|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- Senqiao/VisionThink-Smart-Train |
|
- Senqiao/VisionThink-Smart-Val |
|
base_model: |
|
- Qwen/Qwen2.5-VL-7B-Instruct |
|
--- |
|
|
|
<p align="center" width="100%"> |
|
<img src="https://raw.githubusercontent.com/dvlab-research/VisionThink/main/files/VisionThink.jpg" alt="Stanford-Alpaca" style="width: 100%; min-width: 300px; display: block; margin: auto;"> |
|
</p> |
|
|
|
|
|
# VisionThink: Smart and Efficient Vision Language Model via Reinforcement Learning |
|
|
|
|
|
[](https://arxiv.org/abs/2507.13348) |
|
[](https://huggingface.co/papers/2507.13348) |
|
[](https://github.com/dvlab-research/VisionThink/blob/main/LICENSE) |
|
<a href='https://huggingface.co/collections/Senqiao/visionthink-6878d839fae02a079c9c7bfe'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Data%20Model-Collection-red'></a> |
|
|
|
|
|
## Senqiao/VisionThink-Efficient |
|
|
|
This model is trained via reinforcement learning using [`Senqiao/VisionThink-Smart-Train`](https://huggingface.co/datasets/Senqiao/VisionThink-Smart-Train), demonstrating enhanced performance and efficiency on general VQA tasks. |
|
|
|
|
|
**VisionThink: Smart and Efficient Vision Language Model via Reinforcement Learning [[Paper](https://arxiv.org/abs/2507.13348)]** <br /> |
|
[Senqiao Yang](https://scholar.google.com/citations?user=NcJc-RwAAAAJ), |
|
[Junyi Li](https://scholar.google.com/citations?hl=zh-CN&user=zQ0P3JAAAAAJ), |
|
[Xin Lai](https://scholar.google.com/citations?user=tqNDPA4AAAAJ), |
|
[Bei Yu](https://scholar.google.com/citations?user=tGneTm4AAAAJ), |
|
[Hengshuang Zhao](https://scholar.google.com/citations?user=4uE10I0AAAAJ), |
|
[Jiaya Jia](https://scholar.google.com/citations?user=XPAkzTEAAAAJ)<br /> |
|
|
|
|
|
## Highlights |
|
<p align="center" width="80%"> |
|
<img src="https://raw.githubusercontent.com/dvlab-research/VisionThink/main/files/Framework.jpg" alt="Stanford-Alpaca" style="width: 80%; min-width: 300px; display: block; margin: auto;"> |
|
</p> |
|
|
|
1. Our VisionThink leverages reinforcement learning to **autonomously** learn whether to reduce visual tokens. Compared to traditional efficient VLM approaches, our method achieves significant improvements on **fine-grained** benchmarks, such as those involving OCR-related tasks. |
|
|
|
2. VisionThink improves performance on **General VQA** tasks while reducing visual tokens by **50%**, achieving **102%** of the original model’s performance across nine benchmarks. |
|
|
|
3. VisionThink achieves strong performance and efficiency by simply resizing input images to reduce visual tokens. We hope this inspires further research into **Efficient Reasoning Vision Language Models**. |
|
|
|
## Video |
|
<p align="center" width="85%"> |
|
<a href="https://www.youtube.com/watch?v=DGjbFbA5mBw" target="_blank"> |
|
<img src="https://raw.githubusercontent.com/dvlab-research/VisionThink/main/files/Video.png" alt="Stanford-Alpaca" style="width: 70%; min-width: 300px; display: block; margin: auto;"> |
|
</a> |
|
</p> |
|
|
|
|
|
|
|
## Citation |
|
|
|
If you find this project useful in your research, please consider citing: |
|
|
|
> This work is highly motivated by our previous effort on efficient VLMs, [**VisionZip**](https://github.com/dvlab-research/VisionZip), which explores token compression for faster inference. |
|
|
|
``` |
|
@article{yang2025visionthink, |
|
title={VisionThink: Smart and Efficient Vision Language Model via Reinforcement Learning}, |
|
author={Yang, Senqiao and Li, Junyi and Lai, Xin and Yu, Bei and Zhao, Hengshuang and Jia, Jiaya}, |
|
journal={arXiv preprint arXiv:2507.13348}, |
|
year={2025} |
|
} |
|
@article{yang2024visionzip, |
|
title={VisionZip: Longer is Better but Not Necessary in Vision Language Models}, |
|
author={Yang, Senqiao and Chen, Yukang and Tian, Zhuotao and Wang, Chengyao and Li, Jingyao and Yu, Bei and Jia, Jiaya}, |
|
journal={arXiv preprint arXiv:2412.04467}, |
|
year={2024} |
|
} |
|
``` |
|
|
|
|
|
|