|
|
--- |
|
|
tags: |
|
|
- fp4 |
|
|
- vllm |
|
|
language: |
|
|
- en |
|
|
- de |
|
|
- fr |
|
|
- it |
|
|
- pt |
|
|
- hi |
|
|
- es |
|
|
- th |
|
|
pipeline_tag: text-generation |
|
|
license: llama3.1 |
|
|
base_model: meta-llama/Llama-4-Scout-17B-16E-Instruct |
|
|
--- |
|
|
|
|
|
# Llama-4-Scout-17B-16E-Instruct-NVFP4 |
|
|
|
|
|
## Model Overview |
|
|
- **Model Architecture:** Meta-Llama-3.1 |
|
|
- **Input:** Text / Image |
|
|
- **Output:** Text |
|
|
- **Model Optimizations:** |
|
|
- **Weight quantization:** FP4 |
|
|
- **Activation quantization:** FP4 |
|
|
- **Intended Use Cases:** Intended for commercial and research use in multiple languages. |
|
|
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English. |
|
|
- **Release Date:** 7/15/25 |
|
|
- **Version:** 1.0 |
|
|
- **License(s):** [llama3.1](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B/blob/main/LICENSE) |
|
|
- **Model Developers:** RedHatAI |
|
|
|
|
|
This model is a quantized version of [Llama-4-Scout-17B-16E-Instruct](https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct). |
|
|
It was evaluated on a several tasks to assess the its quality in comparison to the unquatized model. |
|
|
|
|
|
### Model Optimizations |
|
|
|
|
|
This model was obtained by quantizing the weights and activations of [Llama-4-Scout-17B-16E-Instruct](https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct) to FP4 data type, ready for inference with vLLM>=0.9.1 |
|
|
This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 75%. |
|
|
|
|
|
Only the weights of the linear operators within transformers blocks are quantized using [LLM Compressor](https://github.com/vllm-project/llm-compressor). |
|
|
|
|
|
## Deployment |
|
|
|
|
|
### Use with vLLM |
|
|
|
|
|
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. |
|
|
<details> |
|
|
<summary>Model Usage Code</summary> |
|
|
|
|
|
```python |
|
|
from vllm import LLM, SamplingParams |
|
|
from transformers import AutoTokenizer |
|
|
|
|
|
model_id = "RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4" |
|
|
number_gpus = 2 |
|
|
|
|
|
sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256) |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
|
|
messages = [ |
|
|
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, |
|
|
{"role": "user", "content": "Who are you?"}, |
|
|
] |
|
|
|
|
|
prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False) |
|
|
|
|
|
llm = LLM(model=model_id, tensor_parallel_size=number_gpus) |
|
|
|
|
|
outputs = llm.generate(prompts, sampling_params) |
|
|
|
|
|
generated_text = outputs[0].outputs[0].text |
|
|
print(generated_text) |
|
|
``` |
|
|
</details> |
|
|
|
|
|
vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. |
|
|
|
|
|
## Creation |
|
|
|
|
|
This model was created by applying [LLM Compressor with calibration samples from neuralmagic/calibration dataset](https://github.com/vllm-project/llm-compressor/blob/main/examples/multimodal_vision/llama4_example.py), as presented in the code snipet below. |
|
|
|
|
|
<details> |
|
|
<summary>Model Creation Code</summary> |
|
|
|
|
|
```python |
|
|
from transformers import Llama4ForConditionalGeneration, Llama4Processor |
|
|
from transformers.quantizers.quantizers_utils import get_module_from_name |
|
|
import torch |
|
|
from datasets import load_dataset |
|
|
|
|
|
from llmcompressor import oneshot |
|
|
from llmcompressor.modifiers.quantization import GPTQModifier |
|
|
from llmcompressor.utils.dev import skip_weights_initialize |
|
|
from transformers.models.llama4.modeling_llama4 import Llama4TextMLP |
|
|
from llmcompressor.modifiers.quantization import QuantizationModifier |
|
|
import gc |
|
|
from llmcompressor.modifiers.smoothquant import SmoothQuantModifier |
|
|
|
|
|
def convert_model_for_quantization(model): |
|
|
to_delete = [] |
|
|
for name, module in model.named_modules(): |
|
|
module_class_name = module.__class__.__name__ |
|
|
if module_class_name == "Llama4TextMoe": |
|
|
parent_module, module_name = get_module_from_name(model, name) |
|
|
parent_module._modules[module_name] = SequentialLlama4TextMoe( |
|
|
model.config.get_text_config(), |
|
|
module, |
|
|
) |
|
|
to_delete.append(module) |
|
|
print(f"Patched {name} with SequentialLlama4TextMoe", flush=True) |
|
|
|
|
|
for module in to_delete: |
|
|
del module |
|
|
gc.collect() |
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
|
|
|
class SequentialLlama4TextMoe(torch.nn.Module): |
|
|
def __init__(self, config, original_moe): |
|
|
super().__init__() |
|
|
self.top_k = config.num_experts_per_tok |
|
|
self.hidden_dim = config.hidden_size |
|
|
self.num_experts = config.num_local_experts |
|
|
self.experts = SequentialLlama4TextExperts(config, original_moe.experts) |
|
|
self.router = original_moe.router |
|
|
self.shared_expert = original_moe.shared_expert |
|
|
|
|
|
def forward(self, hidden_states): |
|
|
hidden_states = hidden_states.reshape(-1, self.hidden_dim) |
|
|
router_logits = self.router(hidden_states) |
|
|
|
|
|
router_top_value, router_indices = torch.topk(router_logits, self.top_k, dim=1) |
|
|
|
|
|
router_scores = ( |
|
|
torch.full_like(router_logits, float("-inf")).scatter_(1, router_indices, router_top_value).transpose(0, 1) |
|
|
) |
|
|
router_scores = torch.sigmoid(router_scores.float()).to(hidden_states.dtype) |
|
|
|
|
|
out = self.shared_expert(hidden_states) |
|
|
for i in range(self.num_experts): |
|
|
out += self.experts[i](hidden_states) * router_scores[i].reshape(-1, 1) |
|
|
|
|
|
return out, router_scores |
|
|
|
|
|
|
|
|
class SequentialLlama4TextExperts(torch.nn.ModuleList): |
|
|
def __init__(self, config, original_experts): |
|
|
self.num_experts = original_experts.gate_up_proj.shape[0] |
|
|
with skip_weights_initialize(): |
|
|
super().__init__([Llama4TextMLP(config) for _ in range(self.num_experts)]) |
|
|
|
|
|
intermediate_size = original_experts.down_proj.shape[1] |
|
|
|
|
|
for i in range(self.num_experts): |
|
|
gate_up = original_experts.gate_up_proj[i] |
|
|
down = original_experts.down_proj[i] |
|
|
|
|
|
gate_proj = gate_up[:, :intermediate_size] |
|
|
up_proj = gate_up[:, intermediate_size:] |
|
|
|
|
|
self[i].gate_proj.weight.data = gate_proj.t().clone().contiguous() |
|
|
self[i].up_proj.weight.data = up_proj.t().clone().contiguous() |
|
|
self[i].down_proj.weight.data = down.t().clone().contiguous() |
|
|
|
|
|
original_experts.gate_up_proj = None |
|
|
original_experts.down_proj = None |
|
|
gc.collect() |
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
|
|
|
model_id = "meta-llama/Llama-4-Scout-17B-16E" |
|
|
|
|
|
model = Llama4ForConditionalGeneration.from_pretrained( |
|
|
model_id, torch_dtype=torch.bfloat16 # load on cpu |
|
|
) |
|
|
processor = Llama4Processor.from_pretrained(model_id) |
|
|
|
|
|
convert_model_for_quantization(model) |
|
|
|
|
|
# Oneshot arguments |
|
|
DATASET_ID = "neuralmagic/calibration" |
|
|
NUM_CALIBRATION_SAMPLES = 512 |
|
|
MAX_SEQUENCE_LENGTH = 8192 |
|
|
|
|
|
ds = load_dataset(DATASET_ID, name="LLM", split=f"train[:{NUM_CALIBRATION_SAMPLES}]") |
|
|
|
|
|
def preprocess_function(example): |
|
|
messgages = [] |
|
|
for message in example["messages"]: |
|
|
messgages.append( |
|
|
{ |
|
|
"role": message["role"], |
|
|
"content": [{"type": "text", "text": message["content"]}] |
|
|
} |
|
|
) |
|
|
|
|
|
return processor.apply_chat_template( |
|
|
messgages, |
|
|
return_tensors="pt", |
|
|
padding=False, |
|
|
truncation=True, |
|
|
max_length=MAX_SEQUENCE_LENGTH, |
|
|
tokenize=True, |
|
|
add_special_tokens=False, |
|
|
return_dict=True, |
|
|
add_generation_prompt=False, |
|
|
).to("cuda:0") |
|
|
|
|
|
ds = ds.map( |
|
|
preprocess_function, |
|
|
batched=False, |
|
|
remove_columns=ds.column_names |
|
|
) |
|
|
|
|
|
# Define a oneshot data collator for multimodal inputs. |
|
|
def data_collator(batch): |
|
|
assert len(batch) == 1 |
|
|
return { |
|
|
key: torch.tensor(value) if key != "pixel_values" else torch.tensor(value, dtype=torch.bfloat16).squeeze(0) |
|
|
for key, value in batch[0].items() |
|
|
} |
|
|
|
|
|
# Recipe |
|
|
recipe = QuantizationModifier(targets="Linear", scheme="NVFP4", |
|
|
ignore=[ |
|
|
're:.*lm_head', |
|
|
're:.*self_attn', |
|
|
're:.*router', |
|
|
're:.*vision_model', |
|
|
're:.*multi_modal_projector', |
|
|
're:.*multi_modal_projector', |
|
|
"Llama4TextAttention", |
|
|
], |
|
|
sequential_targets=["Llama4TextMLP"], |
|
|
) |
|
|
|
|
|
SAVE_DIR = f"{model_id.split('/')[1]}-{recipe.scheme}" |
|
|
|
|
|
# Perform oneshot |
|
|
oneshot( |
|
|
model=model, |
|
|
tokenizer=model_id, |
|
|
dataset=ds, |
|
|
recipe=recipe, |
|
|
max_seq_length=MAX_SEQUENCE_LENGTH, |
|
|
num_calibration_samples=NUM_CALIBRATION_SAMPLES, |
|
|
trust_remote_code_model=True, |
|
|
data_collator=data_collator, |
|
|
output_dir=SAVE_DIR |
|
|
) |
|
|
|
|
|
# Save to disk compressed. |
|
|
model.save_pretrained(SAVE_DIR, save_compressed=True) |
|
|
processor.save_pretrained(SAVE_DIR) |
|
|
|
|
|
``` |
|
|
</details> |
|
|
|
|
|
## Evaluation |
|
|
|
|
|
This model was evaluated on the well-known OpenLLM v1, OpenLLM v2, HumanEval, and HumanEval_64 benchmarks. All evaluations were conducted using [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness). |
|
|
<table> |
|
|
<thead> |
|
|
<tr> |
|
|
<th>Category</th> |
|
|
<th>Metric</th> |
|
|
<th>Llama-4-Scout-17B-16E-Instruct</th> |
|
|
<th>Llama-4-Scout-17B-16E-Instruct-NVFP4 (this model)</th> |
|
|
<th>Recovery</th> |
|
|
</tr> |
|
|
</thead> |
|
|
<tbody> |
|
|
<tr> |
|
|
<td rowspan="8"><b>OpenLLM V1</b></td> |
|
|
<td>mmlu_llama</td> |
|
|
<td>81.06</td> |
|
|
<td>79.11</td> |
|
|
<td>97.59</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>mmlu_cot_llama (0-shot)</td> |
|
|
<td>85.86</td> |
|
|
<td>84.07</td> |
|
|
<td>97.92</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>arc_challenge_llama (0-shot)</td> |
|
|
<td>93.39</td> |
|
|
<td>92.02</td> |
|
|
<td>98.53</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>gsm8k_llama (8-shot, strict-match)</td> |
|
|
<td>93.78</td> |
|
|
<td>93.78</td> |
|
|
<td>100.00</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>hellaswag (10-shot)</td> |
|
|
<td>79.06</td> |
|
|
<td>78.63</td> |
|
|
<td>99.46</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>winogrande (5-shot)</td> |
|
|
<td>74.43</td> |
|
|
<td>73.48</td> |
|
|
<td>98.72</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>truthfulQA (0-shot, mc2)</td> |
|
|
<td>62.15</td> |
|
|
<td>60.63</td> |
|
|
<td>97.55</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td><b>Average</b></td> |
|
|
<td><b>81.39</b></td> |
|
|
<td><b>80.25</b></td> |
|
|
<td><b>98.59</b></td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td rowspan="7"><b>OpenLLM V2</b></td> |
|
|
<td>MMLU-Pro (5-shot)</td> |
|
|
<td>55.68</td> |
|
|
<td>53.05</td> |
|
|
<td>95.28</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>IFEval (0-shot)</td> |
|
|
<td>89.09</td> |
|
|
<td>89.57</td> |
|
|
<td>100.54</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>BBH (3-shot)</td> |
|
|
<td>65.11</td> |
|
|
<td>63.53</td> |
|
|
<td>97.57</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>Math-|v|-5 (4-shot)</td> |
|
|
<td>57.70</td> |
|
|
<td>55.06</td> |
|
|
<td>95.42</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>GPQA (0-shot)</td> |
|
|
<td>30.70</td> |
|
|
<td>31.04</td> |
|
|
<td>101.11</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>MuSR (0-shot)</td> |
|
|
<td>42.59</td> |
|
|
<td>43.52</td> |
|
|
<td>102.18</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td><b>Average</b></td> |
|
|
<td><b>57.04</b></td> |
|
|
<td><b>56.54</b></td> |
|
|
<td><b>99.13</b></td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td rowspan="1"><b>Coding</b></td> |
|
|
<td>HumanEval_64 pass@2</td> |
|
|
<td>83.83</td> |
|
|
<td>84.81</td> |
|
|
<td>101.17</td> |
|
|
</tr> |
|
|
</tbody> |
|
|
</table> |
|
|
|
|
|
|
|
|
|
|
|
### Reproduction |
|
|
|
|
|
The results were obtained using the following commands: |
|
|
|
|
|
<details> |
|
|
<summary>Model Evaluation Commands</summary> |
|
|
|
|
|
#### MMLU_LLAMA |
|
|
``` |
|
|
lm_eval \ |
|
|
--model vllm \ |
|
|
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \ |
|
|
--tasks mmlu_llama \ |
|
|
--apply_chat_template \ |
|
|
--fewshot_as_multiturn \ |
|
|
--batch_size auto |
|
|
``` |
|
|
|
|
|
#### MMLU_COT_LLAMA |
|
|
``` |
|
|
lm_eval \ |
|
|
--model vllm \ |
|
|
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \ |
|
|
--tasks mmlu_cot_llama \ |
|
|
--apply_chat_template \ |
|
|
--fewshot_as_multiturn \ |
|
|
--batch_size auto |
|
|
``` |
|
|
|
|
|
#### ARC-Challenge |
|
|
``` |
|
|
lm_eval \ |
|
|
--model vllm \ |
|
|
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \ |
|
|
--tasks arc_challenge_llama \ |
|
|
--apply_chat_template \ |
|
|
--batch_size auto |
|
|
``` |
|
|
|
|
|
#### GSM-8K |
|
|
``` |
|
|
lm_eval \ |
|
|
--model vllm \ |
|
|
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \ |
|
|
--tasks gsm8k_llama \ |
|
|
--apply_chat_template \ |
|
|
--fewshot_as_multiturn \ |
|
|
--batch_size auto |
|
|
``` |
|
|
|
|
|
#### Hellaswag |
|
|
``` |
|
|
lm_eval \ |
|
|
--model vllm \ |
|
|
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \ |
|
|
--tasks hellaswag \ |
|
|
--apply_chat_template \ |
|
|
--fewshot_as_multiturn \ |
|
|
--batch_size auto |
|
|
``` |
|
|
|
|
|
#### Winogrande |
|
|
``` |
|
|
lm_eval \ |
|
|
--model vllm \ |
|
|
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \ |
|
|
--tasks winogrande \ |
|
|
--apply_chat_template \ |
|
|
--fewshot_as_multiturn \ |
|
|
--batch_size auto |
|
|
``` |
|
|
|
|
|
#### TruthfulQA |
|
|
``` |
|
|
lm_eval \ |
|
|
--model vllm \ |
|
|
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \ |
|
|
--tasks truthfulqa \ |
|
|
--apply_chat_template \ |
|
|
--fewshot_as_multiturn \ |
|
|
--batch_size auto |
|
|
``` |
|
|
|
|
|
#### OpenLLM v2 |
|
|
``` |
|
|
lm_eval \ |
|
|
--model vllm \ |
|
|
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\ |
|
|
--apply_chat_template \ |
|
|
--fewshot_as_multiturn \ |
|
|
--tasks leaderboard \ |
|
|
--batch_size auto |
|
|
``` |
|
|
|
|
|
#### HumanEval and HumanEval_64 |
|
|
``` |
|
|
lm_eval \ |
|
|
--model vllm \ |
|
|
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\ |
|
|
--apply_chat_template \ |
|
|
--fewshot_as_multiturn \ |
|
|
--tasks humaneval_instruct \ |
|
|
--batch_size auto |
|
|
|
|
|
|
|
|
lm_eval \ |
|
|
--model vllm \ |
|
|
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\ |
|
|
--apply_chat_template \ |
|
|
--fewshot_as_multiturn \ |
|
|
--tasks humaneval_64_instruct \ |
|
|
--batch_size auto |
|
|
``` |
|
|
</details> |
|
|
|