File size: 7,948 Bytes
1298c66 c6d1ec5 1298c66 7ff41e3 1298c66 0553d6a 1298c66 8b3b01c 1298c66 7ff41e3 1298c66 bf0dfbd 1298c66 c6d1ec5 1298c66 7ff41e3 c832152 7ff41e3 1298c66 94cd4d3 1298c66 0553d6a 1298c66 7ff41e3 1298c66 7cf01b2 1298c66 7ff41e3 1298c66 7ff41e3 1298c66 8b3b01c 1298c66 5dcb28f c6d1ec5 7ff41e3 c6d1ec5 1298c66 c6d1ec5 1298c66 7ff41e3 c6d1ec5 1298c66 7ff41e3 1298c66 c6d1ec5 1298c66 4cb0ca6 1298c66 7ff41e3 1298c66 4cb0ca6 1298c66 7ff41e3 1298c66 7ff41e3 c6d1ec5 7ff41e3 c6d1ec5 7ff41e3 c6d1ec5 7ff41e3 c6d1ec5 1298c66 c6d1ec5 1298c66 094984f 1298c66 7ff41e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
from fastapi import FastAPI, HTTPException, File, UploadFile
from fastapi import Query
from contextlib import asynccontextmanager
from pydantic import BaseModel
from typing import Optional, Any
import sys
import os
from pathlib import Path
import asyncio
import nest_asyncio
from lightrag import LightRAG, QueryParam
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
from lightrag.utils import EmbeddingFunc
import numpy as np
from lightrag.kg.shared_storage import initialize_pipeline_status
print(os.getcwd())
script_directory = Path(__file__).resolve().parent.parent
sys.path.append(os.path.abspath(script_directory))
# Apply nest_asyncio to solve event loop issues
nest_asyncio.apply()
DEFAULT_RAG_DIR = "index_default"
# We use OpenAI compatible API to call LLM on Oracle Cloud
# More docs here https://github.com/jin38324/OCI_GenAI_access_gateway
BASE_URL = "http://xxx.xxx.xxx.xxx:8088/v1/"
APIKEY = "ocigenerativeai"
# Configure working directory
WORKING_DIR = os.environ.get("RAG_DIR", f"{DEFAULT_RAG_DIR}")
print(f"WORKING_DIR: {WORKING_DIR}")
LLM_MODEL = os.environ.get("LLM_MODEL", "cohere.command-r-plus-08-2024")
print(f"LLM_MODEL: {LLM_MODEL}")
EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "cohere.embed-multilingual-v3.0")
print(f"EMBEDDING_MODEL: {EMBEDDING_MODEL}")
EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 512))
print(f"EMBEDDING_MAX_TOKEN_SIZE: {EMBEDDING_MAX_TOKEN_SIZE}")
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
os.environ["ORACLE_USER"] = ""
os.environ["ORACLE_PASSWORD"] = ""
os.environ["ORACLE_DSN"] = ""
os.environ["ORACLE_CONFIG_DIR"] = "path_to_config_dir"
os.environ["ORACLE_WALLET_LOCATION"] = "path_to_wallet_location"
os.environ["ORACLE_WALLET_PASSWORD"] = "wallet_password"
os.environ["ORACLE_WORKSPACE"] = "company"
async def llm_model_func(
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
) -> str:
return await openai_complete_if_cache(
LLM_MODEL,
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
api_key=APIKEY,
base_url=BASE_URL,
**kwargs,
)
async def embedding_func(texts: list[str]) -> np.ndarray:
return await openai_embed(
texts,
model=EMBEDDING_MODEL,
api_key=APIKEY,
base_url=BASE_URL,
)
async def get_embedding_dim():
test_text = ["This is a test sentence."]
embedding = await embedding_func(test_text)
embedding_dim = embedding.shape[1]
return embedding_dim
async def init():
# Detect embedding dimension
embedding_dimension = await get_embedding_dim()
print(f"Detected embedding dimension: {embedding_dimension}")
# Create Oracle DB connection
# The `config` parameter is the connection configuration of Oracle DB
# More docs here https://python-oracledb.readthedocs.io/en/latest/user_guide/connection_handling.html
# We storage data in unified tables, so we need to set a `workspace` parameter to specify which docs we want to store and query
# Below is an example of how to connect to Oracle Autonomous Database on Oracle Cloud
# Initialize LightRAG
# We use Oracle DB as the KV/vector/graph storage
rag = LightRAG(
enable_llm_cache=False,
working_dir=WORKING_DIR,
chunk_token_size=512,
llm_model_func=llm_model_func,
embedding_func=EmbeddingFunc(
embedding_dim=embedding_dimension,
max_token_size=512,
func=embedding_func,
),
graph_storage="OracleGraphStorage",
kv_storage="OracleKVStorage",
vector_storage="OracleVectorDBStorage",
)
await rag.initialize_storages()
await initialize_pipeline_status()
return rag
# Extract and Insert into LightRAG storage
# with open("./dickens/book.txt", "r", encoding="utf-8") as f:
# await rag.ainsert(f.read())
# # Perform search in different modes
# modes = ["naive", "local", "global", "hybrid"]
# for mode in modes:
# print("="*20, mode, "="*20)
# print(await rag.aquery("这篇文档是关于什么内容的?", param=QueryParam(mode=mode)))
# print("-"*100, "\n")
# Data models
class QueryRequest(BaseModel):
query: str
mode: str = "hybrid"
only_need_context: bool = False
only_need_prompt: bool = False
class DataRequest(BaseModel):
limit: int = 100
class InsertRequest(BaseModel):
text: str
class Response(BaseModel):
status: str
data: Optional[Any] = None
message: Optional[str] = None
# API routes
rag = None
@asynccontextmanager
async def lifespan(app: FastAPI):
global rag
rag = await init()
print("done!")
yield
app = FastAPI(
title="LightRAG API", description="API for RAG operations", lifespan=lifespan
)
@app.post("/query", response_model=Response)
async def query_endpoint(request: QueryRequest):
# try:
# loop = asyncio.get_event_loop()
if request.mode == "naive":
top_k = 3
else:
top_k = 60
result = await rag.aquery(
request.query,
param=QueryParam(
mode=request.mode,
only_need_context=request.only_need_context,
only_need_prompt=request.only_need_prompt,
top_k=top_k,
),
)
return Response(status="success", data=result)
# except Exception as e:
# raise HTTPException(status_code=500, detail=str(e))
@app.get("/data", response_model=Response)
async def query_all_nodes(type: str = Query("nodes"), limit: int = Query(100)):
if type == "nodes":
result = await rag.chunk_entity_relation_graph.get_all_nodes(limit=limit)
elif type == "edges":
result = await rag.chunk_entity_relation_graph.get_all_edges(limit=limit)
elif type == "statistics":
result = await rag.chunk_entity_relation_graph.get_statistics()
return Response(status="success", data=result)
@app.post("/insert", response_model=Response)
async def insert_endpoint(request: InsertRequest):
try:
loop = asyncio.get_event_loop()
await loop.run_in_executor(None, lambda: rag.insert(request.text))
return Response(status="success", message="Text inserted successfully")
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/insert_file", response_model=Response)
async def insert_file(file: UploadFile = File(...)):
try:
file_content = await file.read()
# Read file content
try:
content = file_content.decode("utf-8")
except UnicodeDecodeError:
# If UTF-8 decoding fails, try other encodings
content = file_content.decode("gbk")
# Insert file content
loop = asyncio.get_event_loop()
await loop.run_in_executor(None, lambda: rag.insert(content))
return Response(
status="success",
message=f"File content from {file.filename} inserted successfully",
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/health")
async def health_check():
return {"status": "healthy"}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="127.0.0.1", port=8020)
# Usage example
# To run the server, use the following command in your terminal:
# python lightrag_api_openai_compatible_demo.py
# Example requests:
# 1. Query:
# curl -X POST "http://127.0.0.1:8020/query" -H "Content-Type: application/json" -d '{"query": "your query here", "mode": "hybrid"}'
# 2. Insert text:
# curl -X POST "http://127.0.0.1:8020/insert" -H "Content-Type: application/json" -d '{"text": "your text here"}'
# 3. Insert file:
# curl -X POST "http://127.0.0.1:8020/insert_file" -H "Content-Type: multipart/form-data" -F "file=@path/to/your/file.txt"
# 4. Health check:
# curl -X GET "http://127.0.0.1:8020/health"
|