|
|
import warnings |
|
|
|
|
|
from typing import Literal |
|
|
from transformers import AutoConfig |
|
|
from transformers.models.auto import CONFIG_MAPPING |
|
|
from transformers.configuration_utils import PretrainedConfig |
|
|
from transformers.modeling_rope_utils import rope_config_validation |
|
|
|
|
|
GIGAREMBED_TYPE = "gigarembed" |
|
|
LATENT_ATTENTION_TYPE = "latent_attention" |
|
|
|
|
|
|
|
|
class GigarConfig(PretrainedConfig): |
|
|
r""" |
|
|
This is the configuration class to store the configuration of a [`GigarModel`]. It is used to instantiate an Gigar |
|
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the |
|
|
defaults will yield a similar configuration to that of the Gigar-7B. |
|
|
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
|
|
|
Args: |
|
|
vocab_size (`int`, *optional*, defaults to 32000): |
|
|
Vocabulary size of the Gigar model. Defines the number of different tokens that can be represented by the |
|
|
`inputs_ids` passed when calling [`GigarModel`] |
|
|
hidden_size (`int`, *optional*, defaults to 4096): |
|
|
Dimension of the hidden representations. |
|
|
intermediate_size (`int`, *optional*, defaults to 11008): |
|
|
Dimension of the MLP representations. |
|
|
num_hidden_layers (`int`, *optional*, defaults to 32): |
|
|
Number of hidden layers in the Transformer decoder. |
|
|
num_attention_heads (`int`, *optional*, defaults to 32): |
|
|
Number of attention heads for each attention layer in the Transformer decoder. |
|
|
num_key_value_heads (`int`, *optional*): |
|
|
This is the number of key_value heads that should be used to implement Grouped Query Attention. If |
|
|
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if |
|
|
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When |
|
|
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed |
|
|
by meanpooling all the original heads within that group. For more details checkout [this |
|
|
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to |
|
|
`num_attention_heads`. |
|
|
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): |
|
|
The non-linear activation function (function or string) in the decoder. |
|
|
max_position_embeddings (`int`, *optional*, defaults to 2048): |
|
|
The maximum sequence length that this model might ever be used with. Gigar 1 supports up to 2048 tokens, |
|
|
Gigar 2 up to 4096, CodeLlama up to 16384. |
|
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
|
rms_norm_eps (`float`, *optional*, defaults to 1e-06): |
|
|
The epsilon used by the rms normalization layers. |
|
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
|
Whether or not the model should return the last key/values attentions (not used by all models). Only |
|
|
relevant if `config.is_decoder=True`. |
|
|
pad_token_id (`int`, *optional*): |
|
|
Padding token id. |
|
|
bos_token_id (`int`, *optional*, defaults to 1): |
|
|
Beginning of stream token id. |
|
|
eos_token_id (`int`, *optional*, defaults to 2): |
|
|
End of stream token id. |
|
|
pretraining_tp (`int`, *optional*, defaults to 1): |
|
|
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this |
|
|
document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to |
|
|
understand more about it. This value is necessary to ensure exact reproducibility of the pretraining |
|
|
results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232). |
|
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`): |
|
|
Whether to tie weight embeddings |
|
|
rope_theta (`float`, *optional*, defaults to 10000.0): |
|
|
The base period of the RoPE embeddings. |
|
|
rope_scaling (`Dict`, *optional*): |
|
|
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type |
|
|
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value |
|
|
accordingly. |
|
|
Expected contents: |
|
|
`rope_type` (`str`): |
|
|
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope', |
|
|
'gigar3'], with 'default' being the original RoPE implementation. |
|
|
`factor` (`float`, *optional*): |
|
|
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In |
|
|
most scaling types, a `factor` of x will enable the model to handle sequences of length x * |
|
|
original maximum pre-trained length. |
|
|
`original_max_position_embeddings` (`int`, *optional*): |
|
|
Used with 'dynamic', 'longrope' and 'gigar3'. The original max position embeddings used during |
|
|
pretraining. |
|
|
`attention_factor` (`float`, *optional*): |
|
|
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention |
|
|
computation. If unspecified, it defaults to value recommended by the implementation, using the |
|
|
`factor` field to infer the suggested value. |
|
|
`beta_fast` (`float`, *optional*): |
|
|
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear |
|
|
ramp function. If unspecified, it defaults to 32. |
|
|
`beta_slow` (`float`, *optional*): |
|
|
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear |
|
|
ramp function. If unspecified, it defaults to 1. |
|
|
`short_factor` (`List[float]`, *optional*): |
|
|
Only used with 'longrope'. The scaling factor to be applied to short contexts (< |
|
|
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden |
|
|
size divided by the number of attention heads divided by 2 |
|
|
`long_factor` (`List[float]`, *optional*): |
|
|
Only used with 'longrope'. The scaling factor to be applied to long contexts (< |
|
|
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden |
|
|
size divided by the number of attention heads divided by 2 |
|
|
`low_freq_factor` (`float`, *optional*): |
|
|
Only used with 'gigar3'. Scaling factor applied to low frequency components of the RoPE |
|
|
`high_freq_factor` (`float`, *optional*): |
|
|
Only used with 'gigar3'. Scaling factor applied to high frequency components of the RoPE |
|
|
attention_bias (`bool`, *optional*, defaults to `False`): |
|
|
Whether to use a bias in the query, key, value and output projection layers during self-attention. |
|
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
|
The dropout ratio for the attention probabilities. |
|
|
mlp_bias (`bool`, *optional*, defaults to `False`): |
|
|
Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers. |
|
|
head_dim (`int`, *optional*): |
|
|
The attention head dimension. If None, it will default to hidden_size // num_attention_heads |
|
|
|
|
|
```python |
|
|
>>> from transformers import GigarModel, GigarConfig |
|
|
|
|
|
>>> # Initializing a Gigar gigar-7b style configuration |
|
|
>>> configuration = GigarConfig() |
|
|
|
|
|
>>> # Initializing a model from the gigar-7b style configuration |
|
|
>>> model = GigarModel(configuration) |
|
|
|
|
|
>>> # Accessing the model configuration |
|
|
>>> configuration = model.config |
|
|
```""" |
|
|
|
|
|
model_type = "gigar" |
|
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
|
|
base_model_tp_plan = { |
|
|
"layers.*.self_attn.q_proj": "colwise", |
|
|
"layers.*.self_attn.k_proj": "colwise", |
|
|
"layers.*.self_attn.v_proj": "colwise", |
|
|
"layers.*.self_attn.o_proj": "rowwise", |
|
|
"layers.*.mlp.gate_proj": "colwise", |
|
|
"layers.*.mlp.up_proj": "colwise", |
|
|
"layers.*.mlp.down_proj": "rowwise", |
|
|
} |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
vocab_size=32000, |
|
|
hidden_size=4096, |
|
|
intermediate_size=11008, |
|
|
num_hidden_layers=32, |
|
|
num_attention_heads=32, |
|
|
num_key_value_heads=None, |
|
|
hidden_act="silu", |
|
|
max_position_embeddings=2048, |
|
|
initializer_range=0.02, |
|
|
rms_norm_eps=1e-6, |
|
|
use_cache=True, |
|
|
pad_token_id=None, |
|
|
bos_token_id=1, |
|
|
eos_token_id=2, |
|
|
pretraining_tp=1, |
|
|
tie_word_embeddings=False, |
|
|
rope_theta=10000.0, |
|
|
rope_scaling=None, |
|
|
attention_bias=False, |
|
|
attention_dropout=0.0, |
|
|
mlp_bias=False, |
|
|
head_dim=None, |
|
|
apply_qk_norm=False, |
|
|
mla_config=None, |
|
|
**kwargs, |
|
|
): |
|
|
super().__init__( |
|
|
pad_token_id=pad_token_id, |
|
|
bos_token_id=bos_token_id, |
|
|
eos_token_id=eos_token_id, |
|
|
tie_word_embeddings=tie_word_embeddings, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
self.vocab_size = vocab_size |
|
|
self.max_position_embeddings = max_position_embeddings |
|
|
self.hidden_size = hidden_size |
|
|
self.intermediate_size = intermediate_size |
|
|
self.num_hidden_layers = num_hidden_layers |
|
|
self.num_attention_heads = num_attention_heads |
|
|
|
|
|
|
|
|
if num_key_value_heads is None: |
|
|
num_key_value_heads = num_attention_heads |
|
|
|
|
|
self.num_key_value_heads = num_key_value_heads |
|
|
self.hidden_act = hidden_act |
|
|
self.initializer_range = initializer_range |
|
|
self.rms_norm_eps = rms_norm_eps |
|
|
self.pretraining_tp = pretraining_tp |
|
|
self.use_cache = use_cache |
|
|
self.rope_theta = rope_theta |
|
|
self.rope_scaling = rope_scaling |
|
|
self.attention_bias = attention_bias |
|
|
self.attention_dropout = attention_dropout |
|
|
self.mlp_bias = mlp_bias |
|
|
self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads |
|
|
|
|
|
|
|
|
if self.rope_scaling is not None and "type" in self.rope_scaling: |
|
|
self.rope_scaling["rope_type"] = self.rope_scaling["type"] |
|
|
rope_config_validation(self) |
|
|
|
|
|
self.apply_qk_norm = apply_qk_norm |
|
|
self.mla_config = mla_config |
|
|
|
|
|
self._validate_mla_config() |
|
|
|
|
|
def _validate_mla_config(self): |
|
|
if self.mla_config is None: |
|
|
warnings.warn("MLA config is None!") |
|
|
return |
|
|
|
|
|
EXPECTED_KEYS = [ |
|
|
"qk_nope_head_dim", |
|
|
"qk_rope_head_dim", |
|
|
"v_head_dim", |
|
|
"kv_lora_rank", |
|
|
"q_lora_rank", |
|
|
] |
|
|
if not all((key in self.mla_config for key in EXPECTED_KEYS)): |
|
|
raise ValueError( |
|
|
f"MLA config is expected to have the following keys {EXPECTED_KEYS} but got {self.mla_config.keys()}." |
|
|
) |
|
|
|
|
|
if self.mla_config["qk_nope_head_dim"] + self.mla_config["qk_rope_head_dim"] != self.mla_config["v_head_dim"]: |
|
|
err_msg = ( |
|
|
f"QK and V head dims do not match! Got {self.mla_config['qk_nope_head_dim']} + {self.mla_config['qk_rope_head_dim']} " |
|
|
f"= {self.mla_config['qk_rope_head_dim'] + self.mla_config['qk_nope_head_dim']} and {self.mla_config['v_head_dim']}." |
|
|
) |
|
|
raise ValueError(err_msg) |
|
|
|
|
|
|
|
|
class GigarEmbedConfig(PretrainedConfig): |
|
|
model_type = "gigarembed" |
|
|
is_composition = False |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
latent_attention_config=None, |
|
|
text_config=None, |
|
|
padding_side: Literal["right", "left"]="right", |
|
|
add_pad_token: bool=True, |
|
|
is_mask_instruction: bool = True, |
|
|
add_eos: bool=True, |
|
|
mask_type: str="b", |
|
|
**kwargs, |
|
|
): |
|
|
if isinstance(latent_attention_config, dict): |
|
|
latent_attention_config["model_type"] = ( |
|
|
latent_attention_config["model_type"] if "model_type" in latent_attention_config else LATENT_ATTENTION_TYPE |
|
|
) |
|
|
latent_attention_config = CONFIG_MAPPING[latent_attention_config["model_type"]](**latent_attention_config) |
|
|
|
|
|
self.latent_attention_config = latent_attention_config |
|
|
|
|
|
if isinstance(text_config, dict): |
|
|
text_config = GigarConfig(**text_config) |
|
|
elif text_config is None: |
|
|
text_config = None |
|
|
|
|
|
self.text_config = text_config |
|
|
self.padding_side = padding_side |
|
|
self.is_mask_instruction = is_mask_instruction |
|
|
self.add_pad_token = add_pad_token |
|
|
self.add_eos = add_eos |
|
|
self.mask_type = mask_type |
|
|
if "hidden_size" in kwargs: |
|
|
self.hidden_size = kwargs["hidden_size"] |
|
|
|
|
|
super().__init__(**kwargs) |
|
|
|
|
|
|
|
|
class LatentAttentionConfig(PretrainedConfig): |
|
|
model_type = LATENT_ATTENTION_TYPE |
|
|
is_composition = False |
|
|
_name_or_path = "latent_attention" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
num_latents_value: int, |
|
|
num_cross_heads: int, |
|
|
hidden_dim: int, |
|
|
latent_dim: int, |
|
|
cross_dim_head: int, |
|
|
mult: int, |
|
|
**kwargs, |
|
|
): |
|
|
self.num_latents_value = num_latents_value |
|
|
self.num_cross_heads = num_cross_heads |
|
|
self.hidden_dim = hidden_dim |
|
|
self.latent_dim = latent_dim |
|
|
self.cross_dim_head = cross_dim_head |
|
|
self.mult = mult |
|
|
|
|
|
super().__init__(**kwargs) |
|
|
|
|
|
|
|
|
AutoConfig.register(GIGAREMBED_TYPE, GigarEmbedConfig) |
|
|
AutoConfig.register(LATENT_ATTENTION_TYPE, LatentAttentionConfig) |
|
|
|
|
|
GigarEmbedConfig.register_for_auto_class() |
|
|
LatentAttentionConfig.register_for_auto_class() |
|
|
|