File size: 4,380 Bytes
5dcb28f
 
8d66028
 
 
0553d6a
8d66028
 
8b3b01c
8d66028
bf0dfbd
 
 
8d66028
 
 
 
 
 
 
 
 
0fc2402
 
8d66028
 
 
 
c832152
 
 
 
 
 
 
 
5dcb28f
8d66028
94cd4d3
8d66028
 
 
 
 
 
 
 
 
 
 
 
 
0553d6a
8d66028
 
 
 
 
 
 
 
 
 
 
 
 
275e33e
8b3b01c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d66028
275e33e
8d66028
 
8b3b01c
9f4950c
8d66028
 
121ced9
18a40e5
 
121ced9
18a40e5
797f88c
 
8d66028
18a40e5
121ced9
 
8d66028
 
 
5dcb28f
 
 
 
 
 
 
 
8d66028
 
 
 
 
 
5dcb28f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import sys
import os
from pathlib import Path
import asyncio
from lightrag import LightRAG, QueryParam
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
from lightrag.utils import EmbeddingFunc
import numpy as np
from lightrag.kg.shared_storage import initialize_pipeline_status

print(os.getcwd())
script_directory = Path(__file__).resolve().parent.parent
sys.path.append(os.path.abspath(script_directory))

WORKING_DIR = "./dickens"

# We use OpenAI compatible API to call LLM on Oracle Cloud
# More docs here https://github.com/jin38324/OCI_GenAI_access_gateway
BASE_URL = "http://xxx.xxx.xxx.xxx:8088/v1/"
APIKEY = "ocigenerativeai"
CHATMODEL = "cohere.command-r-plus"
EMBEDMODEL = "cohere.embed-multilingual-v3.0"
CHUNK_TOKEN_SIZE = 1024
MAX_TOKENS = 4000

if not os.path.exists(WORKING_DIR):
    os.mkdir(WORKING_DIR)

os.environ["ORACLE_USER"] = "username"
os.environ["ORACLE_PASSWORD"] = "xxxxxxxxx"
os.environ["ORACLE_DSN"] = "xxxxxxx_medium"
os.environ["ORACLE_CONFIG_DIR"] = "path_to_config_dir"
os.environ["ORACLE_WALLET_LOCATION"] = "path_to_wallet_location"
os.environ["ORACLE_WALLET_PASSWORD"] = "wallet_password"
os.environ["ORACLE_WORKSPACE"] = "company"


async def llm_model_func(
    prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
) -> str:
    return await openai_complete_if_cache(
        CHATMODEL,
        prompt,
        system_prompt=system_prompt,
        history_messages=history_messages,
        api_key=APIKEY,
        base_url=BASE_URL,
        **kwargs,
    )


async def embedding_func(texts: list[str]) -> np.ndarray:
    return await openai_embed(
        texts,
        model=EMBEDMODEL,
        api_key=APIKEY,
        base_url=BASE_URL,
    )


async def get_embedding_dim():
    test_text = ["This is a test sentence."]
    embedding = await embedding_func(test_text)
    embedding_dim = embedding.shape[1]
    return embedding_dim


async def initialize_rag():
    # Detect embedding dimension
    embedding_dimension = await get_embedding_dim()
    print(f"Detected embedding dimension: {embedding_dimension}")

    # Initialize LightRAG
    # We use Oracle DB as the KV/vector/graph storage
    # You can add `addon_params={"example_number": 1, "language": "Simplfied Chinese"}` to control the prompt
    rag = LightRAG(
        # log_level="DEBUG",
        working_dir=WORKING_DIR,
        entity_extract_max_gleaning=1,
        enable_llm_cache=True,
        enable_llm_cache_for_entity_extract=True,
        embedding_cache_config=None,  # {"enabled": True,"similarity_threshold": 0.90},
        chunk_token_size=CHUNK_TOKEN_SIZE,
        llm_model_max_token_size=MAX_TOKENS,
        llm_model_func=llm_model_func,
        embedding_func=EmbeddingFunc(
            embedding_dim=embedding_dimension,
            max_token_size=500,
            func=embedding_func,
        ),
        graph_storage="OracleGraphStorage",
        kv_storage="OracleKVStorage",
        vector_storage="OracleVectorDBStorage",
        addon_params={
            "example_number": 1,
            "language": "Simplfied Chinese",
            "entity_types": ["organization", "person", "geo", "event"],
            "insert_batch_size": 2,
        },
    )
    await rag.initialize_storages()
    await initialize_pipeline_status()

    return rag


async def main():
    try:
        # Initialize RAG instance
        rag = await initialize_rag()

        # Extract and Insert into LightRAG storage
        with open(WORKING_DIR + "/docs.txt", "r", encoding="utf-8") as f:
            all_text = f.read()
            texts = [x for x in all_text.split("\n") if x]

        # New mode use pipeline
        await rag.apipeline_enqueue_documents(texts)
        await rag.apipeline_process_enqueue_documents()

        # Old method use ainsert
        # await rag.ainsert(texts)

        # Perform search in different modes
        modes = ["naive", "local", "global", "hybrid"]
        for mode in modes:
            print("=" * 20, mode, "=" * 20)
            print(
                await rag.aquery(
                    "What are the top themes in this story?",
                    param=QueryParam(mode=mode),
                )
            )
            print("-" * 100, "\n")

    except Exception as e:
        print(f"An error occurred: {e}")


if __name__ == "__main__":
    asyncio.run(main())