giga-embedding-instruct-bnb-4bit / configuration_gigarembed.py
gurgutan's picture
Upload 9 files
64ab343 verified
import warnings
from typing import Literal
from transformers import AutoConfig
from transformers.models.auto import CONFIG_MAPPING
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_rope_utils import rope_config_validation
GIGAREMBED_TYPE = "gigarembed"
LATENT_ATTENTION_TYPE = "latent_attention"
class GigarConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`GigarModel`]. It is used to instantiate an Gigar
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Gigar-7B.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the Gigar model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`GigarModel`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 11008):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with. Gigar 1 supports up to 2048 tokens,
Gigar 2 up to 4096, CodeLlama up to 16384.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*):
Padding token id.
bos_token_id (`int`, *optional*, defaults to 1):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 2):
End of stream token id.
pretraining_tp (`int`, *optional*, defaults to 1):
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to
understand more about it. This value is necessary to ensure exact reproducibility of the pretraining
results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232).
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'gigar3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'gigar3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'gigar3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'gigar3'. Scaling factor applied to high frequency components of the RoPE
attention_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
mlp_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
head_dim (`int`, *optional*):
The attention head dimension. If None, it will default to hidden_size // num_attention_heads
```python
>>> from transformers import GigarModel, GigarConfig
>>> # Initializing a Gigar gigar-7b style configuration
>>> configuration = GigarConfig()
>>> # Initializing a model from the gigar-7b style configuration
>>> model = GigarModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "gigar"
keys_to_ignore_at_inference = ["past_key_values"]
# Default tensor parallel plan for base model `GigarModel`
base_model_tp_plan = {
"layers.*.self_attn.q_proj": "colwise",
"layers.*.self_attn.k_proj": "colwise",
"layers.*.self_attn.v_proj": "colwise",
"layers.*.self_attn.o_proj": "rowwise",
"layers.*.mlp.gate_proj": "colwise",
"layers.*.mlp.up_proj": "colwise",
"layers.*.mlp.down_proj": "rowwise",
}
def __init__(
self,
vocab_size=32000,
hidden_size=4096,
intermediate_size=11008,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=None,
hidden_act="silu",
max_position_embeddings=2048,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=None,
bos_token_id=1,
eos_token_id=2,
pretraining_tp=1,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
mlp_bias=False,
head_dim=None,
apply_qk_norm=False,
mla_config=None,
**kwargs,
):
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.pretraining_tp = pretraining_tp
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.mlp_bias = mlp_bias
self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
# Validate the correctness of rotary position embeddings parameters
# BC: if there is a 'type' field, copy it it to 'rope_type'.
if self.rope_scaling is not None and "type" in self.rope_scaling:
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
rope_config_validation(self)
self.apply_qk_norm = apply_qk_norm
self.mla_config = mla_config
self._validate_mla_config()
def _validate_mla_config(self):
if self.mla_config is None:
warnings.warn("MLA config is None!")
return
EXPECTED_KEYS = [
"qk_nope_head_dim",
"qk_rope_head_dim",
"v_head_dim",
"kv_lora_rank",
"q_lora_rank",
]
if not all((key in self.mla_config for key in EXPECTED_KEYS)):
raise ValueError(
f"MLA config is expected to have the following keys {EXPECTED_KEYS} but got {self.mla_config.keys()}."
)
if self.mla_config["qk_nope_head_dim"] + self.mla_config["qk_rope_head_dim"] != self.mla_config["v_head_dim"]:
err_msg = (
f"QK and V head dims do not match! Got {self.mla_config['qk_nope_head_dim']} + {self.mla_config['qk_rope_head_dim']} "
f"= {self.mla_config['qk_rope_head_dim'] + self.mla_config['qk_nope_head_dim']} and {self.mla_config['v_head_dim']}."
)
raise ValueError(err_msg)
class GigarEmbedConfig(PretrainedConfig):
model_type = "gigarembed"
is_composition = False
def __init__(
self,
latent_attention_config=None,
text_config=None,
padding_side: Literal["right", "left"]="right",
add_pad_token: bool=True,
is_mask_instruction: bool = True,
add_eos: bool=True,
mask_type: str="b",
**kwargs,
):
if isinstance(latent_attention_config, dict):
latent_attention_config["model_type"] = (
latent_attention_config["model_type"] if "model_type" in latent_attention_config else LATENT_ATTENTION_TYPE
)
latent_attention_config = CONFIG_MAPPING[latent_attention_config["model_type"]](**latent_attention_config)
self.latent_attention_config = latent_attention_config
if isinstance(text_config, dict):
text_config = GigarConfig(**text_config)
elif text_config is None:
text_config = None
self.text_config = text_config
self.padding_side = padding_side
self.is_mask_instruction = is_mask_instruction
self.add_pad_token = add_pad_token
self.add_eos = add_eos
self.mask_type = mask_type
if "hidden_size" in kwargs:
self.hidden_size = kwargs["hidden_size"]
super().__init__(**kwargs)
class LatentAttentionConfig(PretrainedConfig):
model_type = LATENT_ATTENTION_TYPE
is_composition = False
_name_or_path = "latent_attention"
def __init__(
self,
num_latents_value: int,
num_cross_heads: int,
hidden_dim: int,
latent_dim: int,
cross_dim_head: int,
mult: int,
**kwargs,
):
self.num_latents_value = num_latents_value
self.num_cross_heads = num_cross_heads
self.hidden_dim = hidden_dim
self.latent_dim = latent_dim
self.cross_dim_head = cross_dim_head
self.mult = mult
super().__init__(**kwargs)
AutoConfig.register(GIGAREMBED_TYPE, GigarEmbedConfig)
AutoConfig.register(LATENT_ATTENTION_TYPE, LatentAttentionConfig)
GigarEmbedConfig.register_for_auto_class()
LatentAttentionConfig.register_for_auto_class()