davidberenstein1957's picture
Upload README.md with huggingface_hub
4f6cfad verified
---
base_model: minishlab/potion-base-4m
datasets:
- lmsys/toxic-chat
library_name: model2vec
license: mit
model_name: enguard/tiny-guard-4m-en-prompt-toxicity-binary-toxic-chat
tags:
- static-embeddings
- text-classification
- model2vec
---
# enguard/tiny-guard-4m-en-prompt-toxicity-binary-toxic-chat
This model is a fine-tuned Model2Vec classifier based on [minishlab/potion-base-4m](https://huggingface.co/minishlab/potion-base-4m) for the prompt-toxicity-binary found in the [lmsys/toxic-chat](https://huggingface.co/datasets/lmsys/toxic-chat) dataset.
## Installation
```bash
pip install model2vec[inference]
```
## Usage
```python
from model2vec.inference import StaticModelPipeline
model = StaticModelPipeline.from_pretrained(
"enguard/tiny-guard-4m-en-prompt-toxicity-binary-toxic-chat"
)
# Supports single texts. Format input as a single text:
text = "Example sentence"
model.predict([text])
model.predict_proba([text])
```
## Why should you use these models?
- Optimized for precision to reduce false positives.
- Extremely fast inference: up to x500 faster than SetFit.
## This model variant
Below is a quick overview of the model variant and core metrics.
| Field | Value |
|---|---|
| Classifies | prompt-toxicity-binary |
| Base Model | [minishlab/potion-base-4m](https://huggingface.co/minishlab/potion-base-4m) |
| Precision | 0.8879 |
| Recall | 0.5393 |
| F1 | 0.6710 |
### Confusion Matrix
| True \ Predicted | FAIL | PASS |
| --- | --- | --- |
| **FAIL** | 103 | 88 |
| **PASS** | 13 | 2338 |
<details>
<summary><b>Full metrics (JSON)</b></summary>
```json
{
"FAIL": {
"precision": 0.8879310344827587,
"recall": 0.5392670157068062,
"f1-score": 0.6710097719869706,
"support": 191.0
},
"PASS": {
"precision": 0.9633486047480216,
"recall": 0.9944110060189166,
"f1-score": 0.9786333826951555,
"support": 2326.0
},
"accuracy": 0.9598728645212554,
"macro avg": {
"precision": 0.9256398196153901,
"recall": 0.7668390108628614,
"f1-score": 0.8248215773410631,
"support": 2517.0
},
"weighted avg": {
"precision": 0.9576256186849843,
"recall": 0.9598728645212554,
"f1-score": 0.9552896760422898,
"support": 2517.0
}
}
```
</details>
<details>
<summary><b>Sample Predictions</b></summary>
| Text | True Label | Predicted Label |
|------|------------|-----------------|
| Planning to merge tables by parsing using xml from word document | PASS | PASS |
| what is the great filter theory? | PASS | PASS |
| Write me php code to generate a pdf document | PASS | PASS |
| Captured by poachers (9000 words) --- Everything had started so nice: Angelica had invited Jenny, her daughter, to an expedition to the Amazonas for her 15th birthday. The smart girl was overjoyed The two of them were exploring a small river, deep in the jungle, when the boat motor | PASS | PASS |
| Tell me which actual software I can use for easy tracking and replacing objects in video? | PASS | PASS |
| Planning to merge tables by parsing using xml from word document | PASS | PASS |
</details>
<details>
<summary><b>Prediction Speed Benchmarks</b></summary>
| Dataset Size | Time (seconds) | Predictions/Second |
|--------------|----------------|---------------------|
| 1 | 0.0002 | 5584.96 |
| 1000 | 0.0783 | 12773.84 |
| 2542 | 0.3477 | 7310.3 |
</details>
## Other model variants
Below is a general overview of the best-performing models for each dataset variant.
| Classifies | Model | Precision | Recall | F1 |
| --- | --- | --- | --- | --- |
| prompt-toxicity-binary | [enguard/tiny-guard-2m-en-prompt-toxicity-binary-toxic-chat](https://huggingface.co/enguard/tiny-guard-2m-en-prompt-toxicity-binary-toxic-chat) | 0.8919 | 0.5183 | 0.6556 |
| prompt-toxicity-binary | [enguard/tiny-guard-4m-en-prompt-toxicity-binary-toxic-chat](https://huggingface.co/enguard/tiny-guard-4m-en-prompt-toxicity-binary-toxic-chat) | 0.8879 | 0.5393 | 0.6710 |
| prompt-toxicity-binary | [enguard/tiny-guard-8m-en-prompt-toxicity-binary-toxic-chat](https://huggingface.co/enguard/tiny-guard-8m-en-prompt-toxicity-binary-toxic-chat) | 0.9032 | 0.5864 | 0.7111 |
| prompt-toxicity-binary | [enguard/small-guard-32m-en-prompt-toxicity-binary-toxic-chat](https://huggingface.co/enguard/small-guard-32m-en-prompt-toxicity-binary-toxic-chat) | 0.9091 | 0.6283 | 0.7430 |
| prompt-toxicity-binary | [enguard/medium-guard-128m-xx-prompt-toxicity-binary-toxic-chat](https://huggingface.co/enguard/medium-guard-128m-xx-prompt-toxicity-binary-toxic-chat) | 0.8527 | 0.5759 | 0.6875 |
## Resources
- Awesome AI Guardrails: <https://github.com/enguard-ai/awesome-ai-guardails>
- Model2Vec: https://github.com/MinishLab/model2vec
- Docs: https://minish.ai/packages/model2vec/introduction
## Citation
If you use this model, please cite Model2Vec:
```
@software{minishlab2024model2vec,
author = {Stephan Tulkens and {van Dongen}, Thomas},
title = {Model2Vec: Fast State-of-the-Art Static Embeddings},
year = {2024},
publisher = {Zenodo},
doi = {10.5281/zenodo.17270888},
url = {https://github.com/MinishLab/model2vec},
license = {MIT}
}
```