metadata
base_model: intfloat/multilingual-e5-small
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:2871
- loss:OnlineContrastiveLoss
widget:
- source_sentence: Stages of photosynthesis
sentences:
- The function helps preprocess your entire dataset at once.
- >-
You can create an index for your dataset by using
[Dataset.add_faiss_index()](/docs/datasets/v2.10.0/en/package_reference/main_classes#datasets.Dataset.add_faiss_index)
or
[Dataset.add_elasticsearch_index()](/docs/datasets/v2.10.0/en/package_reference/main_classes#datasets.Dataset.add_elasticsearch_index)
depending on the system you want to use.
- What is photosynthesis?
- source_sentence: Steps to erase internet history
sentences:
- How do I delete my browsing history?
- >-
Yes, there is a reference section available in π€ Datasets
documentation. It covers main classes, builder classes, loading methods,
table classes, logging methods, and task templates.
- What is the tallest building in New York City?
- source_sentence: >-
The `StreamingDownloadManager` class is a download manager that employs
the "::" separator to traverse (possibly remote) compressed files.
sentences:
- What is the role of a business plan in entrepreneurship?
- >-
The Hugging Face datasets library's default handler can be disabled to
prevent double logging by calling the
`datasets.utils.logging.enable_propagation()` function.
- >-
The `StreamingDownloadManager` class is a download manager that uses the
β::β separator to navigate through (possibly remote) compressed
archives.
- source_sentence: >-
Using torch.utils.data.DataLoader, you can package the dataset and craft a
collate function to group the samples into batches.
sentences:
- Why does understanding death philosophical?
- >-
The `_generate_examples` method is used to access and yield TAR files
sequentially, and to associate the metadata in `metadata_path` with the
audio files in the TAR file.
- >-
You can wrap the dataset in DataLoader using torch.utils.data.DataLoader
and create a collate function to collate the samples into batches.
- source_sentence: Top literature about World War II
sentences:
- What is the price of an iPhone 12?
- Best books on World War II
- When was the Declaration of Independence signed?
model-index:
- name: SentenceTransformer based on intfloat/multilingual-e5-small
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: pair class dev
type: pair-class-dev
metrics:
- type: cosine_accuracy
value: 0.9
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.784720778465271
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.926605504587156
name: Cosine F1
- type: cosine_f1_threshold
value: 0.784720778465271
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.8938053097345132
name: Cosine Precision
- type: cosine_recall
value: 0.9619047619047619
name: Cosine Recall
- type: cosine_ap
value: 0.9548853455786228
name: Cosine Ap
- type: dot_accuracy
value: 0.9
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.784720778465271
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.926605504587156
name: Dot F1
- type: dot_f1_threshold
value: 0.784720778465271
name: Dot F1 Threshold
- type: dot_precision
value: 0.8938053097345132
name: Dot Precision
- type: dot_recall
value: 0.9619047619047619
name: Dot Recall
- type: dot_ap
value: 0.9548853455786228
name: Dot Ap
- type: manhattan_accuracy
value: 0.896875
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 9.908977508544922
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.9241379310344828
name: Manhattan F1
- type: manhattan_f1_threshold
value: 10.13671588897705
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.8933333333333333
name: Manhattan Precision
- type: manhattan_recall
value: 0.9571428571428572
name: Manhattan Recall
- type: manhattan_ap
value: 0.9549673053310541
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.9
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.6561694145202637
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.926605504587156
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.6561694145202637
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.8938053097345132
name: Euclidean Precision
- type: euclidean_recall
value: 0.9619047619047619
name: Euclidean Recall
- type: euclidean_ap
value: 0.9548853455786228
name: Euclidean Ap
- type: max_accuracy
value: 0.9
name: Max Accuracy
- type: max_accuracy_threshold
value: 9.908977508544922
name: Max Accuracy Threshold
- type: max_f1
value: 0.926605504587156
name: Max F1
- type: max_f1_threshold
value: 10.13671588897705
name: Max F1 Threshold
- type: max_precision
value: 0.8938053097345132
name: Max Precision
- type: max_recall
value: 0.9619047619047619
name: Max Recall
- type: max_ap
value: 0.9549673053310541
name: Max Ap
- task:
type: binary-classification
name: Binary Classification
dataset:
name: pair class test
type: pair-class-test
metrics:
- type: cosine_accuracy
value: 0.90625
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.8142284154891968
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.929245283018868
name: Cosine F1
- type: cosine_f1_threshold
value: 0.8142284154891968
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.9205607476635514
name: Cosine Precision
- type: cosine_recall
value: 0.9380952380952381
name: Cosine Recall
- type: cosine_ap
value: 0.9556341092519267
name: Cosine Ap
- type: dot_accuracy
value: 0.90625
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.8142284750938416
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.929245283018868
name: Dot F1
- type: dot_f1_threshold
value: 0.8142284750938416
name: Dot F1 Threshold
- type: dot_precision
value: 0.9205607476635514
name: Dot Precision
- type: dot_recall
value: 0.9380952380952381
name: Dot Recall
- type: dot_ap
value: 0.9556341092519267
name: Dot Ap
- type: manhattan_accuracy
value: 0.903125
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 9.576812744140625
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.9270588235294117
name: Manhattan F1
- type: manhattan_f1_threshold
value: 9.576812744140625
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.9162790697674419
name: Manhattan Precision
- type: manhattan_recall
value: 0.9380952380952381
name: Manhattan Recall
- type: manhattan_ap
value: 0.9557652464010216
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.90625
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.609528124332428
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.929245283018868
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.609528124332428
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.9205607476635514
name: Euclidean Precision
- type: euclidean_recall
value: 0.9380952380952381
name: Euclidean Recall
- type: euclidean_ap
value: 0.9556341092519267
name: Euclidean Ap
- type: max_accuracy
value: 0.90625
name: Max Accuracy
- type: max_accuracy_threshold
value: 9.576812744140625
name: Max Accuracy Threshold
- type: max_f1
value: 0.929245283018868
name: Max F1
- type: max_f1_threshold
value: 9.576812744140625
name: Max F1 Threshold
- type: max_precision
value: 0.9205607476635514
name: Max Precision
- type: max_recall
value: 0.9380952380952381
name: Max Recall
- type: max_ap
value: 0.9557652464010216
name: Max Ap
SentenceTransformer based on intfloat/multilingual-e5-small
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-small. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-small
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the π€ Hub
model = SentenceTransformer("srikarvar/fine_tuned_model_7")
# Run inference
sentences = [
'Top literature about World War II',
'Best books on World War II',
'What is the price of an iPhone 12?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Dataset:
pair-class-dev - Evaluated with
BinaryClassificationEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy | 0.9 |
| cosine_accuracy_threshold | 0.7847 |
| cosine_f1 | 0.9266 |
| cosine_f1_threshold | 0.7847 |
| cosine_precision | 0.8938 |
| cosine_recall | 0.9619 |
| cosine_ap | 0.9549 |
| dot_accuracy | 0.9 |
| dot_accuracy_threshold | 0.7847 |
| dot_f1 | 0.9266 |
| dot_f1_threshold | 0.7847 |
| dot_precision | 0.8938 |
| dot_recall | 0.9619 |
| dot_ap | 0.9549 |
| manhattan_accuracy | 0.8969 |
| manhattan_accuracy_threshold | 9.909 |
| manhattan_f1 | 0.9241 |
| manhattan_f1_threshold | 10.1367 |
| manhattan_precision | 0.8933 |
| manhattan_recall | 0.9571 |
| manhattan_ap | 0.955 |
| euclidean_accuracy | 0.9 |
| euclidean_accuracy_threshold | 0.6562 |
| euclidean_f1 | 0.9266 |
| euclidean_f1_threshold | 0.6562 |
| euclidean_precision | 0.8938 |
| euclidean_recall | 0.9619 |
| euclidean_ap | 0.9549 |
| max_accuracy | 0.9 |
| max_accuracy_threshold | 9.909 |
| max_f1 | 0.9266 |
| max_f1_threshold | 10.1367 |
| max_precision | 0.8938 |
| max_recall | 0.9619 |
| max_ap | 0.955 |
Binary Classification
- Dataset:
pair-class-test - Evaluated with
BinaryClassificationEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy | 0.9062 |
| cosine_accuracy_threshold | 0.8142 |
| cosine_f1 | 0.9292 |
| cosine_f1_threshold | 0.8142 |
| cosine_precision | 0.9206 |
| cosine_recall | 0.9381 |
| cosine_ap | 0.9556 |
| dot_accuracy | 0.9062 |
| dot_accuracy_threshold | 0.8142 |
| dot_f1 | 0.9292 |
| dot_f1_threshold | 0.8142 |
| dot_precision | 0.9206 |
| dot_recall | 0.9381 |
| dot_ap | 0.9556 |
| manhattan_accuracy | 0.9031 |
| manhattan_accuracy_threshold | 9.5768 |
| manhattan_f1 | 0.9271 |
| manhattan_f1_threshold | 9.5768 |
| manhattan_precision | 0.9163 |
| manhattan_recall | 0.9381 |
| manhattan_ap | 0.9558 |
| euclidean_accuracy | 0.9062 |
| euclidean_accuracy_threshold | 0.6095 |
| euclidean_f1 | 0.9292 |
| euclidean_f1_threshold | 0.6095 |
| euclidean_precision | 0.9206 |
| euclidean_recall | 0.9381 |
| euclidean_ap | 0.9556 |
| max_accuracy | 0.9062 |
| max_accuracy_threshold | 9.5768 |
| max_f1 | 0.9292 |
| max_f1_threshold | 9.5768 |
| max_precision | 0.9206 |
| max_recall | 0.9381 |
| max_ap | 0.9558 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 2,871 training samples
- Columns:
sentence2,sentence1, andlabel - Approximate statistics based on the first 1000 samples:
sentence2 sentence1 label type string string int details - min: 5 tokens
- mean: 20.57 tokens
- max: 177 tokens
- min: 6 tokens
- mean: 20.74 tokens
- max: 176 tokens
- 0: ~34.00%
- 1: ~66.00%
- Samples:
sentence2 sentence1 label How do I do to get fuller face?How can one get a fuller face?1The DatasetInfo holds the data of a dataset, which may include its description, characteristics, and size.A dataset's information is stored inside DatasetInfo and can include information such as the dataset description, features, and dataset size.1How do I write a resume?How do I create a resume?1 - Loss:
OnlineContrastiveLoss
Evaluation Dataset
Unnamed Dataset
- Size: 320 evaluation samples
- Columns:
sentence2,sentence1, andlabel - Approximate statistics based on the first 320 samples:
sentence2 sentence1 label type string string int details - min: 4 tokens
- mean: 19.57 tokens
- max: 135 tokens
- min: 6 tokens
- mean: 19.55 tokens
- max: 136 tokens
- 0: ~34.38%
- 1: ~65.62%
- Samples:
sentence2 sentence1 label Steps to erase internet historyHow do I delete my browsing history?1How important is it to be the first person to wish someone a happy birthday?What is the right etiquette for wishing a Jehovah Witness happy birthday?0Who directed 'Gone with the Wind'?Who directed 'Citizen Kane'?0 - Loss:
OnlineContrastiveLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epochper_device_train_batch_size: 32per_device_eval_batch_size: 32gradient_accumulation_steps: 2num_train_epochs: 4warmup_ratio: 0.1load_best_model_at_end: Trueoptim: adamw_torch_fusedbatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: epochprediction_loss_only: Trueper_device_train_batch_size: 32per_device_eval_batch_size: 32per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 2eval_accumulation_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 4max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falsebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | loss | pair-class-dev_max_ap | pair-class-test_max_ap |
|---|---|---|---|---|---|
| 0 | 0 | - | - | 0.8735 | - |
| 0.2222 | 10 | 1.3298 | - | - | - |
| 0.4444 | 20 | 0.8218 | - | - | - |
| 0.6667 | 30 | 0.642 | - | - | - |
| 0.8889 | 40 | 0.571 | - | - | - |
| 1.0 | 45 | - | 0.5321 | 0.9499 | - |
| 1.1111 | 50 | 0.4828 | - | - | - |
| 1.3333 | 60 | 0.3003 | - | - | - |
| 1.5556 | 70 | 0.3331 | - | - | - |
| 1.7778 | 80 | 0.203 | - | - | - |
| 2.0 | 90 | 0.3539 | 0.5118 | 0.9558 | - |
| 2.2222 | 100 | 0.1357 | - | - | - |
| 2.4444 | 110 | 0.1562 | - | - | - |
| 2.6667 | 120 | 0.0703 | - | - | - |
| 2.8889 | 130 | 0.0806 | - | - | - |
| 3.0 | 135 | - | 0.5266 | 0.9548 | - |
| 3.1111 | 140 | 0.1721 | - | - | - |
| 3.3333 | 150 | 0.1063 | - | - | - |
| 3.5556 | 160 | 0.0909 | - | - | - |
| 3.7778 | 170 | 0.0358 | - | - | - |
| 4.0 | 180 | 0.1021 | 0.5256 | 0.9550 | 0.9558 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.0
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.34.2
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}