xlsr_mid_en-k_1 / README.md
yesj1234's picture
Upload folder using huggingface_hub
bf05986
metadata
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
  - automatic-speech-recognition
  - ./sample_speech.py
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: en-xlsr
    results: []

en-xlsr

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the ./SAMPLE_SPEECH.PY - NA dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4835
  • Cer: 0.1119
  • Wer: 0.2446

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Cer Wer
2.9534 0.22 100 2.9533 1.0 1.0
2.933 0.44 200 2.9231 1.0 1.0
2.904 0.65 300 2.8851 1.0 1.0
2.3607 0.87 400 2.1546 0.6799 0.9976
1.1725 1.09 500 0.9899 0.2665 0.6191
0.9865 1.31 600 0.8060 0.2126 0.5064
0.8959 1.53 700 0.7131 0.1980 0.4607
0.7743 1.74 800 0.6663 0.1799 0.4370
0.7805 1.96 900 0.6159 0.1683 0.3997
0.6562 2.18 1000 0.6186 0.1537 0.3705
0.6223 2.4 1100 0.5698 0.1496 0.3552
0.5627 2.62 1200 0.5555 0.1446 0.3372
0.5476 2.84 1300 0.5435 0.1416 0.3307
0.5002 3.05 1400 0.5304 0.1436 0.3393
0.5174 3.27 1500 0.5377 0.1485 0.3357
0.4745 3.49 1600 0.5289 0.1340 0.3132
0.5239 3.71 1700 0.5112 0.1395 0.3239
0.5115 3.93 1800 0.5079 0.1342 0.3094
0.4471 4.14 1900 0.5131 0.1301 0.2965
0.4455 4.36 2000 0.5015 0.1278 0.2931
0.4199 4.58 2100 0.4954 0.1299 0.2962
0.4699 4.8 2200 0.4827 0.1268 0.2890
0.3521 5.02 2300 0.4857 0.1217 0.2782
0.3976 5.23 2400 0.4936 0.1231 0.2802
0.365 5.45 2500 0.4906 0.1221 0.2774
0.3857 5.67 2600 0.4843 0.1202 0.2757
0.3578 5.89 2700 0.4857 0.1196 0.2708
0.3298 6.11 2800 0.4867 0.1197 0.2689
0.3099 6.32 2900 0.4924 0.1237 0.2770
0.3606 6.54 3000 0.4851 0.1189 0.2684
0.3807 6.76 3100 0.4700 0.1196 0.2656
0.3286 6.98 3200 0.4770 0.1205 0.2730
0.3318 7.2 3300 0.4845 0.1166 0.2579
0.2936 7.42 3400 0.4909 0.1159 0.2570
0.3119 7.63 3500 0.4899 0.1150 0.2539
0.3142 7.85 3600 0.4782 0.1143 0.2550
0.2935 8.07 3700 0.4885 0.1153 0.2527
0.2805 8.29 3800 0.4906 0.1143 0.2529
0.254 8.51 3900 0.4822 0.1144 0.2538
0.2855 8.72 4000 0.4852 0.1123 0.2476
0.2661 8.94 4100 0.4847 0.1132 0.2496
0.2524 9.16 4200 0.4900 0.1116 0.2442
0.253 9.38 4300 0.4888 0.1120 0.2458
0.2591 9.6 4400 0.4813 0.1125 0.2458
0.2583 9.81 4500 0.4844 0.1114 0.2435

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.5
  • Tokenizers 0.14.1