SentenceTransformer based on intfloat/multilingual-e5-small
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-small. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-small
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the π€ Hub
model = SentenceTransformer("srikarvar/fine_tuned_model_7")
# Run inference
sentences = [
    'Top literature about World War II',
    'Best books on World War II',
    'What is the price of an iPhone 12?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Dataset: pair-class-dev
- Evaluated with BinaryClassificationEvaluator
| Metric | Value | 
|---|---|
| cosine_accuracy | 0.9 | 
| cosine_accuracy_threshold | 0.7847 | 
| cosine_f1 | 0.9266 | 
| cosine_f1_threshold | 0.7847 | 
| cosine_precision | 0.8938 | 
| cosine_recall | 0.9619 | 
| cosine_ap | 0.9549 | 
| dot_accuracy | 0.9 | 
| dot_accuracy_threshold | 0.7847 | 
| dot_f1 | 0.9266 | 
| dot_f1_threshold | 0.7847 | 
| dot_precision | 0.8938 | 
| dot_recall | 0.9619 | 
| dot_ap | 0.9549 | 
| manhattan_accuracy | 0.8969 | 
| manhattan_accuracy_threshold | 9.909 | 
| manhattan_f1 | 0.9241 | 
| manhattan_f1_threshold | 10.1367 | 
| manhattan_precision | 0.8933 | 
| manhattan_recall | 0.9571 | 
| manhattan_ap | 0.955 | 
| euclidean_accuracy | 0.9 | 
| euclidean_accuracy_threshold | 0.6562 | 
| euclidean_f1 | 0.9266 | 
| euclidean_f1_threshold | 0.6562 | 
| euclidean_precision | 0.8938 | 
| euclidean_recall | 0.9619 | 
| euclidean_ap | 0.9549 | 
| max_accuracy | 0.9 | 
| max_accuracy_threshold | 9.909 | 
| max_f1 | 0.9266 | 
| max_f1_threshold | 10.1367 | 
| max_precision | 0.8938 | 
| max_recall | 0.9619 | 
| max_ap | 0.955 | 
Binary Classification
- Dataset: pair-class-test
- Evaluated with BinaryClassificationEvaluator
| Metric | Value | 
|---|---|
| cosine_accuracy | 0.9062 | 
| cosine_accuracy_threshold | 0.8142 | 
| cosine_f1 | 0.9292 | 
| cosine_f1_threshold | 0.8142 | 
| cosine_precision | 0.9206 | 
| cosine_recall | 0.9381 | 
| cosine_ap | 0.9556 | 
| dot_accuracy | 0.9062 | 
| dot_accuracy_threshold | 0.8142 | 
| dot_f1 | 0.9292 | 
| dot_f1_threshold | 0.8142 | 
| dot_precision | 0.9206 | 
| dot_recall | 0.9381 | 
| dot_ap | 0.9556 | 
| manhattan_accuracy | 0.9031 | 
| manhattan_accuracy_threshold | 9.5768 | 
| manhattan_f1 | 0.9271 | 
| manhattan_f1_threshold | 9.5768 | 
| manhattan_precision | 0.9163 | 
| manhattan_recall | 0.9381 | 
| manhattan_ap | 0.9558 | 
| euclidean_accuracy | 0.9062 | 
| euclidean_accuracy_threshold | 0.6095 | 
| euclidean_f1 | 0.9292 | 
| euclidean_f1_threshold | 0.6095 | 
| euclidean_precision | 0.9206 | 
| euclidean_recall | 0.9381 | 
| euclidean_ap | 0.9556 | 
| max_accuracy | 0.9062 | 
| max_accuracy_threshold | 9.5768 | 
| max_f1 | 0.9292 | 
| max_f1_threshold | 9.5768 | 
| max_precision | 0.9206 | 
| max_recall | 0.9381 | 
| max_ap | 0.9558 | 
Training Details
Training Dataset
Unnamed Dataset
- Size: 2,871 training samples
- Columns: sentence2,sentence1, andlabel
- Approximate statistics based on the first 1000 samples:sentence2 sentence1 label type string string int details - min: 5 tokens
- mean: 20.57 tokens
- max: 177 tokens
 - min: 6 tokens
- mean: 20.74 tokens
- max: 176 tokens
 - 0: ~34.00%
- 1: ~66.00%
 
- Samples:sentence2 sentence1 label How do I do to get fuller face?How can one get a fuller face?1The DatasetInfo holds the data of a dataset, which may include its description, characteristics, and size.A dataset's information is stored inside DatasetInfo and can include information such as the dataset description, features, and dataset size.1How do I write a resume?How do I create a resume?1
- Loss: OnlineContrastiveLoss
Evaluation Dataset
Unnamed Dataset
- Size: 320 evaluation samples
- Columns: sentence2,sentence1, andlabel
- Approximate statistics based on the first 320 samples:sentence2 sentence1 label type string string int details - min: 4 tokens
- mean: 19.57 tokens
- max: 135 tokens
 - min: 6 tokens
- mean: 19.55 tokens
- max: 136 tokens
 - 0: ~34.38%
- 1: ~65.62%
 
- Samples:sentence2 sentence1 label Steps to erase internet historyHow do I delete my browsing history?1How important is it to be the first person to wish someone a happy birthday?What is the right etiquette for wishing a Jehovah Witness happy birthday?0Who directed 'Gone with the Wind'?Who directed 'Citizen Kane'?0
- Loss: OnlineContrastiveLoss
Training Hyperparameters
Non-Default Hyperparameters
- eval_strategy: epoch
- per_device_train_batch_size: 32
- per_device_eval_batch_size: 32
- gradient_accumulation_steps: 2
- num_train_epochs: 4
- warmup_ratio: 0.1
- load_best_model_at_end: True
- optim: adamw_torch_fused
- batch_sampler: no_duplicates
All Hyperparameters
Click to expand
- overwrite_output_dir: False
- do_predict: False
- eval_strategy: epoch
- prediction_loss_only: True
- per_device_train_batch_size: 32
- per_device_eval_batch_size: 32
- per_gpu_train_batch_size: None
- per_gpu_eval_batch_size: None
- gradient_accumulation_steps: 2
- eval_accumulation_steps: None
- learning_rate: 5e-05
- weight_decay: 0.0
- adam_beta1: 0.9
- adam_beta2: 0.999
- adam_epsilon: 1e-08
- max_grad_norm: 1.0
- num_train_epochs: 4
- max_steps: -1
- lr_scheduler_type: linear
- lr_scheduler_kwargs: {}
- warmup_ratio: 0.1
- warmup_steps: 0
- log_level: passive
- log_level_replica: warning
- log_on_each_node: True
- logging_nan_inf_filter: True
- save_safetensors: True
- save_on_each_node: False
- save_only_model: False
- restore_callback_states_from_checkpoint: False
- no_cuda: False
- use_cpu: False
- use_mps_device: False
- seed: 42
- data_seed: None
- jit_mode_eval: False
- use_ipex: False
- bf16: False
- fp16: False
- fp16_opt_level: O1
- half_precision_backend: auto
- bf16_full_eval: False
- fp16_full_eval: False
- tf32: None
- local_rank: 0
- ddp_backend: None
- tpu_num_cores: None
- tpu_metrics_debug: False
- debug: []
- dataloader_drop_last: False
- dataloader_num_workers: 0
- dataloader_prefetch_factor: None
- past_index: -1
- disable_tqdm: False
- remove_unused_columns: True
- label_names: None
- load_best_model_at_end: True
- ignore_data_skip: False
- fsdp: []
- fsdp_min_num_params: 0
- fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- fsdp_transformer_layer_cls_to_wrap: None
- accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- deepspeed: None
- label_smoothing_factor: 0.0
- optim: adamw_torch_fused
- optim_args: None
- adafactor: False
- group_by_length: False
- length_column_name: length
- ddp_find_unused_parameters: None
- ddp_bucket_cap_mb: None
- ddp_broadcast_buffers: False
- dataloader_pin_memory: True
- dataloader_persistent_workers: False
- skip_memory_metrics: True
- use_legacy_prediction_loop: False
- push_to_hub: False
- resume_from_checkpoint: None
- hub_model_id: None
- hub_strategy: every_save
- hub_private_repo: False
- hub_always_push: False
- gradient_checkpointing: False
- gradient_checkpointing_kwargs: None
- include_inputs_for_metrics: False
- eval_do_concat_batches: True
- fp16_backend: auto
- push_to_hub_model_id: None
- push_to_hub_organization: None
- mp_parameters:
- auto_find_batch_size: False
- full_determinism: False
- torchdynamo: None
- ray_scope: last
- ddp_timeout: 1800
- torch_compile: False
- torch_compile_backend: None
- torch_compile_mode: None
- dispatch_batches: None
- split_batches: None
- include_tokens_per_second: False
- include_num_input_tokens_seen: False
- neftune_noise_alpha: None
- optim_target_modules: None
- batch_eval_metrics: False
- batch_sampler: no_duplicates
- multi_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | loss | pair-class-dev_max_ap | pair-class-test_max_ap | 
|---|---|---|---|---|---|
| 0 | 0 | - | - | 0.8735 | - | 
| 0.2222 | 10 | 1.3298 | - | - | - | 
| 0.4444 | 20 | 0.8218 | - | - | - | 
| 0.6667 | 30 | 0.642 | - | - | - | 
| 0.8889 | 40 | 0.571 | - | - | - | 
| 1.0 | 45 | - | 0.5321 | 0.9499 | - | 
| 1.1111 | 50 | 0.4828 | - | - | - | 
| 1.3333 | 60 | 0.3003 | - | - | - | 
| 1.5556 | 70 | 0.3331 | - | - | - | 
| 1.7778 | 80 | 0.203 | - | - | - | 
| 2.0 | 90 | 0.3539 | 0.5118 | 0.9558 | - | 
| 2.2222 | 100 | 0.1357 | - | - | - | 
| 2.4444 | 110 | 0.1562 | - | - | - | 
| 2.6667 | 120 | 0.0703 | - | - | - | 
| 2.8889 | 130 | 0.0806 | - | - | - | 
| 3.0 | 135 | - | 0.5266 | 0.9548 | - | 
| 3.1111 | 140 | 0.1721 | - | - | - | 
| 3.3333 | 150 | 0.1063 | - | - | - | 
| 3.5556 | 160 | 0.0909 | - | - | - | 
| 3.7778 | 170 | 0.0358 | - | - | - | 
| 4.0 | 180 | 0.1021 | 0.5256 | 0.9550 | 0.9558 | 
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.0
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.34.2
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- -
Model tree for srikarvar/fine_tuned_model_7
Base model
intfloat/multilingual-e5-smallEvaluation results
- Cosine Accuracy on pair class devself-reported0.900
- Cosine Accuracy Threshold on pair class devself-reported0.785
- Cosine F1 on pair class devself-reported0.927
- Cosine F1 Threshold on pair class devself-reported0.785
- Cosine Precision on pair class devself-reported0.894
- Cosine Recall on pair class devself-reported0.962
- Cosine Ap on pair class devself-reported0.955
- Dot Accuracy on pair class devself-reported0.900
- Dot Accuracy Threshold on pair class devself-reported0.785
- Dot F1 on pair class devself-reported0.927