|
import sys |
|
import os |
|
from pathlib import Path |
|
import asyncio |
|
from lightrag import LightRAG, QueryParam |
|
from lightrag.llm.openai import openai_complete_if_cache, openai_embed |
|
from lightrag.utils import EmbeddingFunc |
|
import numpy as np |
|
from lightrag.kg.shared_storage import initialize_pipeline_status |
|
|
|
print(os.getcwd()) |
|
script_directory = Path(__file__).resolve().parent.parent |
|
sys.path.append(os.path.abspath(script_directory)) |
|
|
|
WORKING_DIR = "./dickens" |
|
|
|
|
|
|
|
BASE_URL = "http://xxx.xxx.xxx.xxx:8088/v1/" |
|
APIKEY = "ocigenerativeai" |
|
CHATMODEL = "cohere.command-r-plus" |
|
EMBEDMODEL = "cohere.embed-multilingual-v3.0" |
|
CHUNK_TOKEN_SIZE = 1024 |
|
MAX_TOKENS = 4000 |
|
|
|
if not os.path.exists(WORKING_DIR): |
|
os.mkdir(WORKING_DIR) |
|
|
|
os.environ["ORACLE_USER"] = "username" |
|
os.environ["ORACLE_PASSWORD"] = "xxxxxxxxx" |
|
os.environ["ORACLE_DSN"] = "xxxxxxx_medium" |
|
os.environ["ORACLE_CONFIG_DIR"] = "path_to_config_dir" |
|
os.environ["ORACLE_WALLET_LOCATION"] = "path_to_wallet_location" |
|
os.environ["ORACLE_WALLET_PASSWORD"] = "wallet_password" |
|
os.environ["ORACLE_WORKSPACE"] = "company" |
|
|
|
|
|
async def llm_model_func( |
|
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs |
|
) -> str: |
|
return await openai_complete_if_cache( |
|
CHATMODEL, |
|
prompt, |
|
system_prompt=system_prompt, |
|
history_messages=history_messages, |
|
api_key=APIKEY, |
|
base_url=BASE_URL, |
|
**kwargs, |
|
) |
|
|
|
|
|
async def embedding_func(texts: list[str]) -> np.ndarray: |
|
return await openai_embed( |
|
texts, |
|
model=EMBEDMODEL, |
|
api_key=APIKEY, |
|
base_url=BASE_URL, |
|
) |
|
|
|
|
|
async def get_embedding_dim(): |
|
test_text = ["This is a test sentence."] |
|
embedding = await embedding_func(test_text) |
|
embedding_dim = embedding.shape[1] |
|
return embedding_dim |
|
|
|
|
|
async def initialize_rag(): |
|
|
|
embedding_dimension = await get_embedding_dim() |
|
print(f"Detected embedding dimension: {embedding_dimension}") |
|
|
|
|
|
|
|
|
|
rag = LightRAG( |
|
|
|
working_dir=WORKING_DIR, |
|
entity_extract_max_gleaning=1, |
|
enable_llm_cache=True, |
|
enable_llm_cache_for_entity_extract=True, |
|
embedding_cache_config=None, |
|
chunk_token_size=CHUNK_TOKEN_SIZE, |
|
llm_model_max_token_size=MAX_TOKENS, |
|
llm_model_func=llm_model_func, |
|
embedding_func=EmbeddingFunc( |
|
embedding_dim=embedding_dimension, |
|
max_token_size=500, |
|
func=embedding_func, |
|
), |
|
graph_storage="OracleGraphStorage", |
|
kv_storage="OracleKVStorage", |
|
vector_storage="OracleVectorDBStorage", |
|
addon_params={ |
|
"example_number": 1, |
|
"language": "Simplfied Chinese", |
|
"entity_types": ["organization", "person", "geo", "event"], |
|
"insert_batch_size": 2, |
|
}, |
|
) |
|
await rag.initialize_storages() |
|
await initialize_pipeline_status() |
|
|
|
return rag |
|
|
|
|
|
async def main(): |
|
try: |
|
|
|
rag = await initialize_rag() |
|
|
|
|
|
with open(WORKING_DIR + "/docs.txt", "r", encoding="utf-8") as f: |
|
all_text = f.read() |
|
texts = [x for x in all_text.split("\n") if x] |
|
|
|
|
|
await rag.apipeline_enqueue_documents(texts) |
|
await rag.apipeline_process_enqueue_documents() |
|
|
|
|
|
|
|
|
|
|
|
modes = ["naive", "local", "global", "hybrid"] |
|
for mode in modes: |
|
print("=" * 20, mode, "=" * 20) |
|
print( |
|
await rag.aquery( |
|
"What are the top themes in this story?", |
|
param=QueryParam(mode=mode), |
|
) |
|
) |
|
print("-" * 100, "\n") |
|
|
|
except Exception as e: |
|
print(f"An error occurred: {e}") |
|
|
|
|
|
if __name__ == "__main__": |
|
asyncio.run(main()) |
|
|