metadata
language:
- en
license: apache-2.0
tags:
- biencoder
- sentence-transformers
- text-classification
- sentence-pair-classification
- semantic-similarity
- semantic-search
- retrieval
- reranking
- generated_from_trainer
- dataset_size:9233417
- loss:ArcFaceInBatchLoss
base_model: answerdotai/ModernBERT-base
widget:
- source_sentence: >-
Hayley Vaughan portrayed Ripa on the ABC daytime soap opera , `` All My
Children `` , between 1990 and 2002 .
sentences:
- >-
Traxxpad is a music application for Sony 's PlayStation Portable
published by Definitive Studios and developed by Eidos Interactive .
- >-
Between 1990 and 2002 , Hayley Vaughan Ripa portrayed in the ABC soap
opera `` All My Children `` .
- >-
Between 1990 and 2002 , Ripa Hayley portrayed Vaughan in the ABC soap
opera `` All My Children `` .
- source_sentence: >-
Olivella monilifera is a species of dwarf sea snail , small gastropod
mollusk in the family Olivellidae , the marine olives .
sentences:
- >-
Olivella monilifera is a species of the dwarf - sea snail , small
gastropod mollusk in the Olivellidae family , the marine olives .
- >-
He was cut by the Browns after being signed by the Bills in 2013 . He
was later released .
- >-
Olivella monilifera is a kind of sea snail , marine gastropod mollusk in
the Olivellidae family , the dwarf olives .
- source_sentence: >-
Hayashi said that Mackey `` is a sort of `` of the original model for
Tenchi .
sentences:
- >-
In the summer of 2009 , Ellick shot a documentary about Malala Yousafzai
.
- >-
Hayashi said that Mackey is `` sort of `` the original model for Tenchi
.
- >-
Mackey said that Hayashi is `` sort of `` the original model for Tenchi
.
- source_sentence: >-
Much of the film was shot on location in Los Angeles and in nearby Burbank
and Glendale .
sentences:
- >-
Much of the film was shot on location in Los Angeles and in nearby
Burbank and Glendale .
- >-
Much of the film was shot on site in Burbank and Glendale and in the
nearby Los Angeles .
- >-
Traxxpad is a music application for the Sony PlayStation Portable
developed by the Definitive Studios and published by Eidos Interactive .
- source_sentence: >-
According to him , the earth is the carrier of his artistic work , which
is only integrated into the creative process by minimal changes .
sentences:
- National players are Bold players .
- >-
According to him , earth is the carrier of his artistic work being
integrated into the creative process only by minimal changes .
- >-
According to him , earth is the carrier of his creative work being
integrated into the artistic process only by minimal changes .
datasets:
- redis/langcache-sentencepairs-v2
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_precision@1
- cosine_recall@1
- cosine_ndcg@10
- cosine_mrr@1
- cosine_map@100
model-index:
- name: Redis fine-tuned BiEncoder model for semantic caching on LangCache
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: test
type: test
metrics:
- type: cosine_accuracy@1
value: 0.6032809198037179
name: Cosine Accuracy@1
- type: cosine_precision@1
value: 0.6032809198037179
name: Cosine Precision@1
- type: cosine_recall@1
value: 0.585771482488324
name: Cosine Recall@1
- type: cosine_ndcg@10
value: 0.7747479314468421
name: Cosine Ndcg@10
- type: cosine_mrr@1
value: 0.6032809198037179
name: Cosine Mrr@1
- type: cosine_map@100
value: 0.7280398908979986
name: Cosine Map@100
Redis fine-tuned BiEncoder model for semantic caching on LangCache
This is a sentence-transformers model finetuned from answerdotai/ModernBERT-base on the LangCache Sentence Pairs (all) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for sentence pair similarity.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: answerdotai/ModernBERT-base
- Maximum Sequence Length: 100 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 100, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("redis/langcache-embed-v3")
# Run inference
sentences = [
'According to him , the earth is the carrier of his artistic work , which is only integrated into the creative process by minimal changes .',
'According to him , earth is the carrier of his artistic work being integrated into the creative process only by minimal changes .',
'According to him , earth is the carrier of his creative work being integrated into the artistic process only by minimal changes .',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.9180, 0.4531],
# [0.9180, 1.0000, 0.4746],
# [0.4531, 0.4746, 1.0000]], dtype=torch.bfloat16)
Evaluation
Metrics
Information Retrieval
- Dataset:
test
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6033 |
cosine_precision@1 | 0.6033 |
cosine_recall@1 | 0.5858 |
cosine_ndcg@10 | 0.7747 |
cosine_mrr@1 | 0.6033 |
cosine_map@100 | 0.728 |
Training Details
Training Dataset
LangCache Sentence Pairs (all)
- Dataset: LangCache Sentence Pairs (all)
- Size: 126,938 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 8 tokens
- mean: 27.27 tokens
- max: 49 tokens
- min: 8 tokens
- mean: 27.27 tokens
- max: 48 tokens
- min: 7 tokens
- mean: 26.54 tokens
- max: 61 tokens
- Samples:
anchor positive negative The newer Punts are still very much in existence today and race in the same fleets as the older boats .
The newer punts are still very much in existence today and run in the same fleets as the older boats .
how can I get financial freedom as soon as possible?
The newer punts are still very much in existence today and run in the same fleets as the older boats .
The newer Punts are still very much in existence today and race in the same fleets as the older boats .
The older Punts are still very much in existence today and race in the same fleets as the newer boats .
Turner Valley , was at the Turner Valley Bar N Ranch Airport , southwest of the Turner Valley Bar N Ranch , Alberta , Canada .
Turner Valley , , was located at Turner Valley Bar N Ranch Airport , southwest of Turner Valley Bar N Ranch , Alberta , Canada .
Turner Valley Bar N Ranch Airport , , was located at Turner Valley Bar N Ranch , southwest of Turner Valley , Alberta , Canada .
- Loss:
losses.ArcFaceInBatchLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false }
Evaluation Dataset
LangCache Sentence Pairs (all)
- Dataset: LangCache Sentence Pairs (all)
- Size: 126,938 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 8 tokens
- mean: 27.27 tokens
- max: 49 tokens
- min: 8 tokens
- mean: 27.27 tokens
- max: 48 tokens
- min: 7 tokens
- mean: 26.54 tokens
- max: 61 tokens
- Samples:
anchor positive negative The newer Punts are still very much in existence today and race in the same fleets as the older boats .
The newer punts are still very much in existence today and run in the same fleets as the older boats .
how can I get financial freedom as soon as possible?
The newer punts are still very much in existence today and run in the same fleets as the older boats .
The newer Punts are still very much in existence today and race in the same fleets as the older boats .
The older Punts are still very much in existence today and race in the same fleets as the newer boats .
Turner Valley , was at the Turner Valley Bar N Ranch Airport , southwest of the Turner Valley Bar N Ranch , Alberta , Canada .
Turner Valley , , was located at Turner Valley Bar N Ranch Airport , southwest of Turner Valley Bar N Ranch , Alberta , Canada .
Turner Valley Bar N Ranch Airport , , was located at Turner Valley Bar N Ranch , southwest of Turner Valley , Alberta , Canada .
- Loss:
losses.ArcFaceInBatchLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 128per_device_eval_batch_size
: 128weight_decay
: 0.001adam_beta2
: 0.98adam_epsilon
: 1e-06max_steps
: 100000warmup_ratio
: 0.1load_best_model_at_end
: Trueoptim
: stable_adamwddp_find_unused_parameters
: Falsepush_to_hub
: Truehub_model_id
: redis/langcache-embed-v3batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 128per_device_eval_batch_size
: 128per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.001adam_beta1
: 0.9adam_beta2
: 0.98adam_epsilon
: 1e-06max_grad_norm
: 1.0num_train_epochs
: 3.0max_steps
: 100000lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config
: Nonedeepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: stable_adamwoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Falseddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Trueresume_from_checkpoint
: Nonehub_model_id
: redis/langcache-embed-v3hub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsehub_revision
: Nonegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseliger_kernel_config
: Noneeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportionalrouter_mapping
: {}learning_rate_mapping
: {}
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss | test_cosine_ndcg@10 |
---|---|---|---|---|
-1 | -1 | - | - | 0.5952 |
0.0069 | 500 | 3.4812 | 0.6932 | 0.6810 |
0.0139 | 1000 | 0.6045 | 0.4804 | 0.7354 |
0.0208 | 1500 | 0.3127 | 0.4128 | 0.7437 |
0.0277 | 2000 | 0.2424 | 0.4077 | 0.7440 |
0.0347 | 2500 | 0.2027 | 0.3707 | 0.7501 |
0.0416 | 3000 | 0.1752 | 0.3453 | 0.7551 |
0.0485 | 3500 | 0.1622 | 0.3380 | 0.7540 |
0.0555 | 4000 | 0.1466 | 0.3185 | 0.7583 |
0.0624 | 4500 | 0.1392 | 0.3092 | 0.7588 |
0.0693 | 5000 | 0.1342 | 0.3054 | 0.7566 |
0.0762 | 5500 | 0.1291 | 0.2960 | 0.7582 |
0.0832 | 6000 | 0.1291 | 0.2856 | 0.7616 |
0.0901 | 6500 | 0.1199 | 0.2803 | 0.7624 |
0.0970 | 7000 | 0.1171 | 0.2692 | 0.7648 |
0.1040 | 7500 | 0.1097 | 0.2811 | 0.7629 |
0.1109 | 8000 | 0.1089 | 0.2901 | 0.7621 |
0.1178 | 8500 | 0.1088 | 0.2986 | 0.7568 |
0.1248 | 9000 | 0.109 | 0.2806 | 0.7628 |
0.1317 | 9500 | 0.1046 | 0.3050 | 0.7587 |
0.1386 | 10000 | 0.1035 | 0.2925 | 0.7596 |
0.1456 | 10500 | 0.1041 | 0.2940 | 0.7573 |
0.1525 | 11000 | 0.1023 | 0.2790 | 0.7632 |
0.1594 | 11500 | 0.0992 | 0.3293 | 0.7542 |
0.1664 | 12000 | 0.0996 | 0.2876 | 0.7570 |
0.1733 | 12500 | 0.0949 | 0.2881 | 0.7591 |
0.1802 | 13000 | 0.0921 | 0.2861 | 0.7598 |
0.1871 | 13500 | 0.0912 | 0.2763 | 0.7632 |
0.1941 | 14000 | 0.0912 | 0.2785 | 0.7643 |
0.2010 | 14500 | 0.0909 | 0.3198 | 0.7629 |
0.2079 | 15000 | 0.0911 | 0.3015 | 0.7575 |
0.2149 | 15500 | 0.0861 | 0.3029 | 0.7597 |
0.2218 | 16000 | 0.0857 | 0.3271 | 0.7568 |
0.2287 | 16500 | 0.0843 | 0.2579 | 0.7645 |
0.2357 | 17000 | 0.085 | 0.2923 | 0.7625 |
0.2426 | 17500 | 0.0846 | 0.3241 | 0.7598 |
0.2495 | 18000 | 0.083 | 0.3128 | 0.7616 |
0.2565 | 18500 | 0.0794 | 0.2926 | 0.7611 |
0.2634 | 19000 | 0.0806 | 0.2665 | 0.7640 |
0.2703 | 19500 | 0.0782 | 0.2963 | 0.7615 |
0.2773 | 20000 | 0.0786 | 0.2771 | 0.7611 |
0.2842 | 20500 | 0.0761 | 0.2853 | 0.7623 |
0.2911 | 21000 | 0.0752 | 0.2782 | 0.7626 |
0.2980 | 21500 | 0.0777 | 0.2680 | 0.7612 |
0.3050 | 22000 | 0.0782 | 0.2731 | 0.7636 |
0.3119 | 22500 | 0.0785 | 0.2627 | 0.7627 |
0.3188 | 23000 | 0.0741 | 0.2714 | 0.7613 |
0.3258 | 23500 | 0.0741 | 0.2713 | 0.7661 |
0.3327 | 24000 | 0.072 | 0.2630 | 0.7636 |
0.3396 | 24500 | 0.0739 | 0.2839 | 0.7648 |
0.3466 | 25000 | 0.07 | 0.2860 | 0.7634 |
0.3535 | 25500 | 0.0715 | 0.2612 | 0.7666 |
0.3604 | 26000 | 0.0711 | 0.2531 | 0.7671 |
0.3674 | 26500 | 0.0701 | 0.2682 | 0.7638 |
0.3743 | 27000 | 0.0733 | 0.2708 | 0.7635 |
0.3812 | 27500 | 0.0705 | 0.2873 | 0.7636 |
0.3882 | 28000 | 0.0663 | 0.2831 | 0.7647 |
0.3951 | 28500 | 0.0678 | 0.2825 | 0.7643 |
0.4020 | 29000 | 0.0691 | 0.2733 | 0.7654 |
0.4089 | 29500 | 0.0696 | 0.2831 | 0.7621 |
0.4159 | 30000 | 0.0708 | 0.2893 | 0.7643 |
0.4228 | 30500 | 0.0663 | 0.2758 | 0.7653 |
0.4297 | 31000 | 0.064 | 0.2589 | 0.7666 |
0.4367 | 31500 | 0.0636 | 0.2491 | 0.7681 |
0.4436 | 32000 | 0.0644 | 0.2601 | 0.7650 |
0.4505 | 32500 | 0.0655 | 0.2611 | 0.7668 |
0.4575 | 33000 | 0.0643 | 0.2597 | 0.7664 |
0.4644 | 33500 | 0.066 | 0.2696 | 0.7677 |
0.4713 | 34000 | 0.0664 | 0.2489 | 0.7690 |
0.4783 | 34500 | 0.0654 | 0.2644 | 0.7649 |
0.4852 | 35000 | 0.0653 | 0.2704 | 0.7665 |
0.4921 | 35500 | 0.0657 | 0.2578 | 0.7689 |
0.4991 | 36000 | 0.0634 | 0.2629 | 0.7669 |
0.5060 | 36500 | 0.0609 | 0.2631 | 0.7663 |
0.5129 | 37000 | 0.0646 | 0.2586 | 0.7667 |
0.5198 | 37500 | 0.0634 | 0.2572 | 0.7657 |
0.5268 | 38000 | 0.0607 | 0.2624 | 0.7664 |
0.5337 | 38500 | 0.0621 | 0.2622 | 0.7668 |
0.5406 | 39000 | 0.0614 | 0.2562 | 0.7676 |
0.5476 | 39500 | 0.0621 | 0.2560 | 0.7673 |
0.5545 | 40000 | 0.0608 | 0.2506 | 0.7684 |
0.5614 | 40500 | 0.0621 | 0.2718 | 0.7666 |
0.5684 | 41000 | 0.0598 | 0.2599 | 0.7700 |
0.5753 | 41500 | 0.06 | 0.2706 | 0.7687 |
0.5822 | 42000 | 0.0618 | 0.2635 | 0.7694 |
0.5892 | 42500 | 0.0604 | 0.2743 | 0.7660 |
0.5961 | 43000 | 0.0576 | 0.2733 | 0.7661 |
0.6030 | 43500 | 0.0597 | 0.2644 | 0.7712 |
0.6100 | 44000 | 0.0592 | 0.2516 | 0.7694 |
0.6169 | 44500 | 0.0599 | 0.2461 | 0.7688 |
0.6238 | 45000 | 0.056 | 0.2438 | 0.7686 |
0.6307 | 45500 | 0.0573 | 0.2513 | 0.7703 |
0.6377 | 46000 | 0.0571 | 0.2526 | 0.7694 |
0.6446 | 46500 | 0.0573 | 0.2529 | 0.7702 |
0.6515 | 47000 | 0.0553 | 0.2529 | 0.7694 |
0.6585 | 47500 | 0.0541 | 0.2518 | 0.7707 |
0.6654 | 48000 | 0.0561 | 0.2471 | 0.7725 |
0.6723 | 48500 | 0.0558 | 0.2440 | 0.7710 |
0.6793 | 49000 | 0.0555 | 0.2556 | 0.7691 |
0.6862 | 49500 | 0.056 | 0.2479 | 0.7721 |
0.6931 | 50000 | 0.0564 | 0.2463 | 0.7723 |
0.7001 | 50500 | 0.0539 | 0.2561 | 0.7728 |
0.7070 | 51000 | 0.0526 | 0.2416 | 0.7725 |
0.7139 | 51500 | 0.0561 | 0.2501 | 0.7723 |
0.7209 | 52000 | 0.0545 | 0.2316 | 0.7732 |
0.7278 | 52500 | 0.0545 | 0.2352 | 0.7739 |
0.7347 | 53000 | 0.05 | 0.2278 | 0.7734 |
0.7416 | 53500 | 0.0515 | 0.2308 | 0.7730 |
0.7486 | 54000 | 0.0528 | 0.2524 | 0.7727 |
0.7555 | 54500 | 0.0509 | 0.2645 | 0.7717 |
0.7624 | 55000 | 0.0514 | 0.2659 | 0.7708 |
0.7694 | 55500 | 0.0503 | 0.2570 | 0.7725 |
0.7763 | 56000 | 0.0538 | 0.2524 | 0.7724 |
0.7832 | 56500 | 0.0477 | 0.2537 | 0.7719 |
0.7902 | 57000 | 0.0514 | 0.2333 | 0.7733 |
0.7971 | 57500 | 0.05 | 0.2420 | 0.7722 |
0.8040 | 58000 | 0.0518 | 0.2342 | 0.7734 |
0.8110 | 58500 | 0.0508 | 0.2402 | 0.7730 |
0.8179 | 59000 | 0.0474 | 0.2477 | 0.7711 |
0.8248 | 59500 | 0.0493 | 0.2465 | 0.7723 |
0.8318 | 60000 | 0.0492 | 0.2448 | 0.7731 |
0.8387 | 60500 | 0.0496 | 0.2498 | 0.7733 |
0.8456 | 61000 | 0.0479 | 0.2505 | 0.7721 |
0.8525 | 61500 | 0.0445 | 0.2449 | 0.7745 |
0.8595 | 62000 | 0.0477 | 0.2507 | 0.7748 |
0.8664 | 62500 | 0.0491 | 0.2551 | 0.7716 |
0.8733 | 63000 | 0.0474 | 0.2451 | 0.7743 |
0.8803 | 63500 | 0.0452 | 0.2464 | 0.7741 |
0.8872 | 64000 | 0.0482 | 0.2412 | 0.7742 |
0.8941 | 64500 | 0.0483 | 0.2444 | 0.7736 |
0.9011 | 65000 | 0.0485 | 0.2456 | 0.7724 |
0.9080 | 65500 | 0.045 | 0.2493 | 0.7730 |
0.9149 | 66000 | 0.0496 | 0.2499 | 0.7721 |
0.9219 | 66500 | 0.0461 | 0.2474 | 0.7748 |
0.9288 | 67000 | 0.0465 | 0.2432 | 0.7743 |
0.9357 | 67500 | 0.0477 | 0.2432 | 0.7729 |
0.9427 | 68000 | 0.0425 | 0.2491 | 0.7740 |
0.9496 | 68500 | 0.0452 | 0.2445 | 0.7736 |
0.9565 | 69000 | 0.046 | 0.2397 | 0.7742 |
0.9634 | 69500 | 0.0449 | 0.2539 | 0.7731 |
0.9704 | 70000 | 0.0462 | 0.2446 | 0.7745 |
0.9773 | 70500 | 0.0435 | 0.2385 | 0.7742 |
0.9842 | 71000 | 0.0469 | 0.2334 | 0.7750 |
0.9912 | 71500 | 0.0447 | 0.2312 | 0.7745 |
0.9981 | 72000 | 0.0465 | 0.2361 | 0.7737 |
1.0050 | 72500 | 0.0341 | 0.2359 | 0.7728 |
1.0120 | 73000 | 0.03 | 0.2405 | 0.7727 |
1.0189 | 73500 | 0.029 | 0.2241 | 0.7724 |
1.0258 | 74000 | 0.0284 | 0.2297 | 0.7740 |
1.0328 | 74500 | 0.0273 | 0.2317 | 0.7735 |
1.0397 | 75000 | 0.0291 | 0.2352 | 0.7727 |
1.0466 | 75500 | 0.0286 | 0.2439 | 0.7724 |
1.0536 | 76000 | 0.0268 | 0.2336 | 0.7732 |
1.0605 | 76500 | 0.0276 | 0.2298 | 0.7728 |
1.0674 | 77000 | 0.0279 | 0.2268 | 0.7726 |
1.0743 | 77500 | 0.0283 | 0.2206 | 0.7738 |
1.0813 | 78000 | 0.0277 | 0.2263 | 0.7733 |
1.0882 | 78500 | 0.0285 | 0.2228 | 0.7740 |
1.0951 | 79000 | 0.0283 | 0.2250 | 0.7729 |
1.1021 | 79500 | 0.0276 | 0.2200 | 0.7730 |
1.1090 | 80000 | 0.0276 | 0.2221 | 0.7739 |
1.1159 | 80500 | 0.0268 | 0.2279 | 0.7730 |
1.1229 | 81000 | 0.0274 | 0.2302 | 0.7733 |
1.1298 | 81500 | 0.0281 | 0.2286 | 0.7736 |
1.1367 | 82000 | 0.0267 | 0.2306 | 0.7733 |
1.1437 | 82500 | 0.0267 | 0.2348 | 0.7731 |
1.1506 | 83000 | 0.0278 | 0.2301 | 0.7729 |
1.1575 | 83500 | 0.028 | 0.2240 | 0.7738 |
1.1645 | 84000 | 0.0282 | 0.2196 | 0.7744 |
1.1714 | 84500 | 0.0264 | 0.2241 | 0.7737 |
1.1783 | 85000 | 0.0258 | 0.2252 | 0.7736 |
1.1852 | 85500 | 0.027 | 0.2196 | 0.7742 |
1.1922 | 86000 | 0.0256 | 0.2189 | 0.7739 |
1.1991 | 86500 | 0.0259 | 0.2174 | 0.7749 |
1.2060 | 87000 | 0.0262 | 0.2209 | 0.7751 |
1.2130 | 87500 | 0.0265 | 0.2202 | 0.7739 |
1.2199 | 88000 | 0.025 | 0.2228 | 0.7737 |
1.2268 | 88500 | 0.0266 | 0.2233 | 0.7739 |
1.2338 | 89000 | 0.0261 | 0.2255 | 0.7736 |
1.2407 | 89500 | 0.0271 | 0.2219 | 0.7746 |
1.2476 | 90000 | 0.0256 | 0.2185 | 0.7757 |
1.2546 | 90500 | 0.0257 | 0.2190 | 0.7758 |
1.2615 | 91000 | 0.0239 | 0.2210 | 0.7750 |
1.2684 | 91500 | 0.0252 | 0.2236 | 0.7743 |
1.2754 | 92000 | 0.0245 | 0.2238 | 0.7743 |
1.2823 | 92500 | 0.0267 | 0.2234 | 0.7747 |
1.2892 | 93000 | 0.025 | 0.2235 | 0.7746 |
1.2961 | 93500 | 0.0246 | 0.2298 | 0.7740 |
1.3031 | 94000 | 0.0266 | 0.2239 | 0.7744 |
1.3100 | 94500 | 0.0256 | 0.2231 | 0.7740 |
1.3169 | 95000 | 0.0265 | 0.2214 | 0.7744 |
1.3239 | 95500 | 0.0253 | 0.2221 | 0.7747 |
1.3308 | 96000 | 0.0251 | 0.2222 | 0.7742 |
1.3377 | 96500 | 0.0244 | 0.2211 | 0.7748 |
1.3447 | 97000 | 0.0249 | 0.2216 | 0.7750 |
1.3516 | 97500 | 0.0257 | 0.2215 | 0.7745 |
1.3585 | 98000 | 0.0263 | 0.2215 | 0.7749 |
1.3655 | 98500 | 0.0258 | 0.2209 | 0.7749 |
1.3724 | 99000 | 0.0255 | 0.2212 | 0.7748 |
1.3793 | 99500 | 0.0252 | 0.2213 | 0.7751 |
1.3863 | 100000 | 0.0257 | 0.2213 | 0.7747 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.3
- Sentence Transformers: 5.1.0
- Transformers: 4.56.0
- PyTorch: 2.8.0+cu128
- Accelerate: 1.10.1
- Datasets: 4.0.0
- Tokenizers: 0.22.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}