metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:124788
- loss:GISTEmbedLoss
base_model: BAAI/bge-small-en-v1.5
widget:
- source_sentence: 其他机械、设备和有形货物租赁服务代表
sentences:
- 其他机械和设备租赁服务工作人员
- 电子和电信设备及零部件物流经理
- 工业主厨
- source_sentence: 公交车司机
sentences:
- 表演灯光设计师
- 乙烯基地板安装工
- 国际巴士司机
- source_sentence: online communication manager
sentences:
- trades union official
- social media manager
- budget manager
- source_sentence: Projektmanagerin
sentences:
- Projektmanager/Projektmanagerin
- Category-Manager
- Infanterist
- source_sentence: Volksvertreter
sentences:
- Parlamentarier
- Oberbürgermeister
- Konsul
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@20
- cosine_accuracy@50
- cosine_accuracy@100
- cosine_accuracy@150
- cosine_accuracy@200
- cosine_precision@1
- cosine_precision@20
- cosine_precision@50
- cosine_precision@100
- cosine_precision@150
- cosine_precision@200
- cosine_recall@1
- cosine_recall@20
- cosine_recall@50
- cosine_recall@100
- cosine_recall@150
- cosine_recall@200
- cosine_ndcg@1
- cosine_ndcg@20
- cosine_ndcg@50
- cosine_ndcg@100
- cosine_ndcg@150
- cosine_ndcg@200
- cosine_mrr@1
- cosine_mrr@20
- cosine_mrr@50
- cosine_mrr@100
- cosine_mrr@150
- cosine_mrr@200
- cosine_map@1
- cosine_map@20
- cosine_map@50
- cosine_map@100
- cosine_map@150
- cosine_map@200
- cosine_map@500
model-index:
- name: SentenceTransformer based on BAAI/bge-small-en-v1.5
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: full en
type: full_en
metrics:
- type: cosine_accuracy@1
value: 0.6571428571428571
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.9904761904761905
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.9904761904761905
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.9904761904761905
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.9904761904761905
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.9904761904761905
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.6571428571428571
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.5076190476190475
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.3089523809523809
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.1872380952380952
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.1321904761904762
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.1027142857142857
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.0680237860830842
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.5459242543214992
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.728483344815942
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.8382149119179341
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.8762032488748317
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.9059964336434017
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.6571428571428571
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.6895375515490911
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.7060633068166344
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.7619501692018719
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.778798440383198
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.7899830993214225
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.6571428571428571
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.8098412698412698
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.8098412698412698
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.8098412698412698
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.8098412698412698
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.8098412698412698
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.6571428571428571
name: Cosine Map@1
- type: cosine_map@20
value: 0.5464916843297755
name: Cosine Map@20
- type: cosine_map@50
value: 0.5351890636433139
name: Cosine Map@50
- type: cosine_map@100
value: 0.5685440196941911
name: Cosine Map@100
- type: cosine_map@150
value: 0.5756567539581475
name: Cosine Map@150
- type: cosine_map@200
value: 0.5791635361565666
name: Cosine Map@200
- type: cosine_map@500
value: 0.5835322146366259
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: full es
type: full_es
metrics:
- type: cosine_accuracy@1
value: 0.12432432432432433
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 1
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 1
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 1
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 1
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 1
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.12432432432432433
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.4924324324324324
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.31686486486486487
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.19843243243243244
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.14702702702702705
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.11762162162162161
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.003111544931768446
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.3235933309332048
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.4622883553307717
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.5424114301447981
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.5822792579944903
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.612586126212026
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.12432432432432433
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.5406828319866788
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.500776817925352
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.5143442473922782
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.5349751306205418
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.5498255219419508
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.12432432432432433
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.5516816816816817
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.5516816816816817
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.5516816816816817
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.5516816816816817
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.5516816816816817
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.12432432432432433
name: Cosine Map@1
- type: cosine_map@20
value: 0.4061591888137979
name: Cosine Map@20
- type: cosine_map@50
value: 0.3426196432849601
name: Cosine Map@50
- type: cosine_map@100
value: 0.3398108870028267
name: Cosine Map@100
- type: cosine_map@150
value: 0.3482007813358776
name: Cosine Map@150
- type: cosine_map@200
value: 0.3534583367060008
name: Cosine Map@200
- type: cosine_map@500
value: 0.36353547903357536
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: full de
type: full_de
metrics:
- type: cosine_accuracy@1
value: 0.2955665024630542
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.9211822660098522
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.9605911330049262
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.9753694581280788
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.9852216748768473
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.9852216748768473
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.2955665024630542
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.4226600985221674
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.2775369458128079
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.1787192118226601
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.1349753694581281
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.10960591133004927
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.01108543831680986
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.25787568646307335
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.378544115518205
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.4646991741198787
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.514077820298434
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.5479242719935129
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.2955665024630542
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.4571806408684656
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.4186161244795668
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.43413691996468995
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.45936827865079527
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.4762742892652946
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.2955665024630542
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.488501497777794
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.48978270334574775
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.4900376562912742
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.4901135143922775
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.4901135143922775
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.2955665024630542
name: Cosine Map@1
- type: cosine_map@20
value: 0.3211048669539684
name: Cosine Map@20
- type: cosine_map@50
value: 0.261888445835493
name: Cosine Map@50
- type: cosine_map@100
value: 0.2558901722323677
name: Cosine Map@100
- type: cosine_map@150
value: 0.2649913870834412
name: Cosine Map@150
- type: cosine_map@200
value: 0.27010541031599244
name: Cosine Map@200
- type: cosine_map@500
value: 0.28106938786931224
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: full zh
type: full_zh
metrics:
- type: cosine_accuracy@1
value: 0.30097087378640774
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.7087378640776699
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.8252427184466019
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.8543689320388349
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.912621359223301
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.941747572815534
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.30097087378640774
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.16844660194174763
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.09436893203883494
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.05844660194174757
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.04601941747572815
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.038203883495145634
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.024446152054452382
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.17513112391433697
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.23948897590045773
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.2859906000645493
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.32910264724851107
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.36304017348331746
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.30097087378640774
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.23848199480652515
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.23417872356945213
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.2558557487315817
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.27344459654855646
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.28574499658549296
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.30097087378640774
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.4211010881954553
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.4249525777196882
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.42539460155740233
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.42587488715939736
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.4260266850474542
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.30097087378640774
name: Cosine Map@1
- type: cosine_map@20
value: 0.14164601531439067
name: Cosine Map@20
- type: cosine_map@50
value: 0.12333195286802508
name: Cosine Map@50
- type: cosine_map@100
value: 0.12884550949445583
name: Cosine Map@100
- type: cosine_map@150
value: 0.13149151347084506
name: Cosine Map@150
- type: cosine_map@200
value: 0.1329204280861929
name: Cosine Map@200
- type: cosine_map@500
value: 0.13684460640814028
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: mix es
type: mix_es
metrics:
- type: cosine_accuracy@1
value: 0.40717628705148207
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.7581903276131046
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.8455538221528861
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.9048361934477379
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.9370774830993239
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.9547581903276131
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.40717628705148207
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.08819552782111284
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.04139365574622985
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.022704108164326574
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.015822499566649332
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.012189287571502862
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.1547198078399326
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.652070178045217
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.7639576059232845
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.8390052744966942
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.877764158185375
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.9016677809969541
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.40717628705148207
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.5052212563002627
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.5356805472279078
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.5521009256440798
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.5595924746165437
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.5639157869620031
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.40717628705148207
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.49319826751048873
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.49612329710657893
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.4969826860284758
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.49724671253026886
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.49734552981578295
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.40717628705148207
name: Cosine Map@1
- type: cosine_map@20
value: 0.419614969499609
name: Cosine Map@20
- type: cosine_map@50
value: 0.427088485280225
name: Cosine Map@50
- type: cosine_map@100
value: 0.4292014145714
name: Cosine Map@100
- type: cosine_map@150
value: 0.4298202694277485
name: Cosine Map@150
- type: cosine_map@200
value: 0.4300980044671579
name: Cosine Map@200
- type: cosine_map@500
value: 0.43055010151569684
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: mix de
type: mix_de
metrics:
- type: cosine_accuracy@1
value: 0.29017160686427457
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.6484659386375455
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.7540301612064483
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.8419136765470618
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.8788351534061363
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.9089963598543942
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.29017160686427457
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.07251690067602704
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.0355486219448778
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.02041601664066563
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.014505113537874847
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.01137545501820073
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.10890968972092217
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.5299011960478419
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.647191887675507
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.7442624371641533
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.7928583810019068
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.8289478245796498
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.29017160686427457
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.38598145754556046
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.41773491829410075
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.43906545567486005
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.4485955578737219
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.45520732213321263
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.29017160686427457
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.37232551415227233
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.375685507642469
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.3769348294784883
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.377239930826995
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.3774183771765249
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.29017160686427457
name: Cosine Map@1
- type: cosine_map@20
value: 0.30311022602590254
name: Cosine Map@20
- type: cosine_map@50
value: 0.31036427264538485
name: Cosine Map@50
- type: cosine_map@100
value: 0.31304585670015317
name: Cosine Map@100
- type: cosine_map@150
value: 0.3138396622777036
name: Cosine Map@150
- type: cosine_map@200
value: 0.31426372512191
name: Cosine Map@200
- type: cosine_map@500
value: 0.3150399864057635
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: mix zh
type: mix_zh
metrics:
- type: cosine_accuracy@1
value: 0.09394572025052192
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.35281837160751567
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.48329853862212946
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.5918580375782881
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.6649269311064718
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.7004175365344467
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.09394572025052192
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.030897703549060546
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.018204592901878917
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.011362212943632568
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.008639526791927627
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.007019832985386221
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.03185455810716771
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.20592877025549258
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.30069837956059253
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.3754792557245584
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.4282591046160983
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.46372361401067036
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.09394572025052192
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.13433471892252347
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.16091824243484512
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.1780017996510726
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.1886875211403746
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.19541417908856412
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.09394572025052192
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.14710513443845905
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.15122849766144658
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.15275090014884107
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.1533445728241347
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.1535456563541225
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.09394572025052192
name: Cosine Map@1
- type: cosine_map@20
value: 0.083759101073897
name: Cosine Map@20
- type: cosine_map@50
value: 0.08908800548950695
name: Cosine Map@50
- type: cosine_map@100
value: 0.09092612397080438
name: Cosine Map@100
- type: cosine_map@150
value: 0.09168814149038751
name: Cosine Map@150
- type: cosine_map@200
value: 0.09208168156532727
name: Cosine Map@200
- type: cosine_map@500
value: 0.09301554391402207
name: Cosine Map@500
SentenceTransformer based on BAAI/bge-small-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-small-en-v1.5 on the full_en, full_de, full_es, full_zh and mix datasets. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-small-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Training Datasets:
- full_en
- full_de
- full_es
- full_zh
- mix
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Volksvertreter',
'Parlamentarier',
'Oberbürgermeister',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
full_en
,full_es
,full_de
,full_zh
,mix_es
,mix_de
andmix_zh
- Evaluated with
InformationRetrievalEvaluator
Metric | full_en | full_es | full_de | full_zh | mix_es | mix_de | mix_zh |
---|---|---|---|---|---|---|---|
cosine_accuracy@1 | 0.6571 | 0.1243 | 0.2956 | 0.301 | 0.4072 | 0.2902 | 0.0939 |
cosine_accuracy@20 | 0.9905 | 1.0 | 0.9212 | 0.7087 | 0.7582 | 0.6485 | 0.3528 |
cosine_accuracy@50 | 0.9905 | 1.0 | 0.9606 | 0.8252 | 0.8456 | 0.754 | 0.4833 |
cosine_accuracy@100 | 0.9905 | 1.0 | 0.9754 | 0.8544 | 0.9048 | 0.8419 | 0.5919 |
cosine_accuracy@150 | 0.9905 | 1.0 | 0.9852 | 0.9126 | 0.9371 | 0.8788 | 0.6649 |
cosine_accuracy@200 | 0.9905 | 1.0 | 0.9852 | 0.9417 | 0.9548 | 0.909 | 0.7004 |
cosine_precision@1 | 0.6571 | 0.1243 | 0.2956 | 0.301 | 0.4072 | 0.2902 | 0.0939 |
cosine_precision@20 | 0.5076 | 0.4924 | 0.4227 | 0.1684 | 0.0882 | 0.0725 | 0.0309 |
cosine_precision@50 | 0.309 | 0.3169 | 0.2775 | 0.0944 | 0.0414 | 0.0355 | 0.0182 |
cosine_precision@100 | 0.1872 | 0.1984 | 0.1787 | 0.0584 | 0.0227 | 0.0204 | 0.0114 |
cosine_precision@150 | 0.1322 | 0.147 | 0.135 | 0.046 | 0.0158 | 0.0145 | 0.0086 |
cosine_precision@200 | 0.1027 | 0.1176 | 0.1096 | 0.0382 | 0.0122 | 0.0114 | 0.007 |
cosine_recall@1 | 0.068 | 0.0031 | 0.0111 | 0.0244 | 0.1547 | 0.1089 | 0.0319 |
cosine_recall@20 | 0.5459 | 0.3236 | 0.2579 | 0.1751 | 0.6521 | 0.5299 | 0.2059 |
cosine_recall@50 | 0.7285 | 0.4623 | 0.3785 | 0.2395 | 0.764 | 0.6472 | 0.3007 |
cosine_recall@100 | 0.8382 | 0.5424 | 0.4647 | 0.286 | 0.839 | 0.7443 | 0.3755 |
cosine_recall@150 | 0.8762 | 0.5823 | 0.5141 | 0.3291 | 0.8778 | 0.7929 | 0.4283 |
cosine_recall@200 | 0.906 | 0.6126 | 0.5479 | 0.363 | 0.9017 | 0.8289 | 0.4637 |
cosine_ndcg@1 | 0.6571 | 0.1243 | 0.2956 | 0.301 | 0.4072 | 0.2902 | 0.0939 |
cosine_ndcg@20 | 0.6895 | 0.5407 | 0.4572 | 0.2385 | 0.5052 | 0.386 | 0.1343 |
cosine_ndcg@50 | 0.7061 | 0.5008 | 0.4186 | 0.2342 | 0.5357 | 0.4177 | 0.1609 |
cosine_ndcg@100 | 0.762 | 0.5143 | 0.4341 | 0.2559 | 0.5521 | 0.4391 | 0.178 |
cosine_ndcg@150 | 0.7788 | 0.535 | 0.4594 | 0.2734 | 0.5596 | 0.4486 | 0.1887 |
cosine_ndcg@200 | 0.79 | 0.5498 | 0.4763 | 0.2857 | 0.5639 | 0.4552 | 0.1954 |
cosine_mrr@1 | 0.6571 | 0.1243 | 0.2956 | 0.301 | 0.4072 | 0.2902 | 0.0939 |
cosine_mrr@20 | 0.8098 | 0.5517 | 0.4885 | 0.4211 | 0.4932 | 0.3723 | 0.1471 |
cosine_mrr@50 | 0.8098 | 0.5517 | 0.4898 | 0.425 | 0.4961 | 0.3757 | 0.1512 |
cosine_mrr@100 | 0.8098 | 0.5517 | 0.49 | 0.4254 | 0.497 | 0.3769 | 0.1528 |
cosine_mrr@150 | 0.8098 | 0.5517 | 0.4901 | 0.4259 | 0.4972 | 0.3772 | 0.1533 |
cosine_mrr@200 | 0.8098 | 0.5517 | 0.4901 | 0.426 | 0.4973 | 0.3774 | 0.1535 |
cosine_map@1 | 0.6571 | 0.1243 | 0.2956 | 0.301 | 0.4072 | 0.2902 | 0.0939 |
cosine_map@20 | 0.5465 | 0.4062 | 0.3211 | 0.1416 | 0.4196 | 0.3031 | 0.0838 |
cosine_map@50 | 0.5352 | 0.3426 | 0.2619 | 0.1233 | 0.4271 | 0.3104 | 0.0891 |
cosine_map@100 | 0.5685 | 0.3398 | 0.2559 | 0.1288 | 0.4292 | 0.313 | 0.0909 |
cosine_map@150 | 0.5757 | 0.3482 | 0.265 | 0.1315 | 0.4298 | 0.3138 | 0.0917 |
cosine_map@200 | 0.5792 | 0.3535 | 0.2701 | 0.1329 | 0.4301 | 0.3143 | 0.0921 |
cosine_map@500 | 0.5835 | 0.3635 | 0.2811 | 0.1368 | 0.4306 | 0.315 | 0.093 |
Training Details
Training Datasets
full_en
full_en
- Dataset: full_en
- Size: 28,880 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 3 tokens
- mean: 5.0 tokens
- max: 10 tokens
- min: 3 tokens
- mean: 5.01 tokens
- max: 13 tokens
- Samples:
anchor positive air commodore
flight lieutenant
command and control officer
flight officer
air commodore
command and control officer
- Loss:
GISTEmbedLoss
with these parameters:{'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
full_de
full_de
- Dataset: full_de
- Size: 23,023 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 3 tokens
- mean: 11.05 tokens
- max: 45 tokens
- min: 3 tokens
- mean: 11.43 tokens
- max: 45 tokens
- Samples:
anchor positive Staffelkommandantin
Kommodore
Luftwaffenoffizierin
Luftwaffenoffizier/Luftwaffenoffizierin
Staffelkommandantin
Luftwaffenoffizierin
- Loss:
GISTEmbedLoss
with these parameters:{'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
full_es
full_es
- Dataset: full_es
- Size: 20,724 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 3 tokens
- mean: 12.95 tokens
- max: 50 tokens
- min: 3 tokens
- mean: 12.57 tokens
- max: 50 tokens
- Samples:
anchor positive jefe de escuadrón
instructor
comandante de aeronave
instructor de simulador
instructor
oficial del Ejército del Aire
- Loss:
GISTEmbedLoss
with these parameters:{'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
full_zh
full_zh
- Dataset: full_zh
- Size: 30,401 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 4 tokens
- mean: 8.36 tokens
- max: 20 tokens
- min: 4 tokens
- mean: 8.95 tokens
- max: 27 tokens
- Samples:
anchor positive 技术总监
技术和运营总监
技术总监
技术主管
技术总监
技术艺术总监
- Loss:
GISTEmbedLoss
with these parameters:{'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
mix
mix
- Dataset: mix
- Size: 21,760 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 2 tokens
- mean: 5.65 tokens
- max: 14 tokens
- min: 2 tokens
- mean: 10.08 tokens
- max: 30 tokens
- Samples:
anchor positive technical manager
Technischer Direktor für Bühne, Film und Fernsehen
head of technical
directora técnica
head of technical department
技术艺术总监
- Loss:
GISTEmbedLoss
with these parameters:{'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 128per_device_eval_batch_size
: 128gradient_accumulation_steps
: 2num_train_epochs
: 5warmup_ratio
: 0.05log_on_each_node
: Falsefp16
: Truedataloader_num_workers
: 4ddp_find_unused_parameters
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 128per_device_eval_batch_size
: 128per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 2eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.05warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Falselogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Truedataloader_num_workers
: 4dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Trueddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | full_en_cosine_ndcg@200 | full_es_cosine_ndcg@200 | full_de_cosine_ndcg@200 | full_zh_cosine_ndcg@200 | mix_es_cosine_ndcg@200 | mix_de_cosine_ndcg@200 | mix_zh_cosine_ndcg@200 |
---|---|---|---|---|---|---|---|---|---|
-1 | -1 | - | 0.7322 | 0.4690 | 0.3853 | 0.2723 | 0.3209 | 0.2244 | 0.0919 |
0.0021 | 1 | 23.8878 | - | - | - | - | - | - | - |
0.2058 | 100 | 7.2098 | - | - | - | - | - | - | - |
0.4115 | 200 | 4.2635 | 0.7800 | 0.5132 | 0.4268 | 0.2798 | 0.4372 | 0.2996 | 0.1447 |
0.6173 | 300 | 4.1931 | - | - | - | - | - | - | - |
0.8230 | 400 | 3.73 | 0.7863 | 0.5274 | 0.4451 | 0.2805 | 0.4762 | 0.3455 | 0.1648 |
1.0309 | 500 | 3.3569 | - | - | - | - | - | - | - |
1.2366 | 600 | 3.6464 | 0.7868 | 0.5372 | 0.4540 | 0.2813 | 0.5063 | 0.3794 | 0.1755 |
1.4424 | 700 | 3.0772 | - | - | - | - | - | - | - |
1.6481 | 800 | 3.114 | 0.7906 | 0.5391 | 0.4576 | 0.2832 | 0.5221 | 0.4047 | 0.1779 |
1.8539 | 900 | 2.9246 | - | - | - | - | - | - | - |
2.0617 | 1000 | 2.7479 | 0.7873 | 0.5423 | 0.4631 | 0.2871 | 0.5323 | 0.4143 | 0.1843 |
2.2675 | 1100 | 3.049 | - | - | - | - | - | - | - |
2.4733 | 1200 | 2.6137 | 0.7878 | 0.5418 | 0.4685 | 0.2870 | 0.5470 | 0.4339 | 0.1932 |
2.6790 | 1300 | 2.8607 | - | - | - | - | - | - | - |
2.8848 | 1400 | 2.7071 | 0.7889 | 0.5465 | 0.4714 | 0.2891 | 0.5504 | 0.4362 | 0.1944 |
3.0926 | 1500 | 2.7012 | - | - | - | - | - | - | - |
3.2984 | 1600 | 2.7423 | 0.7882 | 0.5471 | 0.4748 | 0.2868 | 0.5542 | 0.4454 | 0.1976 |
3.5041 | 1700 | 2.5316 | - | - | - | - | - | - | - |
3.7099 | 1800 | 2.6344 | 0.7900 | 0.5498 | 0.4763 | 0.2857 | 0.5639 | 0.4552 | 0.1954 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
GISTEmbedLoss
@misc{solatorio2024gistembed,
title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
author={Aivin V. Solatorio},
year={2024},
eprint={2402.16829},
archivePrefix={arXiv},
primaryClass={cs.LG}
}