File size: 49,946 Bytes
68483c2
1bcd8ba
cf823f1
8180839
37181c7
ad3a952
8180839
37181c7
45f7e70
37181c7
45f7e70
 
 
 
d09c742
37181c7
45f7e70
 
 
 
d09c742
37181c7
45f7e70
 
0c0d736
45f7e70
8180839
 
 
0c0d736
11c7a1e
bceecd4
3bd4cd4
 
11c7a1e
d2e0e19
9e680b1
bceecd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05c25ae
33eca92
 
 
 
 
d403607
 
 
 
d76f618
33eca92
 
cc068f8
 
 
c6de7de
ea35945
c6de7de
 
 
 
 
bceecd4
c6de7de
bceecd4
c6de7de
 
 
 
cc068f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6de7de
bceecd4
a7f6abf
6d5e41a
d76f618
 
bceecd4
c6de7de
 
 
33eca92
 
 
5cb5c6b
c6de7de
 
dc68f3f
8b3b01c
fb668ad
e896147
8b3b01c
c11e4ce
 
 
c6de7de
8b3b01c
 
 
 
 
 
c6de7de
8b3b01c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6de7de
fe5faf4
33eca92
3acbbd4
de9c368
33eca92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a604fd
7afdb71
bd45820
 
 
 
 
33eca92
de9c368
3acbbd4
33eca92
3acbbd4
02b500d
 
 
 
ba5302b
33eca92
ba5302b
191b01b
bceecd4
fe5faf4
 
94cd4d3
fe5faf4
 
 
 
 
 
 
 
 
 
 
 
0553d6a
fe5faf4
 
 
 
 
 
8b3b01c
 
 
 
 
 
 
 
 
fe5faf4
8b3b01c
 
 
 
 
fe5faf4
bceecd4
ba5302b
fe5faf4
ba5302b
33eca92
df22b26
191b01b
b61e892
703be4e
b61e892
d76f618
 
 
 
6d5e41a
d76f618
aea3539
 
 
 
a3a4079
df22b26
aea3539
 
 
 
d76f618
 
bceecd4
ba5302b
fe5faf4
ba5302b
33eca92
02b500d
bceecd4
05c25ae
 
 
df22b26
6d5e41a
 
 
 
 
 
 
 
 
 
0553d6a
df22b26
6d5e41a
 
 
 
 
191b01b
02b500d
bceecd4
05c25ae
 
02b500d
191b01b
 
bceecd4
05c25ae
191b01b
 
 
 
bceecd4
05c25ae
191b01b
 
 
 
bceecd4
0cea469
191b01b
 
 
 
bceecd4
0cea469
191b01b
 
 
02b500d
bceecd4
05c25ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bceecd4
02b500d
05c25ae
 
 
ba5302b
fbf52be
de814c2
fbf52be
02b500d
fbf52be
02b500d
 
fbf52be
02b500d
fbf52be
 
 
8b3b01c
fbf52be
de814c2
fbf52be
 
8b3b01c
c11e4ce
 
 
 
fbf52be
8b3b01c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbf52be
29c715d
02b500d
bceecd4
de814c2
 
 
fbf52be
02b500d
 
33eca92
 
54b0d76
2571a0e
33eca92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2571a0e
fe5faf4
02b500d
33eca92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02b500d
33eca92
 
 
02b500d
bceecd4
33eca92
bceecd4
33eca92
 
 
 
 
02b500d
bceecd4
33eca92
 
 
 
 
 
 
 
 
 
02b500d
33eca92
 
 
6e962ee
 
 
 
 
 
33eca92
 
6e962ee
 
 
 
33eca92
 
6e962ee
 
 
 
 
 
 
 
 
 
33eca92
 
 
 
6e962ee
 
 
 
33eca92
6e962ee
33eca92
 
6e962ee
 
 
 
 
 
33eca92
 
6e962ee
 
 
 
 
 
 
 
33eca92
 
 
 
bceecd4
33eca92
 
 
 
02b500d
 
33eca92
 
 
 
 
 
02b500d
 
33eca92
 
54b0d76
c6de7de
d6ef863
c6de7de
d6ef863
 
 
 
 
82c47ab
d6ef863
 
8b3b01c
82c47ab
c6de7de
fe5faf4
d6ef863
bceecd4
d6ef863
 
 
 
 
33eca92
 
6faaceb
 
 
 
 
 
 
 
 
 
 
 
 
 
33eca92
 
 
 
8c53afc
014eb5c
 
 
 
 
 
 
8b3b01c
ead39ba
014eb5c
ead39ba
014eb5c
 
33eca92
ae4419c
33eca92
 
ae4419c
33eca92
ae4419c
 
33eca92
 
 
 
 
 
9e680b1
 
 
 
 
d228382
9e680b1
 
 
 
 
 
 
 
 
 
ae4419c
bceecd4
33eca92
 
3c3f1b5
9a6635a
33eca92
 
2e056db
 
 
 
 
 
 
 
 
 
c11e4ce
 
 
2e056db
 
 
 
 
9f4950c
 
 
 
 
 
c11e4ce
9f4950c
 
 
 
 
 
2e056db
bceecd4
2e056db
 
33eca92
 
 
 
 
b6db833
bceecd4
b6db833
d6fd606
b6db833
90583bd
5e1537b
 
90583bd
5e1537b
 
 
 
 
 
 
 
 
 
 
 
 
 
c8208d7
5e1537b
 
 
 
 
 
 
 
 
 
 
 
 
 
90583bd
d1341c2
 
 
03dfccd
d1341c2
bceecd4
d1341c2
33eca92
 
 
 
 
e06a7a0
bceecd4
e06a7a0
 
 
bceecd4
e06a7a0
b6db833
e06a7a0
 
8b3b01c
e06a7a0
 
 
 
 
 
8b3b01c
 
 
 
 
 
 
 
 
 
 
 
 
e06a7a0
03dfccd
33eca92
ffb913a
3c3f1b5
ffb913a
abfe76a
0bee9e3
abfe76a
0bee9e3
 
 
abfe76a
 
607159b
 
 
 
02b500d
607159b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bceecd4
02b500d
607159b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bceecd4
607159b
 
 
 
 
 
 
 
 
 
 
 
 
 
bceecd4
 
02b500d
bceecd4
 
 
02b500d
bceecd4
02b500d
bceecd4
 
 
 
 
 
 
 
 
02b500d
bceecd4
 
 
 
 
 
 
 
 
 
 
 
 
 
02b500d
bceecd4
 
 
 
 
 
02b500d
bceecd4
 
 
 
 
 
 
 
570f425
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bceecd4
570f425
 
 
 
 
 
 
 
7b8ac1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bceecd4
7b8ac1f
 
 
 
 
 
 
 
 
3c3f1b5
05c25ae
3c3f1b5
 
 
11c7a1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c3f1b5
 
 
 
9a6635a
af7f5dd
3c3f1b5
 
 
bceecd4
3c3f1b5
 
 
bceecd4
3c3f1b5
 
02b500d
3c3f1b5
02b500d
3c3f1b5
 
 
11c7a1e
af7f5dd
11c7a1e
05c25ae
c6de7de
bceecd4
c6de7de
bceecd4
df22b26
c6de7de
 
bceecd4
df22b26
ba5302b
 
 
df22b26
c6de7de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bceecd4
ba5302b
df22b26
f0c9ea0
bceecd4
c6de7de
ba5302b
 
 
df22b26
c6de7de
 
 
 
df22b26
c6de7de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bceecd4
ba5302b
fe5faf4
c6de7de
f0c9ea0
11c7a1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6de7de
df22b26
bceecd4
1971f8d
fe5faf4
1971f8d
bceecd4
1971f8d
ba5302b
 
 
df22b26
1971f8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bceecd4
ba5302b
fe5faf4
1971f8d
bceecd4
1971f8d
 
ba5302b
 
df22b26
1971f8d
 
 
 
df22b26
1971f8d
 
 
 
 
 
 
 
 
 
 
 
 
bceecd4
ba5302b
fe5faf4
1971f8d
 
df22b26
ba5302b
 
 
df22b26
1971f8d
 
 
 
 
 
 
 
 
 
 
 
df22b26
1971f8d
 
bceecd4
ba5302b
1971f8d
 
bceecd4
1971f8d
ba5302b
 
 
df22b26
1971f8d
 
 
 
df22b26
1971f8d
 
 
 
 
 
bceecd4
ba5302b
9410eb7
1a15656
 
 
 
 
 
 
 
 
 
925700e
 
 
 
 
 
 
 
6f28f12
c6de7de
146956b
c6de7de
df22b26
c6de7de
 
 
 
 
 
 
bceecd4
6f28f12
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
<center><h2>🚀 LightRAG: Simple and Fast Retrieval-Augmented Generation</h2></center>
<div align="center">
<table border="0" width="100%">
<tr>
<td width="100" align="center">
<img src="./assets/logo.png" width="80" height="80" alt="lightrag">
</td>
<td>
<div>
    <p>
        <a href='https://lightrag.github.io'><img src='https://img.shields.io/badge/Project-Page-Green'></a>
        <a href='https://youtu.be/oageL-1I0GE'><img src='https://badges.aleen42.com/src/youtube.svg'></a>
        <a href='https://arxiv.org/abs/2410.05779'><img src='https://img.shields.io/badge/arXiv-2410.05779-b31b1b'></a>
        <a href='https://learnopencv.com/lightrag'><img src='https://img.shields.io/badge/LearnOpenCV-blue'></a>
    </p>
    <p>
        <img src='https://img.shields.io/github/stars/hkuds/lightrag?color=green&style=social' />
        <img src="https://img.shields.io/badge/python-3.10-blue">
        <a href="https://pypi.org/project/lightrag-hku/"><img src="https://img.shields.io/pypi/v/lightrag-hku.svg"></a>
        <a href="https://pepy.tech/project/lightrag-hku"><img src="https://static.pepy.tech/badge/lightrag-hku/month"></a>
    </p>
    <p>
        <a href='https://discord.gg/yF2MmDJyGJ'><img src='https://discordapp.com/api/guilds/1296348098003734629/widget.png?style=shield'></a>
        <a href='https://github.com/HKUDS/LightRAG/issues/285'><img src='https://img.shields.io/badge/群聊-wechat-green'></a>
    </p>
</div>
</td>
</tr>
</table>

<img src="./README.assets/b2aaf634151b4706892693ffb43d9093.png" width="800" alt="LightRAG Diagram">

</div>

## 🎉 News

- [X] [2025.03.18]🎯📢LightRAG now supports citation functionality.
- [X] [2025.02.05]🎯📢Our team has released [VideoRAG](https://github.com/HKUDS/VideoRAG) understanding extremely long-context videos.
- [X] [2025.01.13]🎯📢Our team has released [MiniRAG](https://github.com/HKUDS/MiniRAG) making RAG simpler with small models.
- [X] [2025.01.06]🎯📢You can now [use PostgreSQL for Storage](#using-postgresql-for-storage).
- [X] [2024.12.31]🎯📢LightRAG now supports [deletion by document ID](https://github.com/HKUDS/LightRAG?tab=readme-ov-file#delete).
- [X] [2024.11.25]🎯📢LightRAG now supports seamless integration of [custom knowledge graphs](https://github.com/HKUDS/LightRAG?tab=readme-ov-file#insert-custom-kg), empowering users to enhance the system with their own domain expertise.
- [X] [2024.11.19]🎯📢A comprehensive guide to LightRAG is now available on [LearnOpenCV](https://learnopencv.com/lightrag). Many thanks to the blog author.
- [X] [2024.11.12]🎯📢LightRAG now supports [Oracle Database 23ai for all storage types (KV, vector, and graph)](https://github.com/HKUDS/LightRAG/blob/main/examples/lightrag_oracle_demo.py).
- [X] [2024.11.11]🎯📢LightRAG now supports [deleting entities by their names](https://github.com/HKUDS/LightRAG?tab=readme-ov-file#delete).
- [X] [2024.11.09]🎯📢Introducing the [LightRAG Gui](https://lightrag-gui.streamlit.app), which allows you to insert, query, visualize, and download LightRAG knowledge.
- [X] [2024.11.04]🎯📢You can now [use Neo4J for Storage](https://github.com/HKUDS/LightRAG?tab=readme-ov-file#using-neo4j-for-storage).
- [X] [2024.10.29]🎯📢LightRAG now supports multiple file types, including PDF, DOC, PPT, and CSV via `textract`.
- [X] [2024.10.20]🎯📢We've added a new feature to LightRAG: Graph Visualization.
- [X] [2024.10.18]🎯📢We've added a link to a [LightRAG Introduction Video](https://youtu.be/oageL-1I0GE). Thanks to the author!
- [X] [2024.10.17]🎯📢We have created a [Discord channel](https://discord.gg/yF2MmDJyGJ)! Welcome to join for sharing and discussions! 🎉🎉
- [X] [2024.10.16]🎯📢LightRAG now supports [Ollama models](https://github.com/HKUDS/LightRAG?tab=readme-ov-file#quick-start)!
- [X] [2024.10.15]🎯📢LightRAG now supports [Hugging Face models](https://github.com/HKUDS/LightRAG?tab=readme-ov-file#quick-start)!

<details>
  <summary style="font-size: 1.4em; font-weight: bold; cursor: pointer; display: list-item;">
    Algorithm Flowchart
  </summary>

![LightRAG Indexing Flowchart](https://learnopencv.com/wp-content/uploads/2024/11/LightRAG-VectorDB-Json-KV-Store-Indexing-Flowchart-scaled.jpg)
*Figure 1: LightRAG Indexing Flowchart - Img Caption : [Source](https://learnopencv.com/lightrag/)*
![LightRAG Retrieval and Querying Flowchart](https://learnopencv.com/wp-content/uploads/2024/11/LightRAG-Querying-Flowchart-Dual-Level-Retrieval-Generation-Knowledge-Graphs-scaled.jpg)
*Figure 2: LightRAG Retrieval and Querying Flowchart - Img Caption : [Source](https://learnopencv.com/lightrag/)*

</details>

## Installation

### Install  LightRAG Core

* Install from source (Recommend)

```bash
cd LightRAG
pip install -e .
```

* Install from PyPI

```bash
pip install lightrag-hku
```

### Install LightRAG Server

The LightRAG Server is designed to provide Web UI and API support. The Web UI facilitates document indexing, knowledge graph exploration, and a simple RAG query interface. LightRAG Server also provide an Ollama compatible interfaces, aiming to emulate LightRAG as an Ollama chat model. This allows AI chat bot, such as Open WebUI, to access LightRAG easily.

* Install from PyPI

```bash
pip install "lightrag-hku[api]"
```

* Installation from Source

```bash
# create a Python virtual enviroment if neccesary
# Install in editable mode with API support
pip install -e ".[api]"
```

**For more information about LightRAG Server, please refer to [LightRAG Server](./lightrag/api/README.md).**

## Quick Start

* [Video demo](https://www.youtube.com/watch?v=g21royNJ4fw) of running LightRAG locally.
* All the code can be found in the `examples`.
* Set OpenAI API key in environment if using OpenAI models: `export OPENAI_API_KEY="sk-...".`
* Download the demo text "A Christmas Carol by Charles Dickens":

```bash
curl https://raw.githubusercontent.com/gusye1234/nano-graphrag/main/tests/mock_data.txt > ./book.txt
```

## Query

Use the below Python snippet (in a script) to initialize LightRAG and perform queries:

```python
import os
import asyncio
from lightrag import LightRAG, QueryParam
from lightrag.llm.openai import gpt_4o_mini_complete, gpt_4o_complete, openai_embed
from lightrag.kg.shared_storage import initialize_pipeline_status
from lightrag.utils import setup_logger

setup_logger("lightrag", level="INFO")

async def initialize_rag():
    rag = LightRAG(
        working_dir="your/path",
        embedding_func=openai_embed,
        llm_model_func=gpt_4o_mini_complete
    )

    await rag.initialize_storages()
    await initialize_pipeline_status()

    return rag

def main():
    # Initialize RAG instance
    rag = asyncio.run(initialize_rag())
    # Insert text
    rag.insert("Your text")

    # Perform naive search
    mode="naive"
    # Perform local search
    mode="local"
    # Perform global search
    mode="global"
    # Perform hybrid search
    mode="hybrid"
    # Mix mode Integrates knowledge graph and vector retrieval.
    mode="mix"

    rag.query(
        "What are the top themes in this story?",
        param=QueryParam(mode=mode)
    )

if __name__ == "__main__":
    main()
```

### Query Param

```python
class QueryParam:
    mode: Literal["local", "global", "hybrid", "naive", "mix"] = "global"
    """Specifies the retrieval mode:
    - "local": Focuses on context-dependent information.
    - "global": Utilizes global knowledge.
    - "hybrid": Combines local and global retrieval methods.
    - "naive": Performs a basic search without advanced techniques.
    - "mix": Integrates knowledge graph and vector retrieval. Mix mode combines knowledge graph and vector search:
        - Uses both structured (KG) and unstructured (vector) information
        - Provides comprehensive answers by analyzing relationships and context
        - Supports image content through HTML img tags
        - Allows control over retrieval depth via top_k parameter
    """
    only_need_context: bool = False
    """If True, only returns the retrieved context without generating a response."""
    response_type: str = "Multiple Paragraphs"
    """Defines the response format. Examples: 'Multiple Paragraphs', 'Single Paragraph', 'Bullet Points'."""
    top_k: int = 60
    """Number of top items to retrieve. Represents entities in 'local' mode and relationships in 'global' mode."""
    max_token_for_text_unit: int = 4000
    """Maximum number of tokens allowed for each retrieved text chunk."""
    max_token_for_global_context: int = 4000
    """Maximum number of tokens allocated for relationship descriptions in global retrieval."""
    max_token_for_local_context: int = 4000
    """Maximum number of tokens allocated for entity descriptions in local retrieval."""
    ids: list[str] | None = None # ONLY SUPPORTED FOR PG VECTOR DBs
    """List of ids to filter the RAG."""
    model_func: Callable[..., object] | None = None
    """Optional override for the LLM model function to use for this specific query.
    If provided, this will be used instead of the global model function.
    This allows using different models for different query modes.
    """
    ...
```

> default value of Top_k can be change by environment  variables  TOP_K.

### LLM and Embedding Injection

LightRAG requires the utilization of LLM and Embedding models to accomplish document indexing and querying tasks. During the initialization phase, it is necessary to inject the invocation methods of the relevant models into LightRAG:

<details>
<summary> <b>Using Open AI-like APIs</b> </summary>

* LightRAG also supports Open AI-like chat/embeddings APIs:

```python
async def llm_model_func(
    prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
) -> str:
    return await openai_complete_if_cache(
        "solar-mini",
        prompt,
        system_prompt=system_prompt,
        history_messages=history_messages,
        api_key=os.getenv("UPSTAGE_API_KEY"),
        base_url="https://api.upstage.ai/v1/solar",
        **kwargs
    )

async def embedding_func(texts: list[str]) -> np.ndarray:
    return await openai_embed(
        texts,
        model="solar-embedding-1-large-query",
        api_key=os.getenv("UPSTAGE_API_KEY"),
        base_url="https://api.upstage.ai/v1/solar"
    )

async def initialize_rag():
    rag = LightRAG(
        working_dir=WORKING_DIR,
        llm_model_func=llm_model_func,
        embedding_func=EmbeddingFunc(
            embedding_dim=4096,
            max_token_size=8192,
            func=embedding_func
        )
    )

    await rag.initialize_storages()
    await initialize_pipeline_status()

    return rag
```

</details>

<details>
<summary> <b>Using Hugging Face Models</b> </summary>

* If you want to use Hugging Face models, you only need to set LightRAG as follows:

See `lightrag_hf_demo.py`

```python
# Initialize LightRAG with Hugging Face model
rag = LightRAG(
    working_dir=WORKING_DIR,
    llm_model_func=hf_model_complete,  # Use Hugging Face model for text generation
    llm_model_name='meta-llama/Llama-3.1-8B-Instruct',  # Model name from Hugging Face
    # Use Hugging Face embedding function
    embedding_func=EmbeddingFunc(
        embedding_dim=384,
        max_token_size=5000,
        func=lambda texts: hf_embed(
            texts,
            tokenizer=AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2"),
            embed_model=AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
        )
    ),
)
```

</details>

<details>
<summary> <b>Using Ollama Models</b> </summary>
**Overview**

If you want to use Ollama models, you need to pull model you plan to use and embedding model, for example `nomic-embed-text`.

Then you only need to set LightRAG as follows:

```python
# Initialize LightRAG with Ollama model
rag = LightRAG(
    working_dir=WORKING_DIR,
    llm_model_func=ollama_model_complete,  # Use Ollama model for text generation
    llm_model_name='your_model_name', # Your model name
    # Use Ollama embedding function
    embedding_func=EmbeddingFunc(
        embedding_dim=768,
        max_token_size=8192,
        func=lambda texts: ollama_embed(
            texts,
            embed_model="nomic-embed-text"
        )
    ),
)
```

* **Increasing context size**

In order for LightRAG to work context should be at least 32k tokens. By default Ollama models have context size of 8k. You can achieve this using one of two ways:

* **Increasing the `num_ctx` parameter in Modelfile**

1. Pull the model:

```bash
ollama pull qwen2
```

2. Display the model file:

```bash
ollama show --modelfile qwen2 > Modelfile
```

3. Edit the Modelfile by adding the following line:

```bash
PARAMETER num_ctx 32768
```

4. Create the modified model:

```bash
ollama create -f Modelfile qwen2m
```

* **Setup `num_ctx` via Ollama API**

Tiy can use `llm_model_kwargs` param to configure ollama:

```python
rag = LightRAG(
    working_dir=WORKING_DIR,
    llm_model_func=ollama_model_complete,  # Use Ollama model for text generation
    llm_model_name='your_model_name', # Your model name
    llm_model_kwargs={"options": {"num_ctx": 32768}},
    # Use Ollama embedding function
    embedding_func=EmbeddingFunc(
        embedding_dim=768,
        max_token_size=8192,
        func=lambda texts: ollama_embedding(
            texts,
            embed_model="nomic-embed-text"
        )
    ),
)
```

* **Low RAM GPUs**

In order to run this experiment on low RAM GPU you should select small model and tune context window (increasing context increase memory consumption). For example, running this ollama example on repurposed mining GPU with 6Gb of RAM required to set context size to 26k while using `gemma2:2b`. It was able to find 197 entities and 19 relations on `book.txt`.

</details>
<details>
<summary> <b>LlamaIndex</b> </summary>

LightRAG supports integration with LlamaIndex (`llm/llama_index_impl.py`):

- Integrates with OpenAI and other providers through LlamaIndex
- See [LlamaIndex Documentation](lightrag/llm/Readme.md) for detailed setup and examples

**Example Usage**

```python
# Using LlamaIndex with direct OpenAI access
import asyncio
from lightrag import LightRAG
from lightrag.llm.llama_index_impl import llama_index_complete_if_cache, llama_index_embed
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.llms.openai import OpenAI
from lightrag.kg.shared_storage import initialize_pipeline_status
from lightrag.utils import setup_logger

# Setup log handler for LightRAG
setup_logger("lightrag", level="INFO")

async def initialize_rag():
    rag = LightRAG(
        working_dir="your/path",
        llm_model_func=llama_index_complete_if_cache,  # LlamaIndex-compatible completion function
        embedding_func=EmbeddingFunc(    # LlamaIndex-compatible embedding function
            embedding_dim=1536,
            max_token_size=8192,
            func=lambda texts: llama_index_embed(texts, embed_model=embed_model)
        ),
    )

    await rag.initialize_storages()
    await initialize_pipeline_status()

    return rag

def main():
    # Initialize RAG instance
    rag = asyncio.run(initialize_rag())

    with open("./book.txt", "r", encoding="utf-8") as f:
        rag.insert(f.read())

    # Perform naive search
    print(
        rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
    )

    # Perform local search
    print(
        rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
    )

    # Perform global search
    print(
        rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
    )

    # Perform hybrid search
    print(
        rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
    )

if __name__ == "__main__":
    main()
```

**For detailed documentation and examples, see:**

- [LlamaIndex Documentation](lightrag/llm/Readme.md)
- [Direct OpenAI Example](examples/lightrag_llamaindex_direct_demo.py)
- [LiteLLM Proxy Example](examples/lightrag_llamaindex_litellm_demo.py)

### Conversation History Support


LightRAG now supports multi-turn dialogue through the conversation history feature. Here's how to use it:

```python
# Create conversation history
conversation_history = [
    {"role": "user", "content": "What is the main character's attitude towards Christmas?"},
    {"role": "assistant", "content": "At the beginning of the story, Ebenezer Scrooge has a very negative attitude towards Christmas..."},
    {"role": "user", "content": "How does his attitude change?"}
]

# Create query parameters with conversation history
query_param = QueryParam(
    mode="mix",  # or any other mode: "local", "global", "hybrid"
    conversation_history=conversation_history,  # Add the conversation history
    history_turns=3  # Number of recent conversation turns to consider
)

# Make a query that takes into account the conversation history
response = rag.query(
    "What causes this change in his character?",
    param=query_param
)
```

### Custom Prompt Support

LightRAG now supports custom prompts for fine-tuned control over the system's behavior. Here's how to use it:

```python
# Create query parameters
query_param = QueryParam(
    mode="hybrid",  # or other mode: "local", "global", "hybrid", "mix" and "naive"
)

# Example 1: Using the default system prompt
response_default = rag.query(
    "What are the primary benefits of renewable energy?",
    param=query_param
)
print(response_default)

# Example 2: Using a custom prompt
custom_prompt = """
You are an expert assistant in environmental science. Provide detailed and structured answers with examples.
---Conversation History---
{history}

---Knowledge Base---
{context_data}

---Response Rules---

- Target format and length: {response_type}
"""
response_custom = rag.query(
    "What are the primary benefits of renewable energy?",
    param=query_param,
    system_prompt=custom_prompt  # Pass the custom prompt
)
print(response_custom)
```

### Separate Keyword Extraction

We've introduced a new function `query_with_separate_keyword_extraction` to enhance the keyword extraction capabilities. This function separates the keyword extraction process from the user's prompt, focusing solely on the query to improve the relevance of extracted keywords.

**How It Works?**

The function operates by dividing the input into two parts:

- `User Query`
- `Prompt`

It then performs keyword extraction exclusively on the `user query`. This separation ensures that the extraction process is focused and relevant, unaffected by any additional language in the `prompt`. It also allows the `prompt` to serve purely for response formatting, maintaining the intent and clarity of the user's original question.

**Usage Example**

This `example` shows how to tailor the function for educational content, focusing on detailed explanations for older students.

```python
rag.query_with_separate_keyword_extraction(
    query="Explain the law of gravity",
    prompt="Provide a detailed explanation suitable for high school students studying physics.",
    param=QueryParam(mode="hybrid")
)
```

### Insert Custom KG

```python
custom_kg = {
    "chunks": [
        {
            "content": "Alice and Bob are collaborating on quantum computing research.",
            "source_id": "doc-1"
        }
    ],
    "entities": [
        {
            "entity_name": "Alice",
            "entity_type": "person",
            "description": "Alice is a researcher specializing in quantum physics.",
            "source_id": "doc-1"
        },
        {
            "entity_name": "Bob",
            "entity_type": "person",
            "description": "Bob is a mathematician.",
            "source_id": "doc-1"
        },
        {
            "entity_name": "Quantum Computing",
            "entity_type": "technology",
            "description": "Quantum computing utilizes quantum mechanical phenomena for computation.",
            "source_id": "doc-1"
        }
    ],
    "relationships": [
        {
            "src_id": "Alice",
            "tgt_id": "Bob",
            "description": "Alice and Bob are research partners.",
            "keywords": "collaboration research",
            "weight": 1.0,
            "source_id": "doc-1"
        },
        {
            "src_id": "Alice",
            "tgt_id": "Quantum Computing",
            "description": "Alice conducts research on quantum computing.",
            "keywords": "research expertise",
            "weight": 1.0,
            "source_id": "doc-1"
        },
        {
            "src_id": "Bob",
            "tgt_id": "Quantum Computing",
            "description": "Bob researches quantum computing.",
            "keywords": "research application",
            "weight": 1.0,
            "source_id": "doc-1"
        }
    ]
}

rag.insert_custom_kg(custom_kg)
```

</details>

## Insert

<details>
  <summary> <b> Basic Insert </b></summary>

```python
# Basic Insert
rag.insert("Text")
```

</details>

<details>
  <summary> <b> Batch Insert </b></summary>

```python
# Basic Batch Insert: Insert multiple texts at once
rag.insert(["TEXT1", "TEXT2",...])

# Batch Insert with custom batch size configuration
rag = LightRAG(
    working_dir=WORKING_DIR,
    addon_params={
        "insert_batch_size": 4  # Process 4 documents per batch
    }
)

rag.insert(["TEXT1", "TEXT2", "TEXT3", ...])  # Documents will be processed in batches of 4
```

The `insert_batch_size` parameter in `addon_params` controls how many documents are processed in each batch during insertion. This is useful for:

- Managing memory usage with large document collections
- Optimizing processing speed
- Providing better progress tracking
- Default value is 10 if not specified

</details>

<details>
  <summary> <b> Insert with ID </b></summary>

If you want to provide your own IDs for your documents, number of documents and number of IDs must be the same.

```python
# Insert single text, and provide ID for it
rag.insert("TEXT1", ids=["ID_FOR_TEXT1"])

# Insert multiple texts, and provide IDs for them
rag.insert(["TEXT1", "TEXT2",...], ids=["ID_FOR_TEXT1", "ID_FOR_TEXT2"])
```

</details>

<details>
  <summary><b>Insert using Pipeline</b></summary>

The `apipeline_enqueue_documents` and `apipeline_process_enqueue_documents` functions allow you to perform incremental insertion of documents into the graph.

This is useful for scenarios where you want to process documents in the background while still allowing the main thread to continue executing.

And using a routine to process news documents.

```python
rag = LightRAG(..)

await rag.apipeline_enqueue_documents(input)
# Your routine in loop
await rag.apipeline_process_enqueue_documents(input)
```

</details>

<details>
  <summary><b>Insert Multi-file Type Support</b></summary>

The `textract` supports reading file types such as TXT, DOCX, PPTX, CSV, and PDF.

```python
import textract

file_path = 'TEXT.pdf'
text_content = textract.process(file_path)

rag.insert(text_content.decode('utf-8'))
```

</details>

<details>
  <summary><b>Citation Functionality</b></summary>

By providing file paths, the system ensures that sources can be traced back to their original documents.

```python
# Define documents and their file paths
documents = ["Document content 1", "Document content 2"]
file_paths = ["path/to/doc1.txt", "path/to/doc2.txt"]

# Insert documents with file paths
rag.insert(documents, file_paths=file_paths)
```

</details>

## Storage

<details>
<summary> <b>Using Neo4J for Storage</b> </summary>

* For production level scenarios you will most likely want to leverage an enterprise solution
* for KG storage. Running Neo4J in Docker is recommended for seamless local testing.
* See: https://hub.docker.com/_/neo4j

```python
export NEO4J_URI="neo4j://localhost:7687"
export NEO4J_USERNAME="neo4j"
export NEO4J_PASSWORD="password"

# Setup logger for LightRAG
setup_logger("lightrag", level="INFO")

# When you launch the project be sure to override the default KG: NetworkX
# by specifying kg="Neo4JStorage".

# Note: Default settings use NetworkX
# Initialize LightRAG with Neo4J implementation.
async def initialize_rag():
    rag = LightRAG(
        working_dir=WORKING_DIR,
        llm_model_func=gpt_4o_mini_complete,  # Use gpt_4o_mini_complete LLM model
        graph_storage="Neo4JStorage", #<-----------override KG default
    )

    # Initialize database connections
    await rag.initialize_storages()
    # Initialize pipeline status for document processing
    await initialize_pipeline_status()

    return rag
```

see test_neo4j.py for a working example.

</details>

<details>
<summary> <b>Using PostgreSQL for Storage</b> </summary>

For production level scenarios you will most likely want to leverage an enterprise solution. PostgreSQL can provide a one-stop solution for you as KV store, VectorDB (pgvector) and GraphDB (apache AGE).

* PostgreSQL is lightweight,the whole binary distribution including all necessary plugins can be zipped to 40MB: Ref to [Windows Release](https://github.com/ShanGor/apache-age-windows/releases/tag/PG17%2Fv1.5.0-rc0) as it is easy to install for Linux/Mac.
* If you prefer docker, please start with this image if you are a beginner to avoid hiccups (DO read the overview): https://hub.docker.com/r/shangor/postgres-for-rag
* How to start? Ref to: [examples/lightrag_zhipu_postgres_demo.py](https://github.com/HKUDS/LightRAG/blob/main/examples/lightrag_zhipu_postgres_demo.py)
* Create index for AGE example: (Change below `dickens` to your graph name if necessary)
  ```sql
  load 'age';
  SET search_path = ag_catalog, "$user", public;
  CREATE INDEX CONCURRENTLY entity_p_idx ON dickens."Entity" (id);
  CREATE INDEX CONCURRENTLY vertex_p_idx ON dickens."_ag_label_vertex" (id);
  CREATE INDEX CONCURRENTLY directed_p_idx ON dickens."DIRECTED" (id);
  CREATE INDEX CONCURRENTLY directed_eid_idx ON dickens."DIRECTED" (end_id);
  CREATE INDEX CONCURRENTLY directed_sid_idx ON dickens."DIRECTED" (start_id);
  CREATE INDEX CONCURRENTLY directed_seid_idx ON dickens."DIRECTED" (start_id,end_id);
  CREATE INDEX CONCURRENTLY edge_p_idx ON dickens."_ag_label_edge" (id);
  CREATE INDEX CONCURRENTLY edge_sid_idx ON dickens."_ag_label_edge" (start_id);
  CREATE INDEX CONCURRENTLY edge_eid_idx ON dickens."_ag_label_edge" (end_id);
  CREATE INDEX CONCURRENTLY edge_seid_idx ON dickens."_ag_label_edge" (start_id,end_id);
  create INDEX CONCURRENTLY vertex_idx_node_id ON dickens."_ag_label_vertex" (ag_catalog.agtype_access_operator(properties, '"node_id"'::agtype));
  create INDEX CONCURRENTLY entity_idx_node_id ON dickens."Entity" (ag_catalog.agtype_access_operator(properties, '"node_id"'::agtype));
  CREATE INDEX CONCURRENTLY entity_node_id_gin_idx ON dickens."Entity" using gin(properties);
  ALTER TABLE dickens."DIRECTED" CLUSTER ON directed_sid_idx;

  -- drop if necessary
  drop INDEX entity_p_idx;
  drop INDEX vertex_p_idx;
  drop INDEX directed_p_idx;
  drop INDEX directed_eid_idx;
  drop INDEX directed_sid_idx;
  drop INDEX directed_seid_idx;
  drop INDEX edge_p_idx;
  drop INDEX edge_sid_idx;
  drop INDEX edge_eid_idx;
  drop INDEX edge_seid_idx;
  drop INDEX vertex_idx_node_id;
  drop INDEX entity_idx_node_id;
  drop INDEX entity_node_id_gin_idx;
  ```
* Known issue of the Apache AGE: The released versions got below issue:
  > You might find that the properties of the nodes/edges are empty.
  > It is a known issue of the release version: https://github.com/apache/age/pull/1721
  >
  > You can Compile the AGE from source code and fix it.
  >

</details>

<details>
<summary> <b>Using Faiss for Storage</b> </summary>

- Install the required dependencies:

```
pip install faiss-cpu
```

You can also install `faiss-gpu` if you have GPU support.

- Here we are using `sentence-transformers` but you can also use `OpenAIEmbedding` model with `3072` dimensions.

```python
async def embedding_func(texts: list[str]) -> np.ndarray:
    model = SentenceTransformer('all-MiniLM-L6-v2')
    embeddings = model.encode(texts, convert_to_numpy=True)
    return embeddings

# Initialize LightRAG with the LLM model function and embedding function
rag = LightRAG(
    working_dir=WORKING_DIR,
    llm_model_func=llm_model_func,
    embedding_func=EmbeddingFunc(
        embedding_dim=384,
        max_token_size=8192,
        func=embedding_func,
    ),
    vector_storage="FaissVectorDBStorage",
    vector_db_storage_cls_kwargs={
        "cosine_better_than_threshold": 0.3  # Your desired threshold
    }
)
```

</details>

## Delete

```python
#  Delete Entity: Deleting entities by their names
rag.delete_by_entity("Project Gutenberg")

#  Delete Document: Deleting entities and relationships associated with the document by doc id
rag.delete_by_doc_id("doc_id")
```

## Edit Entities and Relations

LightRAG now supports comprehensive knowledge graph management capabilities, allowing you to create, edit, and delete entities and relationships within your knowledge graph.

### Create Entities and Relations

```python
# Create new entity
entity = rag.create_entity("Google", {
    "description": "Google is a multinational technology company specializing in internet-related services and products.",
    "entity_type": "company"
})

# Create another entity
product = rag.create_entity("Gmail", {
    "description": "Gmail is an email service developed by Google.",
    "entity_type": "product"
})

# Create relation between entities
relation = rag.create_relation("Google", "Gmail", {
    "description": "Google develops and operates Gmail.",
    "keywords": "develops operates service",
    "weight": 2.0
})
```

### Edit Entities and Relations

```python
# Edit an existing entity
updated_entity = rag.edit_entity("Google", {
    "description": "Google is a subsidiary of Alphabet Inc., founded in 1998.",
    "entity_type": "tech_company"
})

# Rename an entity (with all its relationships properly migrated)
renamed_entity = rag.edit_entity("Gmail", {
    "entity_name": "Google Mail",
    "description": "Google Mail (formerly Gmail) is an email service."
})

# Edit a relation between entities
updated_relation = rag.edit_relation("Google", "Google Mail", {
    "description": "Google created and maintains Google Mail service.",
    "keywords": "creates maintains email service",
    "weight": 3.0
})
```

All operations are available in both synchronous and asynchronous versions. The asynchronous versions have the prefix "a" (e.g., `acreate_entity`, `aedit_relation`).

#### Entity Operations

- **create_entity**: Creates a new entity with specified attributes
- **edit_entity**: Updates an existing entity's attributes or renames it

#### Relation Operations

- **create_relation**: Creates a new relation between existing entities
- **edit_relation**: Updates an existing relation's attributes

These operations maintain data consistency across both the graph database and vector database components, ensuring your knowledge graph remains coherent.

## Data Export Functions

### Overview

LightRAG allows you to export your knowledge graph data in various formats for analysis, sharing, and backup purposes. The system supports exporting entities, relations, and relationship data.

### Export Functions

#### Basic Usage

```python
# Basic CSV export (default format)
rag.export_data("knowledge_graph.csv")

# Specify any format
rag.export_data("output.xlsx", file_format="excel")
```

#### Different File Formats supported

```python
#Export data in CSV format
rag.export_data("graph_data.csv", file_format="csv")

# Export data in Excel sheet
rag.export_data("graph_data.xlsx", file_format="excel")

# Export data in markdown format
rag.export_data("graph_data.md", file_format="md")

# Export data in Text
rag.export_data("graph_data.txt", file_format="txt")
```
#### Additional Options

Include vector embeddings in the export (optional):

```python
rag.export_data("complete_data.csv", include_vector_data=True)
```
### Data Included in Export

All exports include:

* Entity information (names, IDs, metadata)
* Relation data (connections between entities)
* Relationship information from vector database


## Entity Merging

<details>
<summary> <b>Merge Entities and Their Relationships</b> </summary>

LightRAG now supports merging multiple entities into a single entity, automatically handling all relationships:

```python
# Basic entity merging
rag.merge_entities(
    source_entities=["Artificial Intelligence", "AI", "Machine Intelligence"],
    target_entity="AI Technology"
)
```

With custom merge strategy:

```python
# Define custom merge strategy for different fields
rag.merge_entities(
    source_entities=["John Smith", "Dr. Smith", "J. Smith"],
    target_entity="John Smith",
    merge_strategy={
        "description": "concatenate",  # Combine all descriptions
        "entity_type": "keep_first",   # Keep the entity type from the first entity
        "source_id": "join_unique"     # Combine all unique source IDs
    }
)
```

With custom target entity data:

```python
# Specify exact values for the merged entity
rag.merge_entities(
    source_entities=["New York", "NYC", "Big Apple"],
    target_entity="New York City",
    target_entity_data={
        "entity_type": "LOCATION",
        "description": "New York City is the most populous city in the United States.",
    }
)
```

Advanced usage combining both approaches:

```python
# Merge company entities with both strategy and custom data
rag.merge_entities(
    source_entities=["Microsoft Corp", "Microsoft Corporation", "MSFT"],
    target_entity="Microsoft",
    merge_strategy={
        "description": "concatenate",  # Combine all descriptions
        "source_id": "join_unique"     # Combine source IDs
    },
    target_entity_data={
        "entity_type": "ORGANIZATION",
    }
)
```

When merging entities:

* All relationships from source entities are redirected to the target entity
* Duplicate relationships are intelligently merged
* Self-relationships (loops) are prevented
* Source entities are removed after merging
* Relationship weights and attributes are preserved

</details>

## Cache

<details>
  <summary> <b>Clear Cache</b> </summary>

You can clear the LLM response cache with different modes:

```python
# Clear all cache
await rag.aclear_cache()

# Clear local mode cache
await rag.aclear_cache(modes=["local"])

# Clear extraction cache
await rag.aclear_cache(modes=["default"])

# Clear multiple modes
await rag.aclear_cache(modes=["local", "global", "hybrid"])

# Synchronous version
rag.clear_cache(modes=["local"])
```

Valid modes are:

- `"default"`: Extraction cache
- `"naive"`: Naive search cache
- `"local"`: Local search cache
- `"global"`: Global search cache
- `"hybrid"`: Hybrid search cache
- `"mix"`: Mix search cache

</details>

## LightRAG init parameters

<details>
<summary> Parameters </summary>

| **Parameter** | **Type** | **Explanation** | **Default** |
|--------------|----------|-----------------|-------------|
| **working_dir** | `str` | Directory where the cache will be stored | `lightrag_cache+timestamp` |
| **kv_storage** | `str` | Storage type for documents and text chunks. Supported types: `JsonKVStorage`, `OracleKVStorage` | `JsonKVStorage` |
| **vector_storage** | `str` | Storage type for embedding vectors. Supported types: `NanoVectorDBStorage`, `OracleVectorDBStorage` | `NanoVectorDBStorage` |
| **graph_storage** | `str` | Storage type for graph edges and nodes. Supported types: `NetworkXStorage`, `Neo4JStorage`, `OracleGraphStorage` | `NetworkXStorage` |
| **chunk_token_size** | `int` | Maximum token size per chunk when splitting documents | `1200` |
| **chunk_overlap_token_size** | `int` | Overlap token size between two chunks when splitting documents | `100` |
| **tiktoken_model_name** | `str` | Model name for the Tiktoken encoder used to calculate token numbers | `gpt-4o-mini` |
| **entity_extract_max_gleaning** | `int` | Number of loops in the entity extraction process, appending history messages | `1` |
| **entity_summary_to_max_tokens** | `int` | Maximum token size for each entity summary | `500` |
| **node_embedding_algorithm** | `str` | Algorithm for node embedding (currently not used) | `node2vec` |
| **node2vec_params** | `dict` | Parameters for node embedding | `{"dimensions": 1536,"num_walks": 10,"walk_length": 40,"window_size": 2,"iterations": 3,"random_seed": 3,}` |
| **embedding_func** | `EmbeddingFunc` | Function to generate embedding vectors from text | `openai_embed` |
| **embedding_batch_num** | `int` | Maximum batch size for embedding processes (multiple texts sent per batch) | `32` |
| **embedding_func_max_async** | `int` | Maximum number of concurrent asynchronous embedding processes | `16` |
| **llm_model_func** | `callable` | Function for LLM generation | `gpt_4o_mini_complete` |
| **llm_model_name** | `str` | LLM model name for generation | `meta-llama/Llama-3.2-1B-Instruct` |
| **llm_model_max_token_size** | `int` | Maximum token size for LLM generation (affects entity relation summaries) | `32768`(default value changed by env var MAX_TOKENS) |
| **llm_model_max_async** | `int` | Maximum number of concurrent asynchronous LLM processes | `4`(default value changed by env var MAX_ASYNC) |
| **llm_model_kwargs** | `dict` | Additional parameters for LLM generation | |
| **vector_db_storage_cls_kwargs** | `dict` | Additional parameters for vector database, like setting the threshold for nodes and relations retrieval | cosine_better_than_threshold: 0.2(default value changed by env var COSINE_THRESHOLD) |
| **enable_llm_cache** | `bool` | If `TRUE`, stores LLM results in cache; repeated prompts return cached responses | `TRUE` |
| **enable_llm_cache_for_entity_extract** | `bool` | If `TRUE`, stores LLM results in cache for entity extraction; Good for beginners to debug your application | `TRUE` |
| **addon_params** | `dict` | Additional parameters, e.g., `{"example_number": 1, "language": "Simplified Chinese", "entity_types": ["organization", "person", "geo", "event"], "insert_batch_size": 10}`: sets example limit, output language, and batch size for document processing | `example_number: all examples, language: English, insert_batch_size: 10` |
| **convert_response_to_json_func** | `callable` | Not used | `convert_response_to_json` |
| **embedding_cache_config** | `dict` | Configuration for question-answer caching. Contains three parameters: `enabled`: Boolean value to enable/disable cache lookup functionality. When enabled, the system will check cached responses before generating new answers. `similarity_threshold`: Float value (0-1), similarity threshold. When a new question's similarity with a cached question exceeds this threshold, the cached answer will be returned directly without calling the LLM. `use_llm_check`: Boolean value to enable/disable LLM similarity verification. When enabled, LLM will be used as a secondary check to verify the similarity between questions before returning cached answers. | Default: `{"enabled": False, "similarity_threshold": 0.95, "use_llm_check": False}` |

</details>

## Error Handling

<details>
<summary>Click to view error handling details</summary>

The API includes comprehensive error handling:

- File not found errors (404)
- Processing errors (500)
- Supports multiple file encodings (UTF-8 and GBK)

</details>

## LightRAG API

The LightRAG Server is designed to provide Web UI and API support.  **For more information about LightRAG Server, please refer to [LightRAG Server](./lightrag/api/README.md).**

## Graph Visualization

The LightRAG Server offers a comprehensive knowledge graph visualization feature. It supports various gravity layouts, node queries, subgraph filtering, and more. **For more information about LightRAG Server, please refer to [LightRAG Server](./lightrag/api/README.md).**

![iShot_2025-03-23_12.40.08](./README.assets/iShot_2025-03-23_12.40.08.png)

## Evaluation

### Dataset

The dataset used in LightRAG can be downloaded from [TommyChien/UltraDomain](https://huggingface.co/datasets/TommyChien/UltraDomain).

### Generate Query

LightRAG uses the following prompt to generate high-level queries, with the corresponding code in `example/generate_query.py`.

<details>
<summary> Prompt </summary>

```python
Given the following description of a dataset:

{description}

Please identify 5 potential users who would engage with this dataset. For each user, list 5 tasks they would perform with this dataset. Then, for each (user, task) combination, generate 5 questions that require a high-level understanding of the entire dataset.

Output the results in the following structure:
- User 1: [user description]
    - Task 1: [task description]
        - Question 1:
        - Question 2:
        - Question 3:
        - Question 4:
        - Question 5:
    - Task 2: [task description]
        ...
    - Task 5: [task description]
- User 2: [user description]
    ...
- User 5: [user description]
    ...
```

</details>

### Batch Eval

To evaluate the performance of two RAG systems on high-level queries, LightRAG uses the following prompt, with the specific code available in `example/batch_eval.py`.

<details>
<summary> Prompt </summary>

```python
---Role---
You are an expert tasked with evaluating two answers to the same question based on three criteria: **Comprehensiveness**, **Diversity**, and **Empowerment**.
---Goal---
You will evaluate two answers to the same question based on three criteria: **Comprehensiveness**, **Diversity**, and **Empowerment**.

- **Comprehensiveness**: How much detail does the answer provide to cover all aspects and details of the question?
- **Diversity**: How varied and rich is the answer in providing different perspectives and insights on the question?
- **Empowerment**: How well does the answer help the reader understand and make informed judgments about the topic?

For each criterion, choose the better answer (either Answer 1 or Answer 2) and explain why. Then, select an overall winner based on these three categories.

Here is the question:
{query}

Here are the two answers:

**Answer 1:**
{answer1}

**Answer 2:**
{answer2}

Evaluate both answers using the three criteria listed above and provide detailed explanations for each criterion.

Output your evaluation in the following JSON format:

{{
    "Comprehensiveness": {{
        "Winner": "[Answer 1 or Answer 2]",
        "Explanation": "[Provide explanation here]"
    }},
    "Empowerment": {{
        "Winner": "[Answer 1 or Answer 2]",
        "Explanation": "[Provide explanation here]"
    }},
    "Overall Winner": {{
        "Winner": "[Answer 1 or Answer 2]",
        "Explanation": "[Summarize why this answer is the overall winner based on the three criteria]"
    }}
}}
```

</details>

### Overall Performance Table

|                      |**Agriculture**|            |**CS**|            |**Legal**|            |**Mix**|            |
|----------------------|---------------|------------|------|------------|---------|------------|-------|------------|
|                      |NaiveRAG|**LightRAG**|NaiveRAG|**LightRAG**|NaiveRAG|**LightRAG**|NaiveRAG|**LightRAG**|
|**Comprehensiveness**|32.4%|**67.6%**|38.4%|**61.6%**|16.4%|**83.6%**|38.8%|**61.2%**|
|**Diversity**|23.6%|**76.4%**|38.0%|**62.0%**|13.6%|**86.4%**|32.4%|**67.6%**|
|**Empowerment**|32.4%|**67.6%**|38.8%|**61.2%**|16.4%|**83.6%**|42.8%|**57.2%**|
|**Overall**|32.4%|**67.6%**|38.8%|**61.2%**|15.2%|**84.8%**|40.0%|**60.0%**|
|                      |RQ-RAG|**LightRAG**|RQ-RAG|**LightRAG**|RQ-RAG|**LightRAG**|RQ-RAG|**LightRAG**|
|**Comprehensiveness**|31.6%|**68.4%**|38.8%|**61.2%**|15.2%|**84.8%**|39.2%|**60.8%**|
|**Diversity**|29.2%|**70.8%**|39.2%|**60.8%**|11.6%|**88.4%**|30.8%|**69.2%**|
|**Empowerment**|31.6%|**68.4%**|36.4%|**63.6%**|15.2%|**84.8%**|42.4%|**57.6%**|
|**Overall**|32.4%|**67.6%**|38.0%|**62.0%**|14.4%|**85.6%**|40.0%|**60.0%**|
|                      |HyDE|**LightRAG**|HyDE|**LightRAG**|HyDE|**LightRAG**|HyDE|**LightRAG**|
|**Comprehensiveness**|26.0%|**74.0%**|41.6%|**58.4%**|26.8%|**73.2%**|40.4%|**59.6%**|
|**Diversity**|24.0%|**76.0%**|38.8%|**61.2%**|20.0%|**80.0%**|32.4%|**67.6%**|
|**Empowerment**|25.2%|**74.8%**|40.8%|**59.2%**|26.0%|**74.0%**|46.0%|**54.0%**|
|**Overall**|24.8%|**75.2%**|41.6%|**58.4%**|26.4%|**73.6%**|42.4%|**57.6%**|
|                      |GraphRAG|**LightRAG**|GraphRAG|**LightRAG**|GraphRAG|**LightRAG**|GraphRAG|**LightRAG**|
|**Comprehensiveness**|45.6%|**54.4%**|48.4%|**51.6%**|48.4%|**51.6%**|**50.4%**|49.6%|
|**Diversity**|22.8%|**77.2%**|40.8%|**59.2%**|26.4%|**73.6%**|36.0%|**64.0%**|
|**Empowerment**|41.2%|**58.8%**|45.2%|**54.8%**|43.6%|**56.4%**|**50.8%**|49.2%|
|**Overall**|45.2%|**54.8%**|48.0%|**52.0%**|47.2%|**52.8%**|**50.4%**|49.6%|

## Reproduce

All the code can be found in the `./reproduce` directory.

### Step-0 Extract Unique Contexts

First, we need to extract unique contexts in the datasets.

<details>
<summary> Code </summary>

```python
def extract_unique_contexts(input_directory, output_directory):

    os.makedirs(output_directory, exist_ok=True)

    jsonl_files = glob.glob(os.path.join(input_directory, '*.jsonl'))
    print(f"Found {len(jsonl_files)} JSONL files.")

    for file_path in jsonl_files:
        filename = os.path.basename(file_path)
        name, ext = os.path.splitext(filename)
        output_filename = f"{name}_unique_contexts.json"
        output_path = os.path.join(output_directory, output_filename)

        unique_contexts_dict = {}

        print(f"Processing file: {filename}")

        try:
            with open(file_path, 'r', encoding='utf-8') as infile:
                for line_number, line in enumerate(infile, start=1):
                    line = line.strip()
                    if not line:
                        continue
                    try:
                        json_obj = json.loads(line)
                        context = json_obj.get('context')
                        if context and context not in unique_contexts_dict:
                            unique_contexts_dict[context] = None
                    except json.JSONDecodeError as e:
                        print(f"JSON decoding error in file {filename} at line {line_number}: {e}")
        except FileNotFoundError:
            print(f"File not found: {filename}")
            continue
        except Exception as e:
            print(f"An error occurred while processing file {filename}: {e}")
            continue

        unique_contexts_list = list(unique_contexts_dict.keys())
        print(f"There are {len(unique_contexts_list)} unique `context` entries in the file {filename}.")

        try:
            with open(output_path, 'w', encoding='utf-8') as outfile:
                json.dump(unique_contexts_list, outfile, ensure_ascii=False, indent=4)
            print(f"Unique `context` entries have been saved to: {output_filename}")
        except Exception as e:
            print(f"An error occurred while saving to the file {output_filename}: {e}")

    print("All files have been processed.")

```

</details>

### Step-1 Insert Contexts

For the extracted contexts, we insert them into the LightRAG system.

<details>
<summary> Code </summary>

```python
def insert_text(rag, file_path):
    with open(file_path, mode='r') as f:
        unique_contexts = json.load(f)

    retries = 0
    max_retries = 3
    while retries < max_retries:
        try:
            rag.insert(unique_contexts)
            break
        except Exception as e:
            retries += 1
            print(f"Insertion failed, retrying ({retries}/{max_retries}), error: {e}")
            time.sleep(10)
    if retries == max_retries:
        print("Insertion failed after exceeding the maximum number of retries")
```

</details>

### Step-2 Generate Queries

We extract tokens from the first and the second half of each context in the dataset, then combine them as dataset descriptions to generate queries.

<details>
<summary> Code </summary>

```python
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')

def get_summary(context, tot_tokens=2000):
    tokens = tokenizer.tokenize(context)
    half_tokens = tot_tokens // 2

    start_tokens = tokens[1000:1000 + half_tokens]
    end_tokens = tokens[-(1000 + half_tokens):1000]

    summary_tokens = start_tokens + end_tokens
    summary = tokenizer.convert_tokens_to_string(summary_tokens)

    return summary
```

</details>

### Step-3 Query

For the queries generated in Step-2, we will extract them and query LightRAG.

<details>
<summary> Code </summary>

```python
def extract_queries(file_path):
    with open(file_path, 'r') as f:
        data = f.read()

    data = data.replace('**', '')

    queries = re.findall(r'- Question \d+: (.+)', data)

    return queries
```

</details>

## Star History

<a href="https://star-history.com/#HKUDS/LightRAG&Date">
 <picture>
   <source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=HKUDS/LightRAG&type=Date&theme=dark" />
   <source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=HKUDS/LightRAG&type=Date" />
   <img alt="Star History Chart" src="https://api.star-history.com/svg?repos=HKUDS/LightRAG&type=Date" />
 </picture>
</a>

## Contribution

Thank you to all our contributors!

<a href="https://github.com/HKUDS/LightRAG/graphs/contributors">
  <img src="https://contrib.rocks/image?repo=HKUDS/LightRAG" />
</a>

## 🌟Citation

```python
@article{guo2024lightrag,
title={LightRAG: Simple and Fast Retrieval-Augmented Generation},
author={Zirui Guo and Lianghao Xia and Yanhua Yu and Tu Ao and Chao Huang},
year={2024},
eprint={2410.05779},
archivePrefix={arXiv},
primaryClass={cs.IR}
}
```

**Thank you for your interest in our work!**