|
--- |
|
tags: |
|
- unsloth |
|
- qwen3 |
|
- qwen |
|
base_model: |
|
- Qwen/Qwen3-Coder-480B-A35B-Instruct |
|
library_name: transformers |
|
license: apache-2.0 |
|
license_link: https://huggingface.co/Qwen/Qwen3-Coder-480B-A35B-Instruct/blob/main/LICENSE |
|
pipeline_tag: text-generation |
|
--- |
|
<div> |
|
<p style="margin-bottom: 0; margin-top: 0;"> |
|
<strong>See <a href="https://huggingface.co/collections/unsloth/qwen3-680edabfb790c8c34a242f95">our collection</a> for all versions of Qwen3 including GGUF, 4-bit & 16-bit formats.</strong> |
|
</p> |
|
<p style="margin-bottom: 0;"> |
|
<em>Learn to run Qwen3-Coder correctly - <a href="https://docs.unsloth.ai/basics/qwen3-coder">Read our Guide</a>.</em> |
|
</p> |
|
<p style="margin-top: 0;margin-bottom: 0;"> |
|
<em>See <a href="https://docs.unsloth.ai/basics/unsloth-dynamic-v2.0-gguf">Unsloth Dynamic 2.0 GGUFs</a> for our quantization benchmarks.</em> |
|
</p> |
|
<div style="display: flex; gap: 5px; align-items: center; "> |
|
<a href="https://github.com/unslothai/unsloth/"> |
|
<img src="https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png" width="133"> |
|
</a> |
|
<a href="https://discord.gg/unsloth"> |
|
<img src="https://github.com/unslothai/unsloth/raw/main/images/Discord%20button.png" width="173"> |
|
</a> |
|
<a href="https://docs.unsloth.ai/basics/qwen3-coder"> |
|
<img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="143"> |
|
</a> |
|
</div> |
|
<h1 style="margin-top: 0rem;">✨ Read our Qwen3-Coder Guide <a href="https://docs.unsloth.ai/basics/qwen3-coder">here</a>!</h1> |
|
</div> |
|
|
|
- Fine-tune Qwen3 (14B) for free using our Google [Colab notebook](https://docs.unsloth.ai/get-started/unsloth-notebooks)! |
|
- Read our Blog about Qwen3 support: [unsloth.ai/blog/qwen3](https://unsloth.ai/blog/qwen3) |
|
- View the rest of our notebooks in our [docs here](https://docs.unsloth.ai/get-started/unsloth-notebooks). |
|
- Run & export your fine-tuned model to Ollama, llama.cpp or HF. |
|
|
|
| Unsloth supports | Free Notebooks | Performance | Memory use | |
|
|-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------| |
|
| **Qwen3 (14B)** | [▶️ Start on Colab](https://docs.unsloth.ai/get-started/unsloth-notebooks) | 3x faster | 70% less | |
|
| **GRPO with Qwen3 (8B)** | [▶️ Start on Colab](https://docs.unsloth.ai/get-started/unsloth-notebooks) | 3x faster | 80% less | |
|
| **Llama-3.2 (3B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(1B_and_3B)-Conversational.ipynb) | 2.4x faster | 58% less | |
|
| **Llama-3.2 (11B vision)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(11B)-Vision.ipynb) | 2x faster | 60% less | |
|
| **Qwen2.5 (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen2.5_(7B)-Alpaca.ipynb) | 2x faster | 60% less | |
|
|
|
# Qwen3-Coder-480B-A35B-Instruct |
|
<a href="https://chat.qwen.ai/" target="_blank" style="margin: 2px;"> |
|
<img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/> |
|
</a> |
|
|
|
## Highlights |
|
|
|
Today, we're announcing **Qwen3-Coder**, our most agentic code model to date. **Qwen3-Coder** is available in multiple sizes, but we're excited to introduce its most powerful variant first: **Qwen3-Coder-480B-A35B-Instruct**. featuring the following key enhancements: |
|
|
|
- **Significant Performance** among open models on **Agentic Coding**, **Agentic Browser-Use**, and other foundational coding tasks, achieving results comparable to Claude Sonnet. |
|
- **Long-context Capabilities** with native support for **256K** tokens, extendable up to **1M** tokens using Yarn, optimized for repository-scale understanding. |
|
- **Agentic Coding** supporting for most platforms such as **Qwen Code**, **CLINE**, featuring a specially designed function call format. |
|
|
|
 |
|
|
|
## Model Overview |
|
|
|
**Qwen3-480B-A35B-Instruct** has the following features: |
|
- Type: Causal Language Models |
|
- Training Stage: Pretraining & Post-training |
|
- Number of Parameters: 480B in total and 35B activated |
|
- Number of Layers: 62 |
|
- Number of Attention Heads (GQA): 96 for Q and 8 for KV |
|
- Number of Experts: 160 |
|
- Number of Activated Experts: 8 |
|
- Context Length: **262,144 natively**. |
|
|
|
**NOTE: This model supports only non-thinking mode and does not generate ``<think></think>`` blocks in its output. Meanwhile, specifying `enable_thinking=False` is no longer required.** |
|
|
|
For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [blog](https://qwenlm.github.io/blog/qwen3-coder/), [GitHub](https://github.com/QwenLM/Qwen3-Coder), and [Documentation](https://qwen.readthedocs.io/en/latest/). |
|
|
|
|
|
## Quickstart |
|
|
|
We advise you to use the latest version of `transformers`. |
|
|
|
With `transformers<4.51.0`, you will encounter the following error: |
|
``` |
|
KeyError: 'qwen3_moe' |
|
``` |
|
|
|
The following contains a code snippet illustrating how to use the model generate content based on given inputs. |
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_name = "Qwen/Qwen3-480B-A35B-Instruct" |
|
|
|
# load the tokenizer and the model |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype="auto", |
|
device_map="auto" |
|
) |
|
|
|
# prepare the model input |
|
prompt = "Write a quick sort algorithm." |
|
messages = [ |
|
{"role": "user", "content": prompt} |
|
] |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True, |
|
) |
|
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) |
|
|
|
# conduct text completion |
|
generated_ids = model.generate( |
|
**model_inputs, |
|
max_new_tokens=65536 |
|
) |
|
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() |
|
|
|
content = tokenizer.decode(output_ids, skip_special_tokens=True) |
|
|
|
print("content:", content) |
|
``` |
|
|
|
**Note: If you encounter out-of-memory (OOM) issues, consider reducing the context length to a shorter value, such as `32,768`.** |
|
|
|
For local use, applications such as Ollama, LMStudio, MLX-LM, llama.cpp, and KTransformers have also supported Qwen3. |
|
|
|
## Agentic Coding |
|
|
|
Qwen3-Coder excels in tool calling capabilities. |
|
|
|
You can simply define or use any tools as following example. |
|
```python |
|
# Your tool implementation |
|
def square_the_number(num: float) -> dict: |
|
return num ** 2 |
|
|
|
# Define Tools |
|
tools=[ |
|
{ |
|
"type":"function", |
|
"function":{ |
|
"name": "square_the_number", |
|
"description": "output the square of the number.", |
|
"parameters": { |
|
"type": "object", |
|
"required": ["input_num"], |
|
"properties": { |
|
'input_num': { |
|
'type': 'number', |
|
'description': 'input_num is a number that will be squared' |
|
} |
|
}, |
|
} |
|
} |
|
} |
|
] |
|
|
|
import OpenAI |
|
# Define LLM |
|
client = OpenAI( |
|
# Use a custom endpoint compatible with OpenAI API |
|
base_url='http://localhost:8000/v1', # api_base |
|
api_key="EMPTY" |
|
) |
|
|
|
messages = [{'role': 'user', 'content': 'square the number 1024'}] |
|
|
|
completion = client.chat.completions.create( |
|
messages=messages, |
|
model="Qwen3-480B-A35B-Instruct", |
|
max_tokens=65536, |
|
tools=tools, |
|
) |
|
|
|
print(completion.choice[0]) |
|
``` |
|
|
|
## Best Practices |
|
|
|
To achieve optimal performance, we recommend the following settings: |
|
|
|
1. **Sampling Parameters**: |
|
- We suggest using `temperature=0.7`, `top_p=0.8`, `top_k=20`, `repetition_penalty=1.05`. |
|
|
|
2. **Adequate Output Length**: We recommend using an output length of 65,536 tokens for most queries, which is adequate for instruct models. |
|
|
|
|
|
### Citation |
|
|
|
If you find our work helpful, feel free to give us a cite. |
|
|
|
``` |
|
@misc{qwen3technicalreport, |
|
title={Qwen3 Technical Report}, |
|
author={Qwen Team}, |
|
year={2025}, |
|
eprint={2505.09388}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL}, |
|
url={https://arxiv.org/abs/2505.09388}, |
|
} |
|
``` |