Spaces:
Runtime error
Runtime error
LPX55
Add Gradio interface for multi-model diffusion and text generation tasks, including model loading/unloading functionality and shared state management. Introduce new tabs for text and diffusion models, enhancing user interaction and modularity.
a5723a0
import gradio as gr | |
import torch | |
from diffusers import DiffusionPipeline | |
import gc | |
def diffusion_tab(model_cache, unload_all_models): | |
def load_diffusion_model(): | |
unload_all_models() | |
model_id = "LPX55/FLUX.1-merged_lightning_v2" | |
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float32) | |
pipe = pipe.to("cpu") | |
pipe.enable_attention_slicing() | |
model_cache["diffusion"] = pipe | |
return "Diffusion model loaded!" | |
def unload_diffusion_model(): | |
if "diffusion" in model_cache: | |
del model_cache["diffusion"] | |
gc.collect() | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
return "Diffusion model unloaded!" | |
def run_diffusion(prompt, width, height, steps): | |
if "diffusion" not in model_cache: | |
return None, "Diffusion model not loaded!" | |
pipe = model_cache["diffusion"] | |
image = pipe( | |
prompt=prompt, | |
width=width, | |
height=height, | |
num_inference_steps=steps, | |
).images[0] | |
return image, "Success!" | |
with gr.Tab("Diffusion"): | |
status = gr.Markdown("Model not loaded.") | |
load_btn = gr.Button("Load Diffusion Model") | |
unload_btn = gr.Button("Unload Model") | |
prompt = gr.Textbox(label="Prompt", value="A cat holding a sign that says hello world") | |
width = gr.Slider(256, 1536, value=768, step=64, label="Width") | |
height = gr.Slider(256, 1536, value=1152, step=64, label="Height") | |
steps = gr.Slider(1, 50, value=8, step=1, label="Inference Steps") | |
run_btn = gr.Button("Generate Image") | |
output_img = gr.Image(label="Output Image") | |
output_msg = gr.Textbox(label="Status", interactive=False) | |
load_btn.click(load_diffusion_model, None, status) | |
unload_btn.click(unload_diffusion_model, None, status) | |
run_btn.click(run_diffusion, [prompt, width, height, steps], [output_img, output_msg]) |