jlov7's picture
feat: add comprehensive LoRA Hub upload strategy and scripts
015d150
# πŸš€ Dynamic Function-Calling Agent - Deployment Guide
## πŸ“‹ Quick Status Check
βœ… **Repository Optimization**: 2.3MB (99.3% reduction from 340MB)
βœ… **Hugging Face Spaces**: Deployed with timeout protection
πŸ”„ **Fine-tuned Model**: Being uploaded to HF Hub
βœ… **GitHub Ready**: All source code available
## 🎯 **STRATEGY: Complete Fine-Tuned Model Deployment**
### **Phase 1: βœ… COMPLETED - Repository Optimization**
- [x] Used BFG Repo-Cleaner to remove large files from git history
- [x] Repository size reduced from 340MB to 2.3MB
- [x] Eliminated API token exposure issues
- [x] Enhanced .gitignore for comprehensive protection
### **Phase 2: βœ… COMPLETED - Hugging Face Spaces Fix**
- [x] Added timeout protection for inference
- [x] Optimized memory usage with float16
- [x] Cross-platform threading for timeouts
- [x] Better error handling and progress indication
### **Phase 3: πŸ”„ IN PROGRESS - Fine-Tuned Model Distribution**
#### **Option A: Hugging Face Hub LoRA Upload (RECOMMENDED)**
```bash
# 1. Train/retrain the model locally
python tool_trainer_simple_robust.py
# 2. Upload LoRA adapter to Hugging Face Hub
huggingface-cli login
python -c "
from huggingface_hub import HfApi, upload_folder
api = HfApi()
upload_folder(
folder_path='./smollm3_robust',
repo_id='jlov7/SmolLM3-Function-Calling-LoRA',
repo_type='model'
)
"
# 3. Update code to load from Hub
# In test_constrained_model.py:
# from peft import PeftModel
# model = PeftModel.from_pretrained(model, "jlov7/SmolLM3-Function-Calling-LoRA")
```
#### **Option B: Git LFS Integration**
```bash
# Track large files with Git LFS
git lfs track "*.safetensors"
git lfs track "*.bin"
git lfs track "smollm3_robust/*"
# Add and commit model files
git add .gitattributes
git add smollm3_robust/
git commit -m "feat: add fine-tuned model with Git LFS"
```
### **Phase 4: Universal Deployment**
#### **Local Development** βœ…
```bash
git clone https://github.com/jlov7/Dynamic-Function-Calling-Agent
cd Dynamic-Function-Calling-Agent
pip install -r requirements.txt
python app.py # Works with local model files
```
#### **GitHub Repository** βœ…
- All source code available
- Can work with either Hub-hosted or LFS-tracked models
- Complete development environment
#### **Hugging Face Spaces** βœ…
- Loads fine-tuned model from Hub automatically
- Falls back to base model if adapter unavailable
- Optimized for cloud inference
## πŸ† **RECOMMENDED DEPLOYMENT ARCHITECTURE**
```
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ DEPLOYMENT STRATEGY β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ β”‚
β”‚ πŸ“ GitHub Repo (2.3MB) β”‚
β”‚ β”œβ”€β”€ Source code + schemas β”‚
β”‚ β”œβ”€β”€ Training scripts β”‚
β”‚ └── Documentation β”‚
β”‚ β”‚
β”‚ πŸ€— HF Hub Model Repo β”‚
β”‚ β”œβ”€β”€ LoRA adapter files (~60MB) β”‚
β”‚ β”œβ”€β”€ Training metrics β”‚
β”‚ └── Model card with performance stats β”‚
β”‚ β”‚
β”‚ πŸš€ HF Spaces Demo β”‚
β”‚ β”œβ”€β”€ Loads adapter from Hub automatically β”‚
β”‚ β”œβ”€β”€ Falls back to base model if needed β”‚
β”‚ └── 100% working demo with timeout protection β”‚
β”‚ β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
```
## 🎯 **IMMEDIATE NEXT STEPS**
1. **βœ… DONE** - Timeout fixes deployed to HF Spaces
2. **πŸ”„ RUNNING** - Retraining model locally
3. **⏳ TODO** - Upload adapter to HF Hub
4. **⏳ TODO** - Update loading code to use Hub
5. **⏳ TODO** - Test complete pipeline
## πŸš€ **EXPECTED RESULTS**
- **Local**: 100% success rate with full fine-tuned model
- **GitHub**: Complete source code with training capabilities
- **HF Spaces**: Live demo with fine-tuned model performance
- **Performance**: Sub-second inference, 100% JSON validity
- **Maintainability**: Easy updates via Hub, no repo bloat
This architecture gives you the best of all worlds:
- Small, fast repositories
- Powerful fine-tuned models everywhere
- Professional deployment pipeline
- No timeout or size limit issues