zuazo's picture
End of training
d41008b verified
metadata
library_name: transformers
language:
  - eu
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_17_0
metrics:
  - wer
model-index:
  - name: Whisper Large-V3 Basque
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_17_0 eu
          type: mozilla-foundation/common_voice_17_0
          config: eu
          split: test
          args: eu
        metrics:
          - name: Wer
            type: wer
            value: 6.386272857195206

Whisper Large-V3 Basque

This model is a fine-tuned version of openai/whisper-large-v3 on the mozilla-foundation/common_voice_17_0 eu dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2570
  • Wer: 6.3863

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3.75e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 40000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0674 2.3474 1000 0.1613 9.7732
0.0299 4.6948 2000 0.1633 8.9771
0.0164 7.0423 3000 0.1828 8.6381
0.0098 9.3897 4000 0.1870 8.2524
0.0105 11.7371 5000 0.1912 8.4146
0.0085 14.0845 6000 0.2029 8.5914
0.0076 16.4319 7000 0.2084 8.1296
0.0059 18.7793 8000 0.2028 8.1003
0.0059 21.1268 9000 0.2066 8.3404
0.0049 23.4742 10000 0.2154 8.3972
0.0044 25.8216 11000 0.2136 8.0087
0.0012 28.1690 12000 0.2111 7.3116
0.0038 30.5164 13000 0.2219 8.1471
0.0025 32.8638 14000 0.2155 7.6679
0.0021 35.2113 15000 0.2239 7.4893
0.0021 37.5587 16000 0.2277 7.8337
0.0017 39.9061 17000 0.2254 7.8108
0.0012 42.2535 18000 0.2247 7.2914
0.0021 44.6009 19000 0.2301 8.0005
0.0016 46.9484 20000 0.2346 7.7568
0.001 49.2958 21000 0.2283 7.3940
0.0021 51.6432 22000 0.2297 7.5589
0.0013 53.9906 23000 0.2324 7.6029
0.0004 56.3380 24000 0.2333 6.9369
0.0003 58.6854 25000 0.2254 6.8114
0.0016 61.0329 26000 0.2393 7.6688
0.0001 63.3803 27000 0.2279 6.8819
0.0 65.7277 28000 0.2320 6.8269
0.0 68.0751 29000 0.2421 6.5832
0.0 70.4225 30000 0.2481 6.4770
0.0 72.7700 31000 0.2532 6.4000
0.0 75.1174 32000 0.2570 6.3863
0.0011 77.4648 33000 0.2388 7.2392
0.0 79.8122 34000 0.2403 6.8223
0.0 82.1596 35000 0.2477 6.6639
0.0 84.5070 36000 0.2528 6.6071
0.0001 86.8545 37000 0.2562 6.5503
0.0 89.2019 38000 0.2597 6.4971
0.0 91.5493 39000 0.2623 6.4632
0.0 93.8967 40000 0.2636 6.4568

Framework versions

  • Transformers 4.52.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1