File size: 3,147 Bytes
718c021
 
 
 
 
 
 
5570390
718c021
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94cd4d3
718c021
5570390
38d7e17
 
0069752
5570390
718c021
 
 
 
 
 
 
 
5570390
0069752
5570390
 
 
 
 
 
718c021
 
 
5570390
 
 
0069752
5570390
0069752
58c112a
5570390
 
718c021
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df22b26
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import os
import asyncio
from lightrag import LightRAG, QueryParam
from lightrag.utils import EmbeddingFunc
import numpy as np
from dotenv import load_dotenv
import logging
from openai import AzureOpenAI

logging.basicConfig(level=logging.INFO)

load_dotenv()

AZURE_OPENAI_API_VERSION = os.getenv("AZURE_OPENAI_API_VERSION")
AZURE_OPENAI_DEPLOYMENT = os.getenv("AZURE_OPENAI_DEPLOYMENT")
AZURE_OPENAI_API_KEY = os.getenv("AZURE_OPENAI_API_KEY")
AZURE_OPENAI_ENDPOINT = os.getenv("AZURE_OPENAI_ENDPOINT")

AZURE_EMBEDDING_DEPLOYMENT = os.getenv("AZURE_EMBEDDING_DEPLOYMENT")
AZURE_EMBEDDING_API_VERSION = os.getenv("AZURE_EMBEDDING_API_VERSION")

WORKING_DIR = "./dickens"

if os.path.exists(WORKING_DIR):
    import shutil

    shutil.rmtree(WORKING_DIR)

os.mkdir(WORKING_DIR)


async def llm_model_func(
    prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
) -> str:
    client = AzureOpenAI(
        api_key=AZURE_OPENAI_API_KEY,
        api_version=AZURE_OPENAI_API_VERSION,
        azure_endpoint=AZURE_OPENAI_ENDPOINT,
    )

    messages = []
    if system_prompt:
        messages.append({"role": "system", "content": system_prompt})
    if history_messages:
        messages.extend(history_messages)
    messages.append({"role": "user", "content": prompt})

    chat_completion = client.chat.completions.create(
        model=AZURE_OPENAI_DEPLOYMENT,  # model = "deployment_name".
        messages=messages,
        temperature=kwargs.get("temperature", 0),
        top_p=kwargs.get("top_p", 1),
        n=kwargs.get("n", 1),
    )
    return chat_completion.choices[0].message.content


async def embedding_func(texts: list[str]) -> np.ndarray:
    client = AzureOpenAI(
        api_key=AZURE_OPENAI_API_KEY,
        api_version=AZURE_EMBEDDING_API_VERSION,
        azure_endpoint=AZURE_OPENAI_ENDPOINT,
    )
    embedding = client.embeddings.create(model=AZURE_EMBEDDING_DEPLOYMENT, input=texts)

    embeddings = [item.embedding for item in embedding.data]
    return np.array(embeddings)


async def test_funcs():
    result = await llm_model_func("How are you?")
    print("Resposta do llm_model_func: ", result)

    result = await embedding_func(["How are you?"])
    print("Resultado do embedding_func: ", result.shape)
    print("Dimensão da embedding: ", result.shape[1])


asyncio.run(test_funcs())

embedding_dimension = 3072

rag = LightRAG(
    working_dir=WORKING_DIR,
    llm_model_func=llm_model_func,
    embedding_func=EmbeddingFunc(
        embedding_dim=embedding_dimension,
        max_token_size=8192,
        func=embedding_func,
    ),
)

book1 = open("./book_1.txt", encoding="utf-8")
book2 = open("./book_2.txt", encoding="utf-8")

rag.insert([book1.read(), book2.read()])

query_text = "What are the main themes?"

print("Result (Naive):")
print(rag.query(query_text, param=QueryParam(mode="naive")))

print("\nResult (Local):")
print(rag.query(query_text, param=QueryParam(mode="local")))

print("\nResult (Global):")
print(rag.query(query_text, param=QueryParam(mode="global")))

print("\nResult (Hybrid):")
print(rag.query(query_text, param=QueryParam(mode="hybrid")))