File size: 3,084 Bytes
f5452a1 0553d6a f5452a1 8b3b01c f5452a1 7b0dab2 f5452a1 fad5373 f5452a1 7b0dab2 f5452a1 7b0dab2 f5452a1 275e33e 8b3b01c f5452a1 8b3b01c f5452a1 8b3b01c 275e33e 8b3b01c f5452a1 275e33e 8b3b01c f5452a1 8b3b01c f5452a1 8b3b01c 275e33e 8b3b01c f5452a1 8b3b01c 275e33e 8b3b01c 275e33e 8b3b01c 275e33e 8b3b01c f5452a1 275e33e 8b3b01c 275e33e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
import os
from lightrag import LightRAG, QueryParam
from lightrag.llm.lmdeploy import lmdeploy_model_if_cache
from lightrag.llm.hf import hf_embed
from lightrag.utils import EmbeddingFunc
from transformers import AutoModel, AutoTokenizer
from lightrag.kg.shared_storage import initialize_pipeline_status
import asyncio
import nest_asyncio
nest_asyncio.apply()
WORKING_DIR = "./dickens"
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
async def lmdeploy_model_complete(
prompt=None,
system_prompt=None,
history_messages=[],
keyword_extraction=False,
**kwargs,
) -> str:
model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
return await lmdeploy_model_if_cache(
model_name,
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
## please specify chat_template if your local path does not follow original HF file name,
## or model_name is a pytorch model on huggingface.co,
## you can refer to https://github.com/InternLM/lmdeploy/blob/main/lmdeploy/model.py
## for a list of chat_template available in lmdeploy.
chat_template="llama3",
# model_format ='awq', # if you are using awq quantization model.
# quant_policy=8, # if you want to use online kv cache, 4=kv int4, 8=kv int8.
**kwargs,
)
async def initialize_rag():
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=lmdeploy_model_complete,
llm_model_name="meta-llama/Llama-3.1-8B-Instruct", # please use definite path for local model
embedding_func=EmbeddingFunc(
embedding_dim=384,
max_token_size=5000,
func=lambda texts: hf_embed(
texts,
tokenizer=AutoTokenizer.from_pretrained(
"sentence-transformers/all-MiniLM-L6-v2"
),
embed_model=AutoModel.from_pretrained(
"sentence-transformers/all-MiniLM-L6-v2"
),
),
),
)
await rag.initialize_storages()
await initialize_pipeline_status()
return rag
def main():
# Initialize RAG instance
rag = asyncio.run(initialize_rag())
# Insert example text
with open("./book.txt", "r", encoding="utf-8") as f:
rag.insert(f.read())
# Test different query modes
print("\nNaive Search:")
print(
rag.query(
"What are the top themes in this story?", param=QueryParam(mode="naive")
)
)
print("\nLocal Search:")
print(
rag.query(
"What are the top themes in this story?", param=QueryParam(mode="local")
)
)
print("\nGlobal Search:")
print(
rag.query(
"What are the top themes in this story?", param=QueryParam(mode="global")
)
)
print("\nHybrid Search:")
print(
rag.query(
"What are the top themes in this story?", param=QueryParam(mode="hybrid")
)
)
if __name__ == "__main__":
main()
|