File size: 5,167 Bytes
5dcb28f
 
8d66028
 
 
0553d6a
8d66028
 
 
 
bf0dfbd
 
 
8d66028
 
 
 
 
 
 
 
 
0fc2402
 
8d66028
 
 
 
5dcb28f
8d66028
94cd4d3
8d66028
 
 
 
 
 
 
 
 
 
 
 
 
0553d6a
8d66028
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5dcb28f
 
 
 
 
 
 
 
 
8d66028
5dcb28f
8d66028
 
 
 
 
 
7cf01b2
8d66028
18a40e5
 
121ced9
18a40e5
121ced9
 
0fc2402
121ced9
8d66028
 
 
0fc2402
8d66028
121ced9
 
 
0923c61
121ced9
 
 
 
 
 
8d66028
 
121ced9
 
18a40e5
8d66028
121ced9
18a40e5
 
121ced9
18a40e5
 
121ced9
18a40e5
8d66028
18a40e5
121ced9
 
8d66028
 
 
5dcb28f
 
 
 
 
 
 
 
8d66028
 
 
 
 
 
5dcb28f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import sys
import os
from pathlib import Path
import asyncio
from lightrag import LightRAG, QueryParam
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
from lightrag.utils import EmbeddingFunc
import numpy as np
from lightrag.kg.oracle_impl import OracleDB

print(os.getcwd())
script_directory = Path(__file__).resolve().parent.parent
sys.path.append(os.path.abspath(script_directory))

WORKING_DIR = "./dickens"

# We use OpenAI compatible API to call LLM on Oracle Cloud
# More docs here https://github.com/jin38324/OCI_GenAI_access_gateway
BASE_URL = "http://xxx.xxx.xxx.xxx:8088/v1/"
APIKEY = "ocigenerativeai"
CHATMODEL = "cohere.command-r-plus"
EMBEDMODEL = "cohere.embed-multilingual-v3.0"
CHUNK_TOKEN_SIZE = 1024
MAX_TOKENS = 4000

if not os.path.exists(WORKING_DIR):
    os.mkdir(WORKING_DIR)


async def llm_model_func(
    prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
) -> str:
    return await openai_complete_if_cache(
        CHATMODEL,
        prompt,
        system_prompt=system_prompt,
        history_messages=history_messages,
        api_key=APIKEY,
        base_url=BASE_URL,
        **kwargs,
    )


async def embedding_func(texts: list[str]) -> np.ndarray:
    return await openai_embed(
        texts,
        model=EMBEDMODEL,
        api_key=APIKEY,
        base_url=BASE_URL,
    )


async def get_embedding_dim():
    test_text = ["This is a test sentence."]
    embedding = await embedding_func(test_text)
    embedding_dim = embedding.shape[1]
    return embedding_dim


async def main():
    try:
        # Detect embedding dimension
        embedding_dimension = await get_embedding_dim()
        print(f"Detected embedding dimension: {embedding_dimension}")

        # Create Oracle DB connection
        # The `config` parameter is the connection configuration of Oracle DB
        # More docs here https://python-oracledb.readthedocs.io/en/latest/user_guide/connection_handling.html
        # We storage data in unified tables, so we need to set a `workspace` parameter to specify which docs we want to store and query
        # Below is an example of how to connect to Oracle Autonomous Database on Oracle Cloud
        oracle_db = OracleDB(
            config={
                "user": "username",
                "password": "xxxxxxxxx",
                "dsn": "xxxxxxx_medium",
                "config_dir": "dir/path/to/oracle/config",
                "wallet_location": "dir/path/to/oracle/wallet",
                "wallet_password": "xxxxxxxxx",
                "workspace": "company",  # specify which docs you want to store and query
            }
        )

        # Check if Oracle DB tables exist, if not, tables will be created
        await oracle_db.check_tables()

        # Initialize LightRAG
        # We use Oracle DB as the KV/vector/graph storage
        # You can add `addon_params={"example_number": 1, "language": "Simplfied Chinese"}` to control the prompt
        rag = LightRAG(
            # log_level="DEBUG",
            working_dir=WORKING_DIR,
            entity_extract_max_gleaning=1,
            enable_llm_cache=True,
            enable_llm_cache_for_entity_extract=True,
            embedding_cache_config=None,  # {"enabled": True,"similarity_threshold": 0.90},
            chunk_token_size=CHUNK_TOKEN_SIZE,
            llm_model_max_token_size=MAX_TOKENS,
            llm_model_func=llm_model_func,
            embedding_func=EmbeddingFunc(
                embedding_dim=embedding_dimension,
                max_token_size=500,
                func=embedding_func,
            ),
            graph_storage="OracleGraphStorage",
            kv_storage="OracleKVStorage",
            vector_storage="OracleVectorDBStorage",
            addon_params={
                "example_number": 1,
                "language": "Simplfied Chinese",
                "entity_types": ["organization", "person", "geo", "event"],
                "insert_batch_size": 2,
            },
        )

        # Setthe KV/vector/graph storage's `db` property, so all operation will use same connection pool
        rag.set_storage_client(db_client=oracle_db)

        # Extract and Insert into LightRAG storage
        with open(WORKING_DIR + "/docs.txt", "r", encoding="utf-8") as f:
            all_text = f.read()
            texts = [x for x in all_text.split("\n") if x]

        # New mode use pipeline
        await rag.apipeline_process_documents(texts)
        await rag.apipeline_process_chunks()
        await rag.apipeline_process_extract_graph()

        # Old method use ainsert
        # await rag.ainsert(texts)

        # Perform search in different modes
        modes = ["naive", "local", "global", "hybrid"]
        for mode in modes:
            print("=" * 20, mode, "=" * 20)
            print(
                await rag.aquery(
                    "What are the top themes in this story?",
                    param=QueryParam(mode=mode),
                )
            )
            print("-" * 100, "\n")

    except Exception as e:
        print(f"An error occurred: {e}")


if __name__ == "__main__":
    asyncio.run(main())