cammt / README.md
villacu's picture
Update README.md
70c68fc verified
metadata
dataset_info:
  features:
    - name: ID
      dtype: string
    - name: regional
      dtype: string
    - name: English
      dtype: string
    - name: Conserved_translation
      dtype: string
    - name: Substituted_translation
      dtype: string
    - name: Category
      dtype: string
    - name: Preferred_translation
      dtype: string
    - name: image
      dtype: image
  splits:
    - name: es_mex
      num_bytes: 158368543
      num_examples: 323
    - name: bn_india
      num_bytes: 94017886
      num_examples: 286
    - name: om_eth
      num_bytes: 28490930
      num_examples: 214
    - name: ur_india
      num_bytes: 102386298
      num_examples: 220
    - name: ig_nga
      num_bytes: 14372042
      num_examples: 200
    - name: ur_pak
      num_bytes: 147129846
      num_examples: 216
    - name: zh_ch
      num_bytes: 91877910
      num_examples: 308
    - name: es_ecu
      num_bytes: 141969979
      num_examples: 362
    - name: sw_ken
      num_bytes: 31567516
      num_examples: 271
    - name: kor_sk
      num_bytes: 143897056
      num_examples: 290
    - name: ru_rus
      num_bytes: 56598710
      num_examples: 200
    - name: ta_india
      num_bytes: 142254878
      num_examples: 213
    - name: amh_eth
      num_bytes: 122937506
      num_examples: 234
    - name: jp_jap
      num_bytes: 63884062
      num_examples: 203
    - name: fil_phl
      num_bytes: 42171387
      num_examples: 203
    - name: ms_mys
      num_bytes: 84408174
      num_examples: 315
    - name: bg_bg
      num_bytes: 179103702
      num_examples: 369
    - name: es_chl
      num_bytes: 98202963
      num_examples: 234
    - name: pt_brz
      num_bytes: 214095076
      num_examples: 284
    - name: ar_egy
      num_bytes: 106134417
      num_examples: 203
    - name: ind_ind
      num_bytes: 116476184
      num_examples: 202
    - name: mr_india
      num_bytes: 145040535
      num_examples: 202
    - name: es_arg
      num_bytes: 142144959
      num_examples: 265
  download_size: 1952703427
  dataset_size: 2467530559
configs:
  - config_name: default
    data_files:
      - split: es_mex
        path: data/es_mex-*
      - split: bn_india
        path: data/bn_india-*
      - split: om_eth
        path: data/om_eth-*
      - split: ur_india
        path: data/ur_india-*
      - split: ig_nga
        path: data/ig_nga-*
      - split: ur_pak
        path: data/ur_pak-*
      - split: zh_ch
        path: data/zh_ch-*
      - split: es_ecu
        path: data/es_ecu-*
      - split: sw_ken
        path: data/sw_ken-*
      - split: kor_sk
        path: data/kor_sk-*
      - split: ru_rus
        path: data/ru_rus-*
      - split: ta_india
        path: data/ta_india-*
      - split: amh_eth
        path: data/amh_eth-*
      - split: jp_jap
        path: data/jp_jap-*
      - split: fil_phl
        path: data/fil_phl-*
      - split: ms_mys
        path: data/ms_mys-*
      - split: bg_bg
        path: data/bg_bg-*
      - split: es_chl
        path: data/es_chl-*
      - split: pt_brz
        path: data/pt_brz-*
      - split: ar_egy
        path: data/ar_egy-*
      - split: ind_ind
        path: data/ind_ind-*
      - split: mr_india
        path: data/mr_india-*
      - split: es_arg
        path: data/es_arg-*

CaMMT Dataset Card

CaMMT is a human-curated benchmark dataset for evaluating multimodal machine translation systems on culturally-relevant content. The dataset contains over 5,800 image-caption triples across 19 languages and 23 regions, with parallel captions in English and regional languages, specifically designed to assess how visual context impacts translation of culturally-specific items.

from datasets import load_dataset

# Load the full dataset
dataset = load_dataset("villacu/cammt")

# Load a specific split if available
dataset = load_dataset("villacu/cammt", split="ar_egy")

Dataset Details

Dataset Description

CAMMT addresses the challenge of translating cultural content by investigating whether images can serve as cultural context in multimodal translation. The dataset is built upon the CVQA (Culturally-diverse multilingual Visual Question Answering) dataset, transforming question-answer pairs into declarative caption statements. Each entry includes parallel captions in English and regional languages, with special attention to Culturally-Specific Items (CSIs) and their translation strategies.

The dataset includes both conserved translations (preserving original cultural terms) and substituted translations (using familiar equivalents) for items containing CSIs, along with native speaker preferences for translation strategies.

  • Curated by: MBZUAI and collaborating institutions across the globe.
  • Language(s) (NLP): 19 languages across 23 regions (Amharic, Arabic, Bengali, Bulgarian, Chinese, Filipino, Igbo, Indonesian, Japanese, Korean, Malay, Marathi, Oromo, Portuguese, Russian, Spanish (4 regional variants), Swahili, Tamil, Urdu (2 regional variants))
  • License: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)

Dataset Sources

Dataset Structure

The dataset contains 5,817 main entries plus an additional 1,550 entries with conserved and substituted CSI translations. Each entry includes:

  • ID: Unique identifier from the original CVQA dataset
  • regional: Caption in the regional language
  • English: Parallel caption in English
  • Conserved_translation: English translation preserving the original CSI (if applicable)
  • Substituted_translation: English translation using a familiar equivalent for the CSI (if applicable)
  • Category: Classification of cultural relevance:
  • "not culturally-relevant sentence"
  • "non-CSI" (culturally relevant but no specific CSI)
  • "CSI- has possible translation" (CSI with cultural equivalent)
  • "CSI-forced translation" (CSI without direct equivalent)
  • Preferred_translation: Native speaker preference between conserved or substituted translation (if applicable)

The dataset spans 23 regions with varying numbers of samples per region (ranging from 200 to 369 samples).

Citation

BibTeX:

@misc{villacueva2025cammtbenchmarkingculturallyaware,
      title={CaMMT: Benchmarking Culturally Aware Multimodal Machine Translation}, 
      author={Emilio Villa-Cueva and Sholpan Bolatzhanova and Diana Turmakhan and Kareem Elzeky and Henok Biadglign Ademtew and Alham Fikri Aji and Israel Abebe Azime and Jinheon Baek and Frederico Belcavello and Fermin Cristobal and Jan Christian Blaise Cruz and Mary Dabre and Raj Dabre and Toqeer Ehsan and Naome A Etori and Fauzan Farooqui and Jiahui Geng and Guido Ivetta and Thanmay Jayakumar and Soyeong Jeong and Zheng Wei Lim and Aishik Mandal and Sofia Martinelli and Mihail Minkov Mihaylov and Daniil Orel and Aniket Pramanick and Sukannya Purkayastha and Israfel Salazar and Haiyue Song and Tiago Timponi Torrent and Debela Desalegn Yadeta and Injy Hamed and Atnafu Lambebo Tonja and Thamar Solorio},
      year={2025},
      eprint={2505.24456},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2505.24456}, 
}