotright> E1; Env\<turnstile> nrm E1 \<guillemotright>\<langle>e2\<rangle>\<guillemotright> A\<rbrakk> \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>e1.[e2]\<rangle>\<guillemotright> A" | Nil: "Env\<turnstile> B \<guillemotright>\<langle>[]::expr list\<rangle>\<guillemotright> \<lparr>nrm=B, brk=\<lambda> l. UNIV\<rparr>" | Cons: "\<lbrakk>Env\<turnstile> B \<guillemotright>\<langle>e::expr\<rangle>\<guillemotright> E; Env\<turnstile> nrm E \<guillemotright>\<langle>es\<rangle>\<guillemotright> A\<rbrakk> \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>e#es\<rangle>\<guillemotright> A"
###output \<lbrakk> ?H1 x_1 x_2 (?H2 (?H3 x_3 x_4)) x_5; \<And>y_0. \<lbrakk> ?H1 x_1 x_2 (?H2 x_3) y_0; ?H1 x_1 (?H4 y_0) (?H2 x_4) x_5\<rbrakk> \<Longrightarrow> x_6\<rbrakk> \<Longrightarrow> x_6###end
Complex
Complex.sgn_cis
lemma sgn_cis [simp]: "sgn (cis a) = cis a"
sgn (cis ?a) = cis ?a
?H1 (?H2 x_1) = ?H2 x_1
[ "Complex.cis", "Groups.sgn_class.sgn" ]
[ "real \\<Rightarrow> complex", "'a \\<Rightarrow> 'a" ]
[ "primcorec cis :: \"real \\<Rightarrow> complex\"\n where\n \"Re (cis a) = cos a\"\n | \"Im (cis a) = sin a\"", "class sgn =\n fixes sgn :: \"'a \\<Rightarrow> 'a\"" ]
template
###lemma sgn (cis ?a) = cis ?a ###symbols Complex.cis :::: real \<Rightarrow> complex Groups.sgn_class.sgn :::: 'a \<Rightarrow> 'a ###defs primcorec cis :: "real \<Rightarrow> complex" where "Re (cis a) = cos a" | "Im (cis a) = sin a" class sgn = fixes sgn :: "'a \<Rightarrow> 'a"
###output ?H1 (?H2 x_1) = ?H2 x_1###end
Topological_Spaces
Topological_Spaces.connected_Ici
lemma connected_Ici[simp]: "connected {a..}" for a :: "'a::linear_continuum_topology"
connected { ?a..}
?H1 (?H2 x_1)
[ "Set_Interval.ord_class.atLeast", "Topological_Spaces.topological_space_class.connected" ]
[ "'a \\<Rightarrow> 'a set", "'a set \\<Rightarrow> bool" ]
[ "class topological_space = \"open\" +\n assumes open_UNIV [simp, intro]: \"open UNIV\"\n assumes open_Int [intro]: \"open S \\<Longrightarrow> open T \\<Longrightarrow> open (S \\<inter> T)\"\n assumes open_Union [intro]: \"\\<forall>S\\<in>K. open S \\<Longrightarrow> open (\\<Union>K)\"\nbegin" ]
template
###lemma connected { ?a..} ###symbols Set_Interval.ord_class.atLeast :::: 'a \<Rightarrow> 'a set Topological_Spaces.topological_space_class.connected :::: 'a set \<Rightarrow> bool ###defs class topological_space = "open" + assumes open_UNIV [simp, intro]: "open UNIV" assumes open_Int [intro]: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<inter> T)" assumes open_Union [intro]: "\<forall>S\<in>K. open S \<Longrightarrow> open (\<Union>K)" begin
###output ?H1 (?H2 x_1)###end
Nominal/Nominal
Nominal.at_ds8_aux
lemma at_ds8_aux: fixes pi :: "'x prm" and a :: "'x" and b :: "'x" and c :: "'x" assumes at: "at TYPE('x)" shows "pi\<bullet>(swap (a,b) c) = swap (pi\<bullet>a,pi\<bullet>b) (pi\<bullet>c)"
at TYPE(?'x) \<Longrightarrow> ?pi \<bullet> swap (?a, ?b) ?c = swap (?pi \<bullet> ?a, ?pi \<bullet> ?b) (?pi \<bullet> ?c)
?H1 TYPE(?'x) \<Longrightarrow> ?H2 x_1 (?H3 (x_2, x_3) x_4) = ?H3 (?H2 x_1 x_2, ?H2 x_1 x_3) (?H2 x_1 x_4)
[ "Nominal.swap", "Nominal.perm", "Nominal.at" ]
[ "'a \\<times> 'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "('a \\<times> 'a) list \\<Rightarrow> 'b \\<Rightarrow> 'b", "'a itself \\<Rightarrow> bool" ]
[ "consts \n perm :: \"'x prm \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixr \\<open>\\<bullet>\\<close> 80)\n swap :: \"('x \\<times> 'x) \\<Rightarrow> 'x \\<Rightarrow> 'x\"", "definition\n \"at TYPE('x) \\<equiv> \n (\\<forall>(x::'x). ([]::'x prm)\\<bullet>x = x) \\<and>\n (\\<forall>(a::'x) (b::'x) (pi::'x prm) (x::'x). ((a,b)#(pi::'x prm))\\<bullet>x = swap (a,b) (pi\\<bullet>x)) \\<and> \n (\\<forall>(a::'x) (b::'x) (c::'x). swap (a,b) c = (if a=c then b else (if b=c then a else c))) \\<and> \n (infinite (UNIV::'x set))\"" ]
template
###lemma at TYPE(?'x) \<Longrightarrow> ?pi \<bullet> swap (?a, ?b) ?c = swap (?pi \<bullet> ?a, ?pi \<bullet> ?b) (?pi \<bullet> ?c) ###symbols Nominal.swap :::: 'a \<times> 'a \<Rightarrow> 'a \<Rightarrow> 'a Nominal.perm :::: ('a \<times> 'a) list \<Rightarrow> 'b \<Rightarrow> 'b Nominal.at :::: 'a itself \<Rightarrow> bool ###defs consts perm :: "'x prm \<Rightarrow> 'a \<Rightarrow> 'a" (infixr \<open>\<bullet>\<close> 80) swap :: "('x \<times> 'x) \<Rightarrow> 'x \<Rightarrow> 'x" definition "at TYPE('x) \<equiv> (\<forall>(x::'x). ([]::'x prm)\<bullet>x = x) \<and> (\<forall>(a::'x) (b::'x) (pi::'x prm) (x::'x). ((a,b)#(pi::'x prm))\<bullet>x = swap (a,b) (pi\<bullet>x)) \<and> (\<forall>(a::'x) (b::'x) (c::'x). swap (a,b) c = (if a=c then b else (if b=c then a else c))) \<and> (infinite (UNIV::'x set))"
###output ?H1 TYPE(?'x) \<Longrightarrow> ?H2 x_1 (?H3 (x_2, x_3) x_4) = ?H3 (?H2 x_1 x_2, ?H2 x_1 x_3) (?H2 x_1 x_4)###end
Computational_Algebra/Formal_Power_Series
Formal_Power_Series.radical_fps_exp
lemma radical_fps_exp: assumes r: "r (Suc k) 1 = 1" shows "fps_radical r (Suc k) (fps_exp (c::'a::field_char_0)) = fps_exp (c / of_nat (Suc k))"
?r (Suc ?k) (1:: ?'a) = (1:: ?'a) \<Longrightarrow> fps_radical ?r (Suc ?k) (fps_exp ?c) = fps_exp (?c / of_nat (Suc ?k))
x_1 (?H1 x_2) ?H2 = ?H2 \<Longrightarrow> ?H3 x_1 (?H1 x_2) (?H4 x_3) = ?H4 (?H5 x_3 (?H6 (?H1 x_2)))
[ "Nat.semiring_1_class.of_nat", "Fields.inverse_class.inverse_divide", "Formal_Power_Series.fps_exp", "Formal_Power_Series.fps_radical", "Groups.one_class.one", "Nat.Suc" ]
[ "nat \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a fps", "(nat \\<Rightarrow> 'a \\<Rightarrow> 'a) \\<Rightarrow> nat \\<Rightarrow> 'a fps \\<Rightarrow> 'a fps", "'a", "nat \\<Rightarrow> nat" ]
[ "class inverse = divide +\n fixes inverse :: \"'a \\<Rightarrow> 'a\"\nbegin", "definition \"fps_exp x = Abs_fps (\\<lambda>n. x^n / of_nat (fact n))\"", "definition \"fps_radical r n a = Abs_fps (radical r n a)\"", "class one =\n fixes one :: 'a (\"1\")", "definition Suc :: \"nat \\<Rightarrow> nat\"\n where \"Suc n = Abs_Nat (Suc_Rep (Rep_Nat n))\"" ]
template
###lemma ?r (Suc ?k) (1:: ?'a) = (1:: ?'a) \<Longrightarrow> fps_radical ?r (Suc ?k) (fps_exp ?c) = fps_exp (?c / of_nat (Suc ?k)) ###symbols Nat.semiring_1_class.of_nat :::: nat \<Rightarrow> 'a Fields.inverse_class.inverse_divide :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Formal_Power_Series.fps_exp :::: 'a \<Rightarrow> 'a fps Formal_Power_Series.fps_radical :::: (nat \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> 'a fps \<Rightarrow> 'a fps Groups.one_class.one :::: 'a Nat.Suc :::: nat \<Rightarrow> nat ###defs class inverse = divide + fixes inverse :: "'a \<Rightarrow> 'a" begin definition "fps_exp x = Abs_fps (\<lambda>n. x^n / of_nat (fact n))" definition "fps_radical r n a = Abs_fps (radical r n a)" class one = fixes one :: 'a ("1") definition Suc :: "nat \<Rightarrow> nat" where "Suc n = Abs_Nat (Suc_Rep (Rep_Nat n))"
###output x_1 (?H1 x_2) ?H2 = ?H2 \<Longrightarrow> ?H3 x_1 (?H1 x_2) (?H4 x_3) = ?H4 (?H5 x_3 (?H6 (?H1 x_2)))###end
Nonstandard_Analysis/NSA
NSA.hrabs_le_Infinitesimal
lemma hrabs_le_Infinitesimal: "e \<in> Infinitesimal \<Longrightarrow> \<bar>x\<bar> \<le> e \<Longrightarrow> x \<in> Infinitesimal" for x :: hypreal
?e \<in> Infinitesimal \<Longrightarrow> \<bar> ?x\<bar> \<le> ?e \<Longrightarrow> ?x \<in> Infinitesimal
\<lbrakk>x_1 \<in> ?H1; ?H2 x_2 \<le> x_1\<rbrakk> \<Longrightarrow> x_2 \<in> ?H1
[ "Groups.abs_class.abs", "NSA.Infinitesimal" ]
[ "'a \\<Rightarrow> 'a", "'a star set" ]
[ "class abs =\n fixes abs :: \"'a \\<Rightarrow> 'a\" (\"\\<bar>_\\<bar>\")", "definition Infinitesimal :: \"('a::real_normed_vector) star set\"\n where \"Infinitesimal = {x. \\<forall>r \\<in> Reals. 0 < r \\<longrightarrow> hnorm x < r}\"" ]
template
###lemma ?e \<in> Infinitesimal \<Longrightarrow> \<bar> ?x\<bar> \<le> ?e \<Longrightarrow> ?x \<in> Infinitesimal ###symbols Groups.abs_class.abs :::: 'a \<Rightarrow> 'a NSA.Infinitesimal :::: 'a star set ###defs class abs = fixes abs :: "'a \<Rightarrow> 'a" ("\<bar>_\<bar>") definition Infinitesimal :: "('a::real_normed_vector) star set" where "Infinitesimal = {x. \<forall>r \<in> Reals. 0 < r \<longrightarrow> hnorm x < r}"
###output \<lbrakk>x_1 \<in> ?H1; ?H2 x_2 \<le> x_1\<rbrakk> \<Longrightarrow> x_2 \<in> ?H1###end
Bit_Operations
Bit_Operations.not_negative_int_iff
lemma not_negative_int_iff [simp]: \<open>NOT k < 0 \<longleftrightarrow> k \<ge> 0\<close> for k :: int
(not ?k < 0) = (0 \<le> ?k)
(?H1 x_1 < ?H2) = (?H2 \<le> x_1)
[ "Groups.zero_class.zero", "Bit_Operations.ring_bit_operations_class.not" ]
[ "'a", "'a \\<Rightarrow> 'a" ]
[ "class zero =\n fixes zero :: 'a (\"0\")", "class ring_bit_operations = semiring_bit_operations + ring_parity +\n fixes not :: \\<open>'a \\<Rightarrow> 'a\\<close> (\\<open>NOT\\<close>)\n assumes not_eq_complement: \\<open>NOT a = - a - 1\\<close>\nbegin" ]
template
###lemma (not ?k < 0) = (0 \<le> ?k) ###symbols Groups.zero_class.zero :::: 'a Bit_Operations.ring_bit_operations_class.not :::: 'a \<Rightarrow> 'a ###defs class zero = fixes zero :: 'a ("0") class ring_bit_operations = semiring_bit_operations + ring_parity + fixes not :: \<open>'a \<Rightarrow> 'a\<close> (\<open>NOT\<close>) assumes not_eq_complement: \<open>NOT a = - a - 1\<close> begin
###output (?H1 x_1 < ?H2) = (?H2 \<le> x_1)###end
Combinatorics/Orbits
Orbits.orbit_altdef_permutation
lemma orbit_altdef_permutation: assumes "permutation f" shows "orbit f s = {(f ^^ n) s | n. True}"
permutation ?f \<Longrightarrow> orbit ?f ?s = {(?f ^^ n) ?s |n. True}
?H1 x_1 \<Longrightarrow> ?H2 x_1 x_2 = ?H3 (\<lambda>y_0. \<exists>y_1. y_0 = ?H4 x_1 y_1 x_2 \<and> True)
[ "Nat.compower", "Set.Collect", "Orbits.orbit", "Permutations.permutation" ]
[ "'a \\<Rightarrow> nat \\<Rightarrow> 'a", "('a \\<Rightarrow> bool) \\<Rightarrow> 'a set", "('a \\<Rightarrow> 'a) \\<Rightarrow> 'a \\<Rightarrow> 'a set", "('a \\<Rightarrow> 'a) \\<Rightarrow> bool" ]
[ "abbreviation compower :: \"'a \\<Rightarrow> nat \\<Rightarrow> 'a\" (infixr \"^^\" 80)\n where \"f ^^ n \\<equiv> compow n f\"", "inductive_set orbit :: \"('a \\<Rightarrow> 'a) \\<Rightarrow> 'a \\<Rightarrow> 'a set\" for f x where\n base: \"f x \\<in> orbit f x\" |\n step: \"y \\<in> orbit f x \\<Longrightarrow> f y \\<in> orbit f x\"", "definition \"permutation p \\<longleftrightarrow> (\\<exists>n. swapidseq n p)\"" ]
template
###lemma permutation ?f \<Longrightarrow> orbit ?f ?s = {(?f ^^ n) ?s |n. True} ###symbols Nat.compower :::: 'a \<Rightarrow> nat \<Rightarrow> 'a Set.Collect :::: ('a \<Rightarrow> bool) \<Rightarrow> 'a set Orbits.orbit :::: ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a set Permutations.permutation :::: ('a \<Rightarrow> 'a) \<Rightarrow> bool ###defs abbreviation compower :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infixr "^^" 80) where "f ^^ n \<equiv> compow n f" inductive_set orbit :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a set" for f x where base: "f x \<in> orbit f x" | step: "y \<in> orbit f x \<Longrightarrow> f y \<in> orbit f x" definition "permutation p \<longleftrightarrow> (\<exists>n. swapidseq n p)"
###output ?H1 x_1 \<Longrightarrow> ?H2 x_1 x_2 = ?H3 (\<lambda>y_0. \<exists>y_1. y_0 = ?H4 x_1 y_1 x_2 \<and> True)###end
Set
Set.vimageE
lemma vimageE [elim!]: "a \<in> f -` B \<Longrightarrow> (\<And>x. f a = x \<Longrightarrow> x \<in> B \<Longrightarrow> P) \<Longrightarrow> P"
?a \<in> ?f -` ?B \<Longrightarrow> (\<And>x. ?f ?a = x \<Longrightarrow> x \<in> ?B \<Longrightarrow> ?P) \<Longrightarrow> ?P
\<lbrakk>x_1 \<in> ?H1 x_2 x_3; \<And>y_0. \<lbrakk>x_2 x_1 = y_0; y_0 \<in> x_3\<rbrakk> \<Longrightarrow> x_4\<rbrakk> \<Longrightarrow> x_4
[ "Set.vimage" ]
[ "('a \\<Rightarrow> 'b) \\<Rightarrow> 'b set \\<Rightarrow> 'a set" ]
[ "definition vimage :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'b set \\<Rightarrow> 'a set\" (infixr \"-`\" 90)\n where \"f -` B \\<equiv> {x. f x \\<in> B}\"" ]
template
###lemma ?a \<in> ?f -` ?B \<Longrightarrow> (\<And>x. ?f ?a = x \<Longrightarrow> x \<in> ?B \<Longrightarrow> ?P) \<Longrightarrow> ?P ###symbols Set.vimage :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'b set \<Rightarrow> 'a set ###defs definition vimage :: "('a \<Rightarrow> 'b) \<Rightarrow> 'b set \<Rightarrow> 'a set" (infixr "-`" 90) where "f -` B \<equiv> {x. f x \<in> B}"
###output \<lbrakk>x_1 \<in> ?H1 x_2 x_3; \<And>y_0. \<lbrakk>x_2 x_1 = y_0; y_0 \<in> x_3\<rbrakk> \<Longrightarrow> x_4\<rbrakk> \<Longrightarrow> x_4###end
Library/RBT_Set
RBT_Set.Min_fin_set_fold
lemma Min_fin_set_fold [code]: "Min (Set t) = (if RBT.is_empty t then Code.abort (STR ''not_non_empty_tree'') (\<lambda>_. Min (Set t)) else r_min_opt t)"
Min (RBT_Set.Set ?t) = (if RBT.is_empty ?t then Code.abort STR ''not_non_empty_tree'' (\<lambda>_. Min (RBT_Set.Set ?t)) else r_min_opt ?t)
?H1 (?H2 x_1) = (if ?H3 x_1 then ?H4 (?H5 False True True True False True True (?H5 True True True True False True True (?H5 False False True False True True True (?H5 True True True True True False True (?H5 False True True True False True True (?H5 True True True True False True True (?H5 False True True True False True True (?H5 True True True True True False True (?H5 True False True False False True True (?H5 True False True True False True True (?H5 False False False False True True True (?H5 False False True False True True True (?H5 True False False True True True True (?H5 True True True True True False True (?H5 False False True False True True True (?H5 False True False False True True True (?H5 True False True False False True True (?H5 True False True False False True True ?H6)))))))))))))))))) (\<lambda>y_0. ?H1 (?H2 x_1)) else ?H7 x_1)
[ "RBT_Set.r_min_opt", "String.empty_literal", "String.Literal", "String.Code.abort", "RBT.is_empty", "RBT_Set.Set", "Lattices_Big.linorder_class.Min" ]
[ "('a, unit) RBT.rbt \\<Rightarrow> 'a", "String.literal", "bool \\<Rightarrow> bool \\<Rightarrow> bool \\<Rightarrow> bool \\<Rightarrow> bool \\<Rightarrow> bool \\<Rightarrow> bool \\<Rightarrow> String.literal \\<Rightarrow> String.literal", "String.literal \\<Rightarrow> (unit \\<Rightarrow> 'a) \\<Rightarrow> 'a", "('a, 'b) RBT.rbt \\<Rightarrow> bool", "('a, unit) RBT.rbt \\<Rightarrow> 'a set", "'a set \\<Rightarrow> 'a" ]
[ "abbreviation (output) empty_literal :: String.literal\n where \"empty_literal \\<equiv> 0\"", "definition is_empty :: \"('a::linorder, 'b) rbt \\<Rightarrow> bool\" where\n [code]: \"is_empty t = (case impl_of t of RBT_Impl.Empty \\<Rightarrow> True | _ \\<Rightarrow> False)\"", "definition Set :: \"('a::linorder, unit) rbt \\<Rightarrow> 'a set\" \n where \"Set t = {x . RBT.lookup t x = Some ()}\"" ]
template
###lemma Min (RBT_Set.Set ?t) = (if RBT.is_empty ?t then Code.abort STR ''not_non_empty_tree'' (\<lambda>_. Min (RBT_Set.Set ?t)) else r_min_opt ?t) ###symbols RBT_Set.r_min_opt :::: ('a, unit) RBT.rbt \<Rightarrow> 'a String.empty_literal :::: String.literal String.Literal :::: bool \<Rightarrow> bool \<Rightarrow> bool \<Rightarrow> bool \<Rightarrow> bool \<Rightarrow> bool \<Rightarrow> bool \<Rightarrow> String.literal \<Rightarrow> String.literal String.Code.abort :::: String.literal \<Rightarrow> (unit \<Rightarrow> 'a) \<Rightarrow> 'a RBT.is_empty :::: ('a, 'b) RBT.rbt \<Rightarrow> bool RBT_Set.Set :::: ('a, unit) RBT.rbt \<Rightarrow> 'a set Lattices_Big.linorder_class.Min :::: 'a set \<Rightarrow> 'a ###defs abbreviation (output) empty_literal :: String.literal where "empty_literal \<equiv> 0" definition is_empty :: "('a::linorder, 'b) rbt \<Rightarrow> bool" where [code]: "is_empty t = (case impl_of t of RBT_Impl.Empty \<Rightarrow> True | _ \<Rightarrow> False)" definition Set :: "('a::linorder, unit) rbt \<Rightarrow> 'a set" where "Set t = {x . RBT.lookup t x = Some ()}"
###output ?H1 (?H2 x_1) = (if ?H3 x_1 then ?H4 (?H5 False True True True False True True (?H5 True True True True False True True (?H5 False False True False True True True (?H5 True True True True True False True (?H5 False True True True False True True (?H5 True True True True False True True (?H5 False True True True False True True (?H5 True True True True True False True (?H5 True False True False False True True (?H5 True False True True False True True (?H5 False False False False True True True (?H5 False False True False True True True (?H5 True False False True True True True (?H5 True True True True True False True (?H5 False False True False True True True (?H5 False True False False True True True (?H5 True False True False False True True (?H5 True False True False False True True ?H6)))))))))))))))))) (\<lambda>y_0. ?H1 (?H2 x_1)) else ?H7 x_1)###end
Analysis/Measure_Space
Measure_Space.enn2real_plus
lemma enn2real_plus:"a < top \<Longrightarrow> b < top \<Longrightarrow> enn2real (a + b) = enn2real a + enn2real b"
?a < top \<Longrightarrow> ?b < top \<Longrightarrow> enn2real (?a + ?b) = enn2real ?a + enn2real ?b
\<lbrakk>x_1 < ?H1; x_2 < ?H1\<rbrakk> \<Longrightarrow> ?H2 (?H3 x_1 x_2) = ?H3 (?H2 x_1) (?H2 x_2)
[ "Groups.plus_class.plus", "Extended_Nonnegative_Real.enn2real", "Orderings.top_class.top" ]
[ "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "ennreal \\<Rightarrow> real", "'a" ]
[ "class plus =\n fixes plus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"+\" 65)", "definition \"enn2real x = real_of_ereal (enn2ereal x)\"", "class top =\n fixes top :: 'a (\"\\<top>\")" ]
template
###lemma ?a < top \<Longrightarrow> ?b < top \<Longrightarrow> enn2real (?a + ?b) = enn2real ?a + enn2real ?b ###symbols Groups.plus_class.plus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Extended_Nonnegative_Real.enn2real :::: ennreal \<Rightarrow> real Orderings.top_class.top :::: 'a ###defs class plus = fixes plus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "+" 65) definition "enn2real x = real_of_ereal (enn2ereal x)" class top = fixes top :: 'a ("\<top>")
###output \<lbrakk>x_1 < ?H1; x_2 < ?H1\<rbrakk> \<Longrightarrow> ?H2 (?H3 x_1 x_2) = ?H3 (?H2 x_1) (?H2 x_2)###end
HOLCF/Tr
Transfer.transfer_raw(8)
null
Transfer.Rel (rel_fun (rel_fun ?R (=)) (rel_fun (rel_u ?R) (=))) pred_u pred_u
?H1 (?H2 (?H2 x_1 (=)) (?H2 (?H3 x_1) (=))) ?H4 ?H4
[ "Up.u.pred_u", "Up.u.rel_u", "BNF_Def.rel_fun", "Transfer.Rel" ]
[ "('a \\<Rightarrow> bool) \\<Rightarrow> 'a\\<^sub>\\<bottom> \\<Rightarrow> bool", "('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> 'a\\<^sub>\\<bottom> \\<Rightarrow> 'b\\<^sub>\\<bottom> \\<Rightarrow> bool", "('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> ('c \\<Rightarrow> 'd \\<Rightarrow> bool) \\<Rightarrow> ('a \\<Rightarrow> 'c) \\<Rightarrow> ('b \\<Rightarrow> 'd) \\<Rightarrow> bool", "('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> 'a \\<Rightarrow> 'b \\<Rightarrow> bool" ]
[ "datatype 'a u (\"(_\\<^sub>\\<bottom>)\" [1000] 999) = Ibottom | Iup 'a", "datatype 'a u (\"(_\\<^sub>\\<bottom>)\" [1000] 999) = Ibottom | Iup 'a", "definition\n rel_fun :: \"('a \\<Rightarrow> 'c \\<Rightarrow> bool) \\<Rightarrow> ('b \\<Rightarrow> 'd \\<Rightarrow> bool) \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> ('c \\<Rightarrow> 'd) \\<Rightarrow> bool\"\nwhere\n \"rel_fun A B = (\\<lambda>f g. \\<forall>x y. A x y \\<longrightarrow> B (f x) (g y))\"", "definition Rel :: \"('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> 'a \\<Rightarrow> 'b \\<Rightarrow> bool\"\n where \"Rel r \\<equiv> r\"" ]
template
###lemma Transfer.Rel (rel_fun (rel_fun ?R (=)) (rel_fun (rel_u ?R) (=))) pred_u pred_u ###symbols Up.u.pred_u :::: ('a \<Rightarrow> bool) \<Rightarrow> 'a\<^sub>\<bottom> \<Rightarrow> bool Up.u.rel_u :::: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a\<^sub>\<bottom> \<Rightarrow> 'b\<^sub>\<bottom> \<Rightarrow> bool BNF_Def.rel_fun :::: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('c \<Rightarrow> 'd \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'c) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> bool Transfer.Rel :::: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool ###defs datatype 'a u ("(_\<^sub>\<bottom>)" [1000] 999) = Ibottom | Iup 'a datatype 'a u ("(_\<^sub>\<bottom>)" [1000] 999) = Ibottom | Iup 'a definition rel_fun :: "('a \<Rightarrow> 'c \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'd \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('c \<Rightarrow> 'd) \<Rightarrow> bool" where "rel_fun A B = (\<lambda>f g. \<forall>x y. A x y \<longrightarrow> B (f x) (g y))" definition Rel :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool" where "Rel r \<equiv> r"
###output ?H1 (?H2 (?H2 x_1 (=)) (?H2 (?H3 x_1) (=))) ?H4 ?H4###end
List
List.zip_Cons1
lemma zip_Cons1: "zip (x#xs) ys = (case ys of [] \<Rightarrow> [] | y#ys \<Rightarrow> (x,y)#zip xs ys)"
zip (?x # ?xs) ?ys = (case ?ys of [] \<Rightarrow> [] | y # ys \<Rightarrow> (?x, y) # zip ?xs ys)
?H1 (?H2 x_1 x_2) x_3 = ?H3 ?H4 (\<lambda>y_0 y_1. ?H2 (x_1, y_0) (?H1 x_2 y_1)) x_3
[ "List.list.Nil", "List.list.case_list", "List.list.Cons", "List.zip" ]
[ "'a list", "'a \\<Rightarrow> ('b \\<Rightarrow> 'b list \\<Rightarrow> 'a) \\<Rightarrow> 'b list \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a list \\<Rightarrow> 'a list", "'a list \\<Rightarrow> 'b list \\<Rightarrow> ('a \\<times> 'b) list" ]
[ "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "primrec zip :: \"'a list \\<Rightarrow> 'b list \\<Rightarrow> ('a \\<times> 'b) list\" where\n\"zip xs [] = []\" |\nzip_Cons: \"zip xs (y # ys) =\n (case xs of [] \\<Rightarrow> [] | z # zs \\<Rightarrow> (z, y) # zip zs ys)\"\n \\<comment> \\<open>Warning: simpset does not contain this definition, but separate\n theorems for \\<open>xs = []\\<close> and \\<open>xs = z # zs\\<close>\\<close>" ]
template
###lemma zip (?x # ?xs) ?ys = (case ?ys of [] \<Rightarrow> [] | y # ys \<Rightarrow> (?x, y) # zip ?xs ys) ###symbols List.list.Nil :::: 'a list List.list.case_list :::: 'a \<Rightarrow> ('b \<Rightarrow> 'b list \<Rightarrow> 'a) \<Rightarrow> 'b list \<Rightarrow> 'a List.list.Cons :::: 'a \<Rightarrow> 'a list \<Rightarrow> 'a list List.zip :::: 'a list \<Rightarrow> 'b list \<Rightarrow> ('a \<times> 'b) list ###defs datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" primrec zip :: "'a list \<Rightarrow> 'b list \<Rightarrow> ('a \<times> 'b) list" where "zip xs [] = []" | zip_Cons: "zip xs (y # ys) = (case xs of [] \<Rightarrow> [] | z # zs \<Rightarrow> (z, y) # zip zs ys)" \<comment> \<open>Warning: simpset does not contain this definition, but separate theorems for \<open>xs = []\<close> and \<open>xs = z # zs\<close>\<close>
###output ?H1 (?H2 x_1 x_2) x_3 = ?H3 ?H4 (\<lambda>y_0 y_1. ?H2 (x_1, y_0) (?H1 x_2 y_1)) x_3###end
Library/Finite_Map
Finite_Map.fmrelI
lemma fmrelI[intro]: assumes "\<And>x. rel_option R (fmlookup m x) (fmlookup n x)" shows "fmrel R m n"
(\<And>x. rel_option ?R (fmlookup ?m x) (fmlookup ?n x)) \<Longrightarrow> fmrel ?R ?m ?n
(\<And>y_0. ?H1 x_1 (?H2 x_2 y_0) (?H2 x_3 y_0)) \<Longrightarrow> ?H3 x_1 x_2 x_3
[ "Finite_Map.fmap.fmrel", "Finite_Map.fmap.fmlookup", "Option.option.rel_option" ]
[ "('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> ('c, 'a) fmap \\<Rightarrow> ('c, 'b) fmap \\<Rightarrow> bool", "('a, 'b) fmap \\<Rightarrow> 'a \\<Rightarrow> 'b option", "('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> 'a option \\<Rightarrow> 'b option \\<Rightarrow> bool" ]
[ "typedef ('a, 'b) fmap = \"{m. finite (dom m)} :: ('a \\<rightharpoonup> 'b) set\"\n morphisms fmlookup Abs_fmap", "typedef ('a, 'b) fmap = \"{m. finite (dom m)} :: ('a \\<rightharpoonup> 'b) set\"\n morphisms fmlookup Abs_fmap", "datatype 'a option =\n None\n | Some (the: 'a)" ]
template
###lemma (\<And>x. rel_option ?R (fmlookup ?m x) (fmlookup ?n x)) \<Longrightarrow> fmrel ?R ?m ?n ###symbols Finite_Map.fmap.fmrel :::: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('c, 'a) fmap \<Rightarrow> ('c, 'b) fmap \<Rightarrow> bool Finite_Map.fmap.fmlookup :::: ('a, 'b) fmap \<Rightarrow> 'a \<Rightarrow> 'b option Option.option.rel_option :::: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a option \<Rightarrow> 'b option \<Rightarrow> bool ###defs typedef ('a, 'b) fmap = "{m. finite (dom m)} :: ('a \<rightharpoonup> 'b) set" morphisms fmlookup Abs_fmap typedef ('a, 'b) fmap = "{m. finite (dom m)} :: ('a \<rightharpoonup> 'b) set" morphisms fmlookup Abs_fmap datatype 'a option = None | Some (the: 'a)
###output (\<And>y_0. ?H1 x_1 (?H2 x_2 y_0) (?H2 x_3 y_0)) \<Longrightarrow> ?H3 x_1 x_2 x_3###end
List
List.lex_transI
null
trans ?r \<Longrightarrow> trans (lex ?r)
?H1 x_1 \<Longrightarrow> ?H1 (?H2 x_1)
[ "List.lex", "Relation.trans" ]
[ "('a \\<times> 'a) set \\<Rightarrow> ('a list \\<times> 'a list) set", "('a \\<times> 'a) set \\<Rightarrow> bool" ]
[ "definition lex :: \"('a \\<times> 'a) set \\<Rightarrow> ('a list \\<times> 'a list) set\" where\n\"lex r = (\\<Union>n. lexn r n)\" \\<comment> \\<open>Holds only between lists of the same length\\<close>", "abbreviation trans :: \"'a rel \\<Rightarrow> bool\" where\n \"trans \\<equiv> trans_on UNIV\"" ]
template
###lemma trans ?r \<Longrightarrow> trans (lex ?r) ###symbols List.lex :::: ('a \<times> 'a) set \<Rightarrow> ('a list \<times> 'a list) set Relation.trans :::: ('a \<times> 'a) set \<Rightarrow> bool ###defs definition lex :: "('a \<times> 'a) set \<Rightarrow> ('a list \<times> 'a list) set" where "lex r = (\<Union>n. lexn r n)" \<comment> \<open>Holds only between lists of the same length\<close> abbreviation trans :: "'a rel \<Rightarrow> bool" where "trans \<equiv> trans_on UNIV"
###output ?H1 x_1 \<Longrightarrow> ?H1 (?H2 x_1)###end
Nominal/Examples/Pattern
Pattern.psubst_fresh(1)
lemma psubst_fresh: assumes "x \<in> set (map fst \<theta>)" and "\<forall>(y, t)\<in>set \<theta>. x \<sharp> t" shows "x \<sharp> \<theta>\<lparr>t\<rparr>" and "x \<sharp> \<theta>\<lparr>t'\<rparr>\<^sub>b"
?x \<in> set (map fst ?\<theta>) \<Longrightarrow> \<forall>(y, t)\<in>set ?\<theta>. ?x \<sharp> t \<Longrightarrow> ?x \<sharp> ?\<theta>\<lparr> ?t\<rparr>
\<lbrakk>x_1 \<in> ?H1 (?H2 ?H3 x_2); Ball (?H1 x_2) (?H4 (\<lambda>y_0. ?H5 x_1))\<rbrakk> \<Longrightarrow> ?H5 x_1 (?H6 x_2 x_3)
[ "Pattern.psubst", "Nominal.fresh", "Product_Type.prod.case_prod", "Product_Type.prod.fst", "List.list.map", "List.list.set" ]
[ "(name \\<times> trm) list \\<Rightarrow> trm \\<Rightarrow> trm", "'a \\<Rightarrow> 'b \\<Rightarrow> bool", "('a \\<Rightarrow> 'b \\<Rightarrow> 'c) \\<Rightarrow> 'a \\<times> 'b \\<Rightarrow> 'c", "'a \\<times> 'b \\<Rightarrow> 'a", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a list \\<Rightarrow> 'b list", "'a list \\<Rightarrow> 'a set" ]
[ "definition fresh :: \"'x \\<Rightarrow> 'a \\<Rightarrow> bool\" (\\<open>_ \\<sharp> _\\<close> [80,80] 80) where\n \"a \\<sharp> x \\<longleftrightarrow> a \\<notin> supp x\"", "definition \"prod = {f. \\<exists>a b. f = Pair_Rep (a::'a) (b::'b)}\"", "definition \"prod = {f. \\<exists>a b. f = Pair_Rep (a::'a) (b::'b)}\"", "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"" ]
template
###lemma ?x \<in> set (map fst ?\<theta>) \<Longrightarrow> \<forall>(y, t)\<in>set ?\<theta>. ?x \<sharp> t \<Longrightarrow> ?x \<sharp> ?\<theta>\<lparr> ?t\<rparr> ###symbols Pattern.psubst :::: (name \<times> trm) list \<Rightarrow> trm \<Rightarrow> trm Nominal.fresh :::: 'a \<Rightarrow> 'b \<Rightarrow> bool Product_Type.prod.case_prod :::: ('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c Product_Type.prod.fst :::: 'a \<times> 'b \<Rightarrow> 'a List.list.map :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a list \<Rightarrow> 'b list List.list.set :::: 'a list \<Rightarrow> 'a set ###defs definition fresh :: "'x \<Rightarrow> 'a \<Rightarrow> bool" (\<open>_ \<sharp> _\<close> [80,80] 80) where "a \<sharp> x \<longleftrightarrow> a \<notin> supp x" definition "prod = {f. \<exists>a b. f = Pair_Rep (a::'a) (b::'b)}" definition "prod = {f. \<exists>a b. f = Pair_Rep (a::'a) (b::'b)}" datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []"
###output \<lbrakk>x_1 \<in> ?H1 (?H2 ?H3 x_2); Ball (?H1 x_2) (?H4 (\<lambda>y_0. ?H5 x_1))\<rbrakk> \<Longrightarrow> ?H5 x_1 (?H6 x_2 x_3)###end
Complex_Analysis/Complex_Analysis
Complex_Analysis_Basics.holomorphic_onI
null
(\<And>x. x \<in> ?s \<Longrightarrow> ?f field_differentiable at x within ?s) \<Longrightarrow> ?f holomorphic_on ?s
(\<And>y_0. y_0 \<in> x_1 \<Longrightarrow> ?H1 x_2 (?H2 y_0 x_1)) \<Longrightarrow> ?H3 x_2 x_1
[ "Complex_Analysis_Basics.holomorphic_on", "Topological_Spaces.topological_space_class.at_within", "Derivative.field_differentiable" ]
[ "(complex \\<Rightarrow> complex) \\<Rightarrow> complex set \\<Rightarrow> bool", "'a \\<Rightarrow> 'a set \\<Rightarrow> 'a filter", "('a \\<Rightarrow> 'a) \\<Rightarrow> 'a filter \\<Rightarrow> bool" ]
[ "class topological_space = \"open\" +\n assumes open_UNIV [simp, intro]: \"open UNIV\"\n assumes open_Int [intro]: \"open S \\<Longrightarrow> open T \\<Longrightarrow> open (S \\<inter> T)\"\n assumes open_Union [intro]: \"\\<forall>S\\<in>K. open S \\<Longrightarrow> open (\\<Union>K)\"\nbegin" ]
template
###lemma (\<And>x. x \<in> ?s \<Longrightarrow> ?f field_differentiable at x within ?s) \<Longrightarrow> ?f holomorphic_on ?s ###symbols Complex_Analysis_Basics.holomorphic_on :::: (complex \<Rightarrow> complex) \<Rightarrow> complex set \<Rightarrow> bool Topological_Spaces.topological_space_class.at_within :::: 'a \<Rightarrow> 'a set \<Rightarrow> 'a filter Derivative.field_differentiable :::: ('a \<Rightarrow> 'a) \<Rightarrow> 'a filter \<Rightarrow> bool ###defs class topological_space = "open" + assumes open_UNIV [simp, intro]: "open UNIV" assumes open_Int [intro]: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<inter> T)" assumes open_Union [intro]: "\<forall>S\<in>K. open S \<Longrightarrow> open (\<Union>K)" begin
###output (\<And>y_0. y_0 \<in> x_1 \<Longrightarrow> ?H1 x_2 (?H2 y_0 x_1)) \<Longrightarrow> ?H3 x_2 x_1###end
Analysis/Tagged_Division
Tagged_Division.gauge_modify
lemma gauge_modify: assumes "(\<forall>S. open S \<longrightarrow> open {x. f(x) \<in> S})" "gauge d" shows "gauge (\<lambda>x. {y. f y \<in> d (f x)})"
\<forall>S. open S \<longrightarrow> open {x. ?f x \<in> S} \<Longrightarrow> gauge ?d \<Longrightarrow> gauge (\<lambda>x. {y. ?f y \<in> ?d (?f x)})
\<lbrakk>\<forall>y_0. ?H1 y_0 \<longrightarrow> ?H1 (?H2 (\<lambda>y_1. x_1 y_1 \<in> y_0)); ?H3 x_2\<rbrakk> \<Longrightarrow> ?H3 (\<lambda>y_2. ?H2 (\<lambda>y_3. x_1 y_3 \<in> x_2 (x_1 y_2)))
[ "Tagged_Division.gauge", "Set.Collect", "Topological_Spaces.open_class.open" ]
[ "('a \\<Rightarrow> 'a set) \\<Rightarrow> bool", "('a \\<Rightarrow> bool) \\<Rightarrow> 'a set", "'a set \\<Rightarrow> bool" ]
[ "class \"open\" =\n fixes \"open\" :: \"'a set \\<Rightarrow> bool\"" ]
template
###lemma \<forall>S. open S \<longrightarrow> open {x. ?f x \<in> S} \<Longrightarrow> gauge ?d \<Longrightarrow> gauge (\<lambda>x. {y. ?f y \<in> ?d (?f x)}) ###symbols Tagged_Division.gauge :::: ('a \<Rightarrow> 'a set) \<Rightarrow> bool Set.Collect :::: ('a \<Rightarrow> bool) \<Rightarrow> 'a set Topological_Spaces.open_class.open :::: 'a set \<Rightarrow> bool ###defs class "open" = fixes "open" :: "'a set \<Rightarrow> bool"
###output \<lbrakk>\<forall>y_0. ?H1 y_0 \<longrightarrow> ?H1 (?H2 (\<lambda>y_1. x_1 y_1 \<in> y_0)); ?H3 x_2\<rbrakk> \<Longrightarrow> ?H3 (\<lambda>y_2. ?H2 (\<lambda>y_3. x_1 y_3 \<in> x_2 (x_1 y_2)))###end