File size: 3,198 Bytes
d4fb0be
 
 
0553d6a
d4fb0be
 
8b3b01c
d4fb0be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0553d6a
d4fb0be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
275e33e
8b3b01c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4fb0be
275e33e
d4fb0be
 
8b3b01c
9f4950c
d4fb0be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import os
import asyncio
from lightrag import LightRAG, QueryParam
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
from lightrag.utils import EmbeddingFunc
import numpy as np
from lightrag.kg.shared_storage import initialize_pipeline_status

WORKING_DIR = "./dickens"

if not os.path.exists(WORKING_DIR):
    os.mkdir(WORKING_DIR)


async def llm_model_func(
    prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
) -> str:
    return await openai_complete_if_cache(
        "solar-mini",
        prompt,
        system_prompt=system_prompt,
        history_messages=history_messages,
        api_key=os.getenv("UPSTAGE_API_KEY"),
        base_url="https://api.upstage.ai/v1/solar",
        **kwargs,
    )


async def embedding_func(texts: list[str]) -> np.ndarray:
    return await openai_embed(
        texts,
        model="solar-embedding-1-large-query",
        api_key=os.getenv("UPSTAGE_API_KEY"),
        base_url="https://api.upstage.ai/v1/solar",
    )


async def get_embedding_dim():
    test_text = ["This is a test sentence."]
    embedding = await embedding_func(test_text)
    embedding_dim = embedding.shape[1]
    return embedding_dim


# function test
async def test_funcs():
    result = await llm_model_func("How are you?")
    print("llm_model_func: ", result)

    result = await embedding_func(["How are you?"])
    print("embedding_func: ", result)


# asyncio.run(test_funcs())


async def initialize_rag():
    embedding_dimension = await get_embedding_dim()
    print(f"Detected embedding dimension: {embedding_dimension}")

    rag = LightRAG(
        working_dir=WORKING_DIR,
        embedding_cache_config={
            "enabled": True,
            "similarity_threshold": 0.90,
        },
        llm_model_func=llm_model_func,
        embedding_func=EmbeddingFunc(
            embedding_dim=embedding_dimension,
            max_token_size=8192,
            func=embedding_func,
        ),
    )

    await rag.initialize_storages()
    await initialize_pipeline_status()

    return rag


async def main():
    try:
        # Initialize RAG instance
        rag = await initialize_rag()

        with open("./book.txt", "r", encoding="utf-8") as f:
            await rag.ainsert(f.read())

        # Perform naive search
        print(
            await rag.aquery(
                "What are the top themes in this story?", param=QueryParam(mode="naive")
            )
        )

        # Perform local search
        print(
            await rag.aquery(
                "What are the top themes in this story?", param=QueryParam(mode="local")
            )
        )

        # Perform global search
        print(
            await rag.aquery(
                "What are the top themes in this story?",
                param=QueryParam(mode="global"),
            )
        )

        # Perform hybrid search
        print(
            await rag.aquery(
                "What are the top themes in this story?",
                param=QueryParam(mode="hybrid"),
            )
        )
    except Exception as e:
        print(f"An error occurred: {e}")


if __name__ == "__main__":
    asyncio.run(main())